
Bayesian Energy Landscape Tilting: Towards
Concordant Models of Molecular Ensembles

Kyle A. Beauchamp Vijay S. Pande Rhiju Das

January 22, 2014

Abstract

Predicting biological structure has remained challenging for systems such as dis-
ordered proteins that take on myriad conformations. Hybrid simulation/experiment
strategies have been undermined by difficulties in evaluating errors from computa-
tional model inaccuracies and data uncertainties. Building on recent proposals from
maximum entropy theory and nonequilibrium thermodynamics, we address these issues
through a Bayesian Energy Landscape Tilting (BELT) scheme for computing Bayesian
“hyperensembles” over conformational ensembles. BELT uses Markov chain Monte
Carlo to directly sample maximum-entropy conformational ensembles consistent with
a set of input experimental observables. To test this framework, we apply BELT to
model trialanine, starting from disagreeing simulations with the force fields ff96, ff99,
ff99sbnmr-ildn, CHARMM27, and OPLS-AA. BELT incorporation of limited chemical
shift and 3J measurements gives convergent values of the peptide’s α, β, and PPII
conformational populations in all cases. As a test of predictive power, all five BELT
hyperensembles recover set-aside measurements not used in the fitting and report accu-
rate errors, even when starting from highly inaccurate simulations. BELT’s principled
framework thus enables practical predictions for complex biomolecular systems from
discordant simulations and sparse data.
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Introduction

The past forty years have seen the experimental determination of “ground-state” structures
for countless biological macromolecules (1). Modern biology, however, presents many systems
that do not fit a single-structure paradigm. “Excited” conformational states of nucleic
acids (2), natively disordered proteins (3), and protein folding intermediates (4) are all
poorly described by single conformation models. For such systems, models of conformational
ensembles are required to understand and to predict structural and equilibrium properties.

A growing body of research has sought to characterize structural ensembles. Much of
this work has focused on incorporating dynamical information during NMR structure deter-
mination (5, 6) or the extraction of multiple conformers from X-ray diffraction data (7, 8).
While these techniques are powerful, they share difficulties in data collection, the unified
treatment of heterogeneous experimental data, and data sparseness relative to the number
of degrees of freedom. In particular, conformational ensemble modeling requires the esti-
mation of not just a single structure, but a collection of structures and their associated
equilibrium populations. This highly under-determined problem involves the simultaneous
estimation of approximately 3×N ×m parameters, where m is the number of states in the
ensemble and N is the number of atoms in the molecule. Estimating uncertainties of these
ensembles further amplifies this challenge. Inference in this regime necessarily requires more
information, which in principle can be attained by combining measurements with simulations
that leverage prior physical understanding encoded in atomistic force fields.

Despite recent advances in force field development (9, 10), simulation benchmark stud-
ies have demonstrated continuing inaccuracies in molecular dynamics (MD) force fields (11).
Force field modifications based on direct fitting to NMR measurements have also been demon-
strated (12, 13, 14), but such work has optimized only a small fraction of the required force
field parameters. Thus, simulations are often unable to recapitulate ab initio the wide variety
of measurements available on molecular systems. This inaccuracy poses a challenge when one
desires atomic-scale models that are both consistent with presently available measurements
and predictive of those yet to be measured.

Here, we introduce a practical statistical approach to modeling solution ensembles of bi-
ological macromolecules. The algorithm, Bayesian Energy Landscape Tilting (BELT), uses
solution experiments to reweight an ensemble of atomistic models predicted (perhaps inac-
curately) by molecular dynamics. BELT generalizes a recently proposed maximum entropy
method (15) to the practical scenario in which the experimental measurements and their
estimated relationships to atomic conformation carry error. In particular, BELT leverages
Markov Chain Monte Carlo (16) to transform experimental ambiguity into error bars on
arbitrary structural features. The final output of BELT modeling is a hyperensemble, or
an “ensemble of ensembles”, which we show is closely connected to a generalized ensemble
theory proposed by Crooks (17). This hyperensemble is a collection of statistical samples,
each of which is itself a conformational ensemble that corresponds to a maximum-entropy
solution associated with a particular set of experimental observables.

The necessity and utility of this approach can be illustrated with a simple example with
one experimental observable. Most previous methods have focused on obtaining estimates of
a single best-fit conformational ensemble (15, 18, 19). However, ambiguous experimental data
often disallow such a point-estimate of the conformational ensemble. For example, we plot
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one measured (19) value of 3J(HNH
α) in the context of the Karplus (20) equation relating

φ to 3J(HNH
α) (Fig. 1a). The measured coupling corresponds to four different values

of φ, precluding description by a single point estimate of φ, much less a single estimate
of the distribution of φ. Many different ensembles are consistent with the measurement
(Figs. 1b,c), leading to nearly completely loss of predictive power. A molecular dynamics
simulation can establish a prior estimate for the ensemble ( Fig. 1d), but may disagree with
the observed data beyond measurement error (Fig. 1e). In this case, how to compute a
statistical collection of ensembles that leverages both the simulation and the data has not
been obvious; for example, prior Bayesian approaches return uncertainties assuming single
conformations, not full ensembles (21). The BELT approach described herein (blue traces
in Fig. 1d,e) offers a practical recipe for describing such a hyperensemble, for computing
the hyperensemble’s predictions for new experimental observables not used in the modeling,
and for giving rigorous error estimates on these predictions.

After laying out the theoretical framework for BELT, this study presents in-depth tests
based on assessing the convergence of ensembles constructed from force fields with radically
different properties. We investigated the conformational propensities of trialanine using
NMR measurements (19) and MD simulations performed in five different force fields. The
small size of this model system enabled assessment of BELT without complications from
incomplete sampling. At the same time, trialanine populates multiple conformational states
and allows incisive tests of ensemble modeling. Although the raw simulations show wide
variations in their conformational preferences, BELT corrects force field errors to provide
concordant estimates of the α, β, and PPII populations. The ability to correct the biases of
diverse forcefields provides a stringent test of the proposed calculation scheme for connecting
simulation and equilibrium measurements.

Theory: Bayesian Energy Landscape Tilting

Model Inputs

To model an ensemble using BELT requires three components. First, we need conformations
xj (j = 1, ...,m) sampled from the equilibrium distribution of some physically realistic model.
This model will serve as a prior on structural properties; in the absence of experimental data,
the BELT model inherits the properties of the conformations xj. In the present work, such
conformations will be generated from molecular dynamics simulations. Second, we require
equilibrium experimental measurements Fi (i = 1, ..., n) and their associated uncertainties
σi (i = 1, ..., n). Third, it is necessary to have a direct connection between simulation and
experiment. This connection is achieved by predicting each experimental observable at each
conformation: fi(xj) is the predicted value of experiment i at conformation xj.

Reweighting

The next step in constructing an ensemble is to calculate the population of each conformation.
Inspired by a previous method for restraining simulations (15) (see Appx. S1), we reweight
individual conformations by a biasing potential that is a linear combination of the predicted
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1Figure 1: (a). The Karplus equation connecting the backbone torsion φ to 3J(HNH
α). The

measured value of 3J(HNH
α) is shaded gray and is consistent with multiple values of φ. (b,

c). Histograms of four chemically unrealistic ensembles that recapitulate the measured (gray)
value of 3J(HNH

α). Each histogram is represented in both the backbone torsion φ (b) and
the projection (via Karplus equation) onto 3J(HNH

α) (c). Dashed vertical bars represent
the average 3J(HNH

α) for each corresponding ensemble. (d, e). The molecular dynamics
(ff99) ensemble (red) is inconsistent with the measured 3J(HNH

α). Four samples (blue) from
the BELT hyperensemble show good agreement with measured values of 3J(HNH

α). For
this figure only, the uncertainty (σ) on 3J(HNH

α) was increased 2.5-fold to better illustrate
differences. Density spikes in (c, e) correspond to values where dJ

dφ
→ 0.
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observables:

∆U(x;α) =
n∑
i=1

αifi(x)

In ∆U(x;α), the parameters αi determine how strongly each experiment contributes to
the biasing potential. As shown previously (15), such a linear biasing potential gives a
maximum entropy ensemble for some set of experimental observations. The BELT strategy
is to look beyond the single best such ensemble so as to estimate the uncertainty in the
ensemble modeling. BELT instead samples over a distribution of such maximum entropy
ensembles each parametrized by αi. This approach is connected (see Appx. S1) to recent
work by Crooks that proposed an entropic prior for modeling hyperensembles in general
physical problems.

The end result is a collection of ‘landscape-tilted’ ensembles (Fig. 1e). That is, each
conformational ensemble is a perturbed version of the initial molecular dynamics ensemble
but reweighted (see Appx. S2) according to energetic perturbations that are linear in the
experimental observables fi(x):

πj(α) =
1∑

k exp[−∆U(xk;α)]
exp[−∆U(xj;α)]

With the equilibrium populations, we can calculate the equilibrium expectations of an
arbitrary observable h(x):

〈h(x)〉α =
∑
j

h(xj)πj(α)

In the above bracket notation, 〈h(x)〉α is the ensemble average of h(x) in an ensemble
that is perturbed by a biasing potential ∆U(x;α). At this point, the determination of the
parameters αi has not yet been discussed. The key idea, however, is that the α reweighted
ensemble 〈〉α should recapitulate the experimental measurements:

〈fi(x)〉α ≈ Fi

Forcing this to be an exact equality recovers previous results (15) that can be derived
from maximum entropy considerations (Appx. S1); here, however, we take into account the
experimental uncertainties associated with each Fi.

Determining α

A Bayesian framework enables determination of the coefficients α used in the biasing po-
tential. An alternative derivation using the Crooks hyperensemble formalism (17) is given
in Appx. S1. BELT assumes that, given the correct choice of α, the predicted observables
fi(x) provide unbiased (but noisy) predictions of the measurements Fi. This recipe assumes
independence (see Appx. S3) and the following conditional probabilities:

P (Fi|α) ∼ N(〈fi(x)〉α, σ2
i )
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In the above equation, N(., .) refers to a normal distribution with specified mean and
variance. For the current work, we model σi as the uncertainty associated with predicting
chemical shifts and scalar couplings from structures; this error is quantified by the RMS
uncertainty estimated during the parameterization of chemical shift and scalar coupling
models. Using Bayes’ Theorem, we can calculate the posterior distribution of α:

P (α|F1, ..., Fn) ∝ P (F1, ..., Fn|α)P (α)

Now we let LP (α) denote the log posterior of α and simplify, dropping terms that are
independent of α:

LP (α) = log[P (α|F1, ..., Fn)] = −
n∑
i

1

2σ2
i

(〈fi(x)〉α − Fi)2 + logP (α) + constant

Note the simple form of the log posterior. The first term (i.e. the log likelihood) measures
the χ2 agreement between the reweighted ensemble and measurements. The second term is
the log of the prior distribution on α.

In the present work, we evaluate three different choices of prior (Appx. S4), finding
similar results for each. The first is the maximum entropy (maxent) prior, which penalizes
ensembles as they deviate from the raw simulation results:

logP (α) = −λ
m∑
j

πj(α) log
πj(α)

π0
j

In the previous expression, π0
j refers to the populations of an unweighted ensemble, which

are typically 1
m

, while λ is a hyperparameter that controls the strength of the prior. We also
consider using a Dirichlet prior, which is functionally similar to the maxent prior (Appx.
S4):

logP (α) = −λ
∑
j

π0
j log

π0
j

πj(α)

The third prior we consider is a multivariate normal prior, where α ∼ N(0,Σ). The value
of Σ is given by Σij = λCov(fi(x), fj(x)), as derived in Appx. S4.

Each of these priors can be used to achieve regularization, which is a powerful technique
to reduce overfitting (22). Large values of λ favor the raw simulation results (i.e. uniform
conformational populations): πj ≈ π0

j = 1
m

. The value of λ can be chosen via cross-validation
or other methods (see Appx. S5). When using the maxent prior in the limit of large λ and
σ → 0, BELT recovers the hyperensemble picture of nonequilibrium statistical mechanics as
developed (17) by Crooks (see Appx. S1). The Dirichlet and Normal priors do not share the
same connection to the Crooks hyperensemble formalism; however, for normally distributed
observables, all three priors will give identical results (23).
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MCMC Sampling of Structural Ensembles

As noted above, because ensemble inference often presents many plausible solutions (21, 24,
25), we avoid statistical methods that return a single solution (e.g. maximum likelihood or
maximum entropy). We therefore use Markov chain Monte Carlo (MCMC), as implemented
in PyMC (16), to sample the distribution of structural ensembles—one ensemble per sam-
pled α—consistent with experiment. The result is an ensemble of ensembles—a statistical
ensemble of conformational ensembles. Averaging all MCMC samples provides posterior
mean estimates of arbitrary structural features or experimental observables. Similarly, ex-
amining the MCMC variances provides statistical uncertainties of equilibrium or structural
features. A Bayesian bootstrapping procedure (26) can also be used to model the statistical
uncertainty of the MD simulations (see Appx. S6).

Methods

Molecular Dynamics Simulations

Trialanine was simulated in the ff96 (27), ff99 (28), ff99sbnmr-ildn (29, 30), CHARMM27
(31, 32), and OPLS-AA (33) force fields, as previously reported (11). Simulations were
performed using Gromacs 4.5 (34) and run at constant temperature (300 K) and pressure
(1.01 atm). Each simulation was at least 225 ns long and used the TIP4P-EW water model
(35). Conformations were stored every 1 ps.

Chemical Shifts and Scalar Couplings

All NMR measurements in this work refer to experiments probing the central residue of
trialanine (19). The experimental data were measured at pH 2, near the pKa of the car-
boxylate moiety of the C terminus, which would requires a constant pH simulation, rather
than a fixed protonation state. Because such simulations are challenging with current force
fields and simulation packages, we simulated the trialanine construct with charged termini—
conditions in which the the force fields have been best calibrated and tested. We therefore
focus our analysis on the central alanine residue, which should be most robust to pH de-
pendent effects. Both pH differences and force field inaccuracies will lead to systematic
differences between simulation and experiment; indeed, we assess whether BELT robustly
corrects these deviations.

Chemical shifts (H, Hα, Cα, Cβ) for each frame were calculated using a weighted average
of ShiftX2 (36), SPARTA+ (37), and PPM (38) predictions; uncertainties for each model were
estimated using their reported RMS prediction errors. Overall uncertainties were estimated
as

√∑
wiσ2

i , where wi ∝ 1
σ2
i

is the weight (
∑

iwi = 1) of each chemical shift model and

σi is the uncertainty of each chemical shift model. The J couplings were calculated using
the following Karplus relations: 3J(HNC ′) (20), 3J(HNHα) (20), 2J(NCα) (19), 3J(HαC ′)
(39), 1J(NCα) (19), 3J(HNCβ) (20). J coupling uncertainties were approximated as the
RMS errors reported when fitting the Karplus coefficients.

We have divided the available experimental measurements into training and test sets,
with the training set consisting of the 3J(HNC ′), 2J(NCα), and 3J(HNCβ) scalar couplings
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and the Cα, HN , and Cβ chemical shifts. The test set consists of 3J(HNHα), 3J(HαC ′),
1J(NCα), and the Hα chemical shift. The division into training and test sets serves three
purposes. First, it provides a test of overfitting. Second, it allows us to reduce the computa-
tional cost of BELT calculations. Third, it allows us to train on data that are approximately
uncorrelated; BELT is best suited for working with uncorrelated data.

BELT

All BELT calculations were performed using the FitEnsemble package (https://github.
com/kyleabeauchamp/FitEnsemble). The online FitEnsemble tutorial demonstrates the use
of BELT with a single experimental measurement (3J(HNHα)). Source code for calculations
in this work is freely available at https://github.com/kyleabeauchamp/EnsemblePaper.

The regularization strength λ weights simulation versus experimental data. To determine
this weighting in an unbiased manner, BELT carries out cross validation on the simulation
data, as described in Appx. S5; this procedure also reduces errors due to finite sampling of
equilibrium properties. For each model, we used PyMC to sample at least 5,000,000 values of
α; sampled values of α were thinned 100-fold to reduce correlation. The first 5,000 samples
(before thinning) were discarded as burn-in. Convergence of MCMC sampling was assessed
by visual examination of MCMC traces; a well-sampled and thinned trace will appear to
be white noise, without correlation between one sample and the next. MCMC traces are
shown in Fig. S2 and discussed in Appx. S7. To incorporate simulation uncertainty, we used
Bayesian Bootstrapping (Appx. S6). Two Bayesian bootstrap replicates were performed.

Results

Short peptides provide crucial tests for evaluating and optimizing molecular dynamics force
fields (9, 11, 14, 19, 40). Such peptides offer a window into the intrinsic conformational
propensities of amino acids, free from the secondary structure bias found in statistical surveys
of protein structures (41). To test the proposed theoretical framework, we used BELT to
infer the conformational populations of trialanine from chemical shift and scalar coupling
measurements (19).

Conformational Propensities of Trialanine Simulations

Trialanine was simulated (see Methods) in five different force fields. The chosen force fields
show considerable variation in their predicted conformational propensities. The ff96 force
field shows a bias towards β conformations (population: 51%) (Fig. 2b, red). On the other
hand, ff99 strongly favors helical conformations, with a predicted α population of 80% (Fig.
2c, red). The PPII state, known to be the dominant state in solution from independent
approaches (19, 40, 42), is the dominant simulated state only in the ff99sbnmr-ildn force
field (Fig. 2a, red). Low PPII populations and inconsistency between force fields have been
previously noted (9, 11, 14, 19).
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Agreement with NMR Measurements: MD and BELT Ensembles

Given the differences in conformational propensities, one might expect varying degrees of
agreement with the available experimental measurements. This is indeed the case; four out of
five force fields show values of the reduced χ2 ( 1

n
χ2) greater than 1.0 (Fig. 3a, red). Because of

this considerable error, we therefore examined BELT hyperensembles based on incorporating
six NMR measurements of chemicals shifts (Cα, Cβ, and H) and scalar couplings (3J(HNC ′),
2J(NCα), and 3J(HNCβ)) to reweight each of the five molecular dynamics ensembles. As
expected, the BELT hyperensembles accurately recapitulate these six measurements used
in the reweighting (Fig. 3a). In a more incisive test, the BELT hyperensembles accurately
predicted four measurements (Hα chemical shift and 3J(HNHα), 3J(HαC ′) and 1J(NCα)
scalar couplings) that were not used to fit the models. (Fig. 3b). A table of predicted and
observed NMR measurements is given in Tables 1, S1, and S2.

Converged Conformational Propensities Observed in BELT Ensem-
bles

Although the raw MD simulations predicted quite different conformational propensities,
BELT reweighting gave five ensembles with conformational populations that agreed to within
estimated statistical uncertainty (Fig. 2). Quantitative predictions and uncertainties are
given in Tables S3-S6. In accord with expectation, the lower accuracy force fields (e.g., ff99)
were assigned lower λ values than force fields that were able to predict the experimental
data a priori (see Supporting Information). The lower accuracy simulations also give final
predictions that were more uncertain (e.g., PPII frequency of 69 ± 13% for ff99) than force
fields that are able to predict experimental data a priori (e.g., PPII frequency of 71 ± 4% for
ff99sbnmr-ildn). Nevertheless, the final predictions agreed, and residual modest differences
provided practical estimates of systematic error. In general, we find (PPII , β, α) populations
of (67 ± 9%, 23± 6%, 10± 8%); here the mean and uncertainty are approximated as the
mean and standard deviation across all force fields and priors.

In addition to convergence between models constructed from different force fields, we also
assessed the convergence between BELT models built using different priors on the parameters
α. In general, different priors gave similar results with small quantitative differences (Figs.
2 and 3). Building BELT models with different priors could therefore be further useful for
bracketing uncertainties in situations with limited simulation data.

The Resolution Limit of Trialanine BELT Ensembles

Despite the near-quantitative agreement in α, β, and PPII populations (Fig. 2) and overall
Ramachandran features (Fig. 4), the fine details of the Ramachandran plots differed be-
tween the five models. Because all five BELT ensembles showed excellent agreement with
experiment (Fig. 3), we concluded that six chemical shifts and scalar couplings were insuf-
ficiently informative to resolve (and falsify) subtle force field differences. The most obvious
such difference was the width, shape, and orientation of the PPII basin. Most strikingly, ff96
and OPLS-AA gave PPII basins that were vertically oriented in the Ramachandran plot,
while ff99, ff99sbnmr-ildn, and CHARMM27 gave diagonally oriented PPII basins. Two
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different effects contributed to this resolution limit: the information content in the experi-
mental measurement and the uncertainty in predictors of experimental observables. Again,
the BELT strategy of modeling with different starting MD simulations revealed the residual
uncertainties from these systematic errors.

Discussion

Structural Ensemble Biology

Why model structural ensembles, rather than just structures? At least three compelling
reasons favor ensembles. First, biological molecules are multi-state machines that fold, un-
fold, bind ligands, aggregate, and change conformation. Biology is controlled by the relative
populations of these states. Ensembles capture aspects of these phenomena by encoding
equilibrium populations with structures. A second argument for ensemble modeling is fi-
delity to experiment. Most solution experiments measure ensemble average equilibrium
properties: chemical shifts, scalar couplings, NOEs, SAXS, and FRET can often be approx-
imated as equilibrium properties. A truly quantitative connection to these measurements
requires modeling the equilibrium ensemble. Finally, recent advances in atomistic simulation
(34, 43, 44, 45), special-purpose hardware (46), and distributed computing analysis (47, 48)
have enabled atomistic simulations to reach the millisecond timescale (49, 50, 51, 52); the
computational cost of ensemble modeling is quickly becoming manageable.

One might argue that structural ensembles are unnecessary because many proteins occupy
a single state under physiological conditions. For such proteins, it is probably safe to enforce
single state behavior, as is assumed in current modeling approaches. However, we suggest
that the number of states be inferred—not assumed.

Comparison to Previous Ensemble Methods

Previous ensemble modeling efforts that are most similar to BELT share three key ingredi-
ents: state decomposition, a χ2 objective function, and population inference on the clusters.
For example, this general recipe describes the approach used in previous analyses of ho-
mopeptides (19), the EROS technique for SAXS modeling (18), and the Bayesian Weighting
(BW) formalism (24, 53). Note that of these three techniques, only BW goes beyond re-
turning a single best-fit ensemble and instead characterizes the posterior distribution via
MCMC; below we therefore focus our attention on BW as it is most directly comparable to
BELT in scope and purpose.

The primary disadvantage of previous techniques is the need for a state decomposition,
which must be defined either by hand or by clustering. Working with a given state decom-
position can introduce two different errors, depending on the number and quality of states.
In the limit of few states, clustering can overly coarsen the system of interest, preventing
the model from reproducing multiple experimental observables. At the other extreme, too
many states leads to a large number of parameters to be estimated. This will lead to poor
generalization performance and large errors when predicting experiments not used to train
the model, as well as reliance on a subjective choice of how many states is appropriate.
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Figure 1: MD and BELT (maxent, Dirichlet, and MVN priors) conformational propensi-
ties (for central alanine residue) in each force field.1

(a)

Figure 2: MD and BELT (maxent, Dirichlet, and MVN priors) conformational propensities
(for central alanine residue) in each force field.
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1Figure 3: The reduced χ2 error (e.g. χ2

n
) for MD and BELT (maxent, Dirichlet, and MVN

priors) models. The BELT reduced χ2 is estimated as the mean reduced χ2 over all MCMC
samples. (a). Calculated using the six measurements used to fit the BELT model. (b).
Calculated using four measurements not used to fit the BELT model. See Methods for
the definition of training and test sets. Note that the training and test sets are not fully
independent because all measurements probe the (φ, ψ) backbone torsions.

One symptom of this regime is discontinuity in conformational populations. For example,
imagine two nearby conformations at the boundary between two BW states—one confor-
mation on each side of the boundary. In BW, the populations of each conformation could
fluctuate dramatically with the corresponding state populations. In BELT, however, the
two conformations will have nearly identical populations if the predicted observables vary
smoothly.

BELT avoids arbitrary state decompositions by projecting simulations onto a basis de-
fined only by the information at hand: the unweighted simulation and the function that maps
ensembles onto observables. The advantage of working in this basis are threefold. First, in
BELT, one estimates a single parameter (αi) for each experimental observable. If the number
of experiments is small, as is often the case, the inference problem involves only a few pa-
rameters. Second, the predicted observables are a natural basis for biophysical calculations,
in that the predicted observables are the fundamental connection between simulation and
experiment. Working in this basis allows direct connection to experiment and often provides
insight into the molecular interactions driving biophysical phenomena. For example, the pro-
jection onto observables could be used to rationally infer force field parameters—essentially
a Bayesian version of the ForceBalance method (54, 55). Third, BELT does not require
subjective choices. In the limit of exact measurements, BELT reduces to a previous (15)
maximum entropy approach, and, more generally, is connected to the Crooks hyperensemble
formalism (see Appx. S1).

We also point out some surprising differences between BELT and BW-like methods. BW-
like methods have the property that the in-state means of features are preserved, leading to
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model is due to limited sampling of PPII configurations in that forcefield.
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an undesirable dependence on the choice of state decomposition. More precisely, suppose
that χs(x) is the indicator function of a conformational state s. Then in-state averages of
the form < χs(x) >−1< h(x)χs(x) > do not depend on the reweighted populations. BELT,
however, does not preserve the in-state averages; in fact, this property is the direct result of
BELT’s connection to maximum entropy modeling (see Appx. S1 and ref. (15)). The effect
of this property is that the peaks of reweighted histograms are slightly shifted relative to
the raw MD results, as observed in Fig. S4. We conclude that BW-like methods are useful
for systems with few, well-defined conformational states, while BELT may offer significant
advantages in the absence of an obvious state decomposition.

In addition to BW-like methods, there are also a class of methods where restrained simu-
lations are used to derive ensembles of hundreds of conformations that, when taken together,
produce the correct ensemble average observables (5, 56). Through the use of restraints, such
methods have advantages in situations where the initial force field is insufficiently accurate
to sample the correct regions of conformation space. Unlike BELT, however, these methods
do not yet give a statistical treatment of uncertainty from errors in experiments or connect-
ing simulations to experiments; new predictions cannot be rigorously falsified or validated
in subsequent experiments.

More recently, a similar Bayesian technique for structural ensemble inference has been
developed (57).

Comparison to a Previous Trialanine Study

Our results are in qualitative, but not quantitative, agreement with a previous study of
trialanine (19) using the same experimental measurements. That study suggested a PPII
population as high as 92± 5%, somewhat higher than our 67± 9% and with a twofold lower
estimated uncertainty. The difference can be attributed to three methodological differences.
First, the previous study used likelihood maximization to directly fit the (PPII , β, and α)
populations from a three-state decomposition of their simulations. The use of likelihood
maximization may give misleading results when the likelihood surface is broad and shallowly
peaked, as was found in the previous study. However, this does not appear to be the primary
cause of disagreement, as maximization of the BELT likelihood recovers populations within
±5% of the values obtained via MCMC sampling. Second, the previous study assumed each
scalar coupling to have an uncertainty of 1, while we approximate the uncertainties as the
RMS errors determined when fitting the Karplus equations. This weights the measurements
differently and will lead to quantitative differences in estimated populations. Different choices
of Karplus coefficients also may lead to different predicted properties, as has been discussed
elsewhere (9, 58). Finally, the prior method’s choice of state decomposition may cause slight
differences in estimated conformational populations.

Performance and Extension to Larger Systems

The computational performance of BELT depends on several factors. First and foremost,
the cost is proportional to the number of requested MCMC samples (nsamples). The required
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number of samples must be determined by convergence analysis of the resulting MCMC
traces. Second, each step of MCMC sampling requires calculations involving each member
of the m conformations in the ensemble; m is the second major determinant of computational
cost. Finally, each step of MCMC sampling involves drawing one random variable for each of
the n experimental measurements, so the cost of each MCMC step depends (albeit weakly)
on n. For the present work (m = 3 × 105, n = 6, nsamples = 107), each BELT run required
approximately 2 days of compute time on an Intel 3770K processor. A similar calculation
with only a single experimental observable (n = 1) would take approximately 1.8 days. For
a larger system, say ubiquitin with one measurement per residue, one might work with fewer
conformations to reduce the computational cost. As an example of the computational cost,
a calculation with (m = 5× 104, n = 76, nsamples = 107) would require approximately 1 day.

Because the present analysis has focused on the analysis of a small peptide, we briefly
discuss two possible challenges in applying BELT to larger protein systems. First, the com-
putational cost of molecular dynamics simulations currently prevents converged equilibrium
simulations of full protein systems; this was one motivation for our choice of trialanine as
a model system. Second, inaccurate force fields may reduce the overlap between the true
ensemble and that sampled in simulation. Given a finite simulation length, it is possible that
no amount of reweighting could provide agreement with experiment. Force field inaccuracy
may become increasingly important for larger protein systems (59).

Conclusion

Bayesian Energy Landscape Tilting allows the simultaneous characterization of structural
and equilibrium properties by generating a Bayesian ensemble of conformational ensembles—
a hyperensemble. Through its use of MCMC, BELT is robust to ambiguous experiments and
provides rigorous uncertainty estimates, as illustrated here in the case of a tripeptide system
with a complex ensemble. BELT models constructed with a handful of NMR measurements
correct significant force field bias, provide generalizable, force field independent trialanine
ensembles, and allow evaluation of residual systematic errors. Important frontiers for BELT
include the integration of numerous rather than sparse data and extension of the current
equilibrium framework to prediction of kinetic properties. The principled combination of
simulation and experiment—and evaluation of convergence from multiple force fields—will
enable predictive models that might not be achievable using either simulation or experiment
alone.
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Fi σi ff96 ff99 ff99sbnmr-ildn CHARMM27 OPLS-AA
MD BELT MD BELT MD BELT MD BELT MD BELT

Cα 52.4 0.9 52.1 52.2 52.8 52.5 52.4 52.4 52.5 52.4 52.2 52.2
Cβ 19.2 1.0 20.0 19.8 18.0 18.8 18.3 18.4 18.2 18.6 19.6 19.6
H 8.6 0.5 8.6 8.6 8.3 8.4 8.2 8.2 8.3 8.3 8.6 8.6
Hα 4.4 0.2 4.6 4.6 4.6 4.6 4.5 4.5 4.6 4.6 4.6 4.6
1J(NCα) 11.3 0.5 11.3 11.5 10.4 11.8 11.5 11.5 11.2 11.7 11.1 11.3
3J(HαC′) 1.8 0.4 2.0 1.7 2.2 1.7 1.8 1.8 2.0 1.8 2.2 2.0
3J(HNCβ) 2.4 0.2 1.5 2.3 0.8 2.3 2.3 2.3 1.8 2.3 1.9 2.2
3J(HNC′) 1.1 0.3 1.5 1.2 1.8 1.2 1.0 1.0 1.4 1.2 0.9 0.8
3J(HNHα) 5.7 0.4 6.6 5.7 7.5 5.6 6.1 6.0 6.3 5.7 7.0 6.5
2J(NCα) 8.4 0.5 8.5 8.6 6.4 8.5 8.5 8.5 8.1 8.6 8.1 8.4
χ2 (all) 2.5 0.6 10.8 1.0 0.4 0.4 1.4 0.7 2.3 1.1
χ2 (train) 2.9 0.4 12.9 0.6 0.3 0.3 1.6 0.5 1.1 0.5
χ2 (test) 2.0 0.9 7.6 1.6 0.5 0.5 1.1 1.0 4.0 1.9

Table 1: Predicted and measured observables are given. BELT predictions are calculated
using the maxent prior; see Tables S1-S7 for complete table. The ‘all‘, ‘training‘, and ‘test‘
datasets have 10, 6, and 4 measurements, respectively.
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[20] Vögeli, B., J. Ying, A. Grishaev, and A. Bax, 2007. Limits on variations in protein
backbone dynamics from precise measurements of scalar couplings. J. Am. Chem. Soc.
129:9377–9385.

[21] Rieping, W., M. Habeck, and M. Nilges, 2005. Inferential structure determination.
Science 309:303–306.

[22] Friedman, J., T. Hastie, and R. Tibshirani, 2001. The elements of statistical learning,
volume 1. Springer Series in Statistics.

[23] Wikipedia, 2004. Kullback–leibler divergence — Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence, [Online;
accessed 15-July-2013].

[24] Fisher, C. K., A. Huang, and C. M. Stultz, 2010. Modeling intrinsically disordered
proteins with bayesian statistics. J. Am. Chem. Soc. 132:14919.

[25] Fisher, C. K., and C. M. Stultz, 2011. Constructing ensembles for intrinsically disordered
proteins. Current opinion in structural biology 21:426–431.

[26] Rubin, D., 1981. The bayesian bootstrap. The annals of statistics 9:130–134.

[27] Kollman, P., 1996. Advances and continuing challenges in achieving realistic and pre-
dictive simulations of the properties of organic and biological molecules. Acc. Chem.
Res. 29:461–469.

[28] Wang, J., P. Cieplak, and P. Kollman, 2000. How well does a restrained electrostatic
potential(resp) model perform in calculating conformational energies of organic and
biological molecules? J. Comput. Chem. 21:1049–1074.

19

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 24, 2014. ; https://doi.org/10.1101/002048doi: bioRxiv preprint 

https://doi.org/10.1101/002048


[29] Li, D., and R. Bruschweiler, 2010. Nmr-based protein potentials. Angew. Chem.
122:6930–6932.

[30] Lindorff-Larsen, K., S. Piana, K. Palmo, P. Maragakis, J. Klepeis, R. Dror, and D. Shaw,
2010. Improved side-chain torsion potentials for the amber ff99sb protein force field.
Proteins: Struct., Funct., Bioinf. 78:1950–1958.

[31] Mackerell Jr, A., M. Feig, and C. Brooks III, 2004. Extending the treatment of back-
bone energetics in protein force fields: Limitations of gas-phase quantum mechanics in
reproducing protein conformational distributions in molecular dynamics simulations. J.
Comput. Chem. 25:1400–1415.

[32] Bjelkmar, P., P. Larsson, M. Cuendet, B. Hess, and E. Lindahl, 2010. Implementation of
the charmm force field in gromacs: Analysis of protein stability effects from correction
maps, virtual interaction sites, and water models. J. Chem. Theory Comput. 6:459–466.

[33] Kaminski, G., R. Friesner, J. Tirado-Rives, and W. Jorgensen, 2001. Evaluation and
reparametrization of the opls-aa force field for proteins via comparison with accurate
quantum chemical calculations on peptides. J. Phys. Chem. B 105:6474–6487.

[34] Hess, B., C. Kutzner, D. Van Der Spoel, and E. Lindahl, 2008. Gromacs 4: Algorithms
for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory
Comput. 4:435–447.

[35] Horn, H., W. Swope, J. Pitera, J. Madura, T. Dick, G. Hura, and T. Head-Gordon,
2004. Development of an improved four-site water model for biomolecular simulations:
Tip4p-ew. J. Chem. Phys. 120:9665.

[36] Han, B., Y. Liu, S. Ginzinger, and D. Wishart, 2011. Shiftx2: significantly improved
protein chemical shift prediction. J. Biomol. NMR 1–15.

[37] Shen, Y., and A. Bax, 2010. Sparta+: a modest improvement in empirical NMR
chemical shift prediction by means of an artificial neural network. J. Biomol. NMR
48:13–22.
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