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19  Summary

20 A fundamental question in evolutionary biology is the relative importance of selection
21  and genetic architecture in determining evolutionary rates. Adaptive evolution can be
22 described by the multivariate breeders’ equation ( AZ = Gf), which predicts evolutionary
23 change for a suite of phenotypic traits ( Az ) as a product of directional selection acting
24 onthem (f) and the genetic variance-covariance matrix for those traits (G). Despite

25  being empirically challenging to estimate, there are enough published estimates of G

26  and g to allow for synthesis of general patterns across species. We use published

27  estimates to test the hypotheses that there are systematic differences in the rate of

28  evolution among trait types, and that these differences are in part due to genetic

29  architecture. We find evidence some evidence that sexually selected traits exhibit faster
30 rates of evolution compared to life-history or morphological traits. This difference does
31 notappear to be related to stronger selection on sexually selected traits. Using

32 numerous proposed approaches to quantifying the shape, size and structure of G we

33 examine how these parameters relate to one another, and how they vary among

34 taxonomic and trait groupings. Despite considerable variation, they do not explain the

35  observed differences in evolutionary rates.


https://doi.org/10.1101/002683
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/002683; this version posted May 5, 2014. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

3

36 Introduction

37  Predicting the rate and direction of phenotypic evolution remains a fundamental

38 challenge in evolutionary biology [1-4]. Empirical studies have demonstrated that most
39 traits are heritable [5-8] and can respond to selection — a prediction borne out by an
40  abundance of short- (e.g. [9-11] and long-term (e.g. [9,12-14] artificial selection

41  experiments targeting single traits. However, in most biological systems, the targets of
42  selection are suites of traits. Furthermore, different traits are tied together by genetic
43  associations (typically quantified as covariances), and consequently selection on one
44  trait can lead to evolutionary changes in other traits [7,8,11,15-21]. Indeed, genetic
45  covariation between traits appears to be ubiquitous and has the potential to shape the
46  evolution of associated traits [7,10,17,18,20,22,23]. Therefore, to improve our

47  understanding of phenotypic evolution it is necessary to invoke a multivariate

48  perspective [5,17-19,24].

49

50  The evolutionary response of a suite of traits can be predicted by the multivariate

51  breeder’s equation A7 = Gf where A7 is the vector of responses in phenotypic means
52 for the suite of traits, G is the additive genetic variance-covariance matrix and f is the
53  vector of linear (directional) selection gradients [5-8]. The importance of G to

54  phenotypic evolution can be illustrated using the concept of “genetic degrees of

55 freedom” [9,11,15]. Whenever there is genetic covariance between them, the number
56  of trait “combinations” in G that can respond to selection can be considerably smaller

57  than the actual number of measured traits. This can be true even when each trait in G is


https://doi.org/10.1101/002683
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/002683; this version posted May 5, 2014. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

4

58 heritable and all pairwise genetic correlations between them are less than one [1-

59  3,9,11,25]. This reduced dimensionality constrains the population to evolve in a genetic
60  space with fewer dimensions than the number of traits (and trait combinations)

61  potentially under selection. A matrix whose variance is concentrated in one or a few

62  dimensions can exhibit “lines of least evolutionary resistance” (LLER); directions in which
63  the multivariate evolutionary response can proceed more rapidly than in others [15].

64  The presence of these LLERs can have a major influence in biasing the direction of

65  evolutionary trajectories (Figure 1; ref.s [7,11,15-20]), making the G matrix more

66  informative about the short term capacity of a population to respond to selection (i.e.
67 its evolvability) than the heritabilities of individual traits [7,10,17,18,20,22,23].

68

69  Avariety of measures have been proposed as proxies for the evolutionary potential of a
70  population. Most current approaches represent a function of the components of the

71 multivariate breeder’s equation: G, # and Az [5,17-19,21,24]. Unfortunately, few

72 studies simultaneously estimate more than one of these components. The notable

73 exceptions suggest that the structure of G plays an important role in directing

74  phenotypic evolution [26-29]. Even fewer studies provide direct estimates of observed
75 rates of evolution [30,31]. However, many individual estimates of selection and

76  evolutionary rates exist in the literature and evolutionary research has benefitted from
77  reviews that synthesize these parameters [30-38]. There is considerable variation in the
78  strength of selection across different trait types and fitness measures [33,34,38], as well

79  asover time (but see ref.s [36,39,40]. On average, linear selection appears stronger on
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80  morphological than life-history traits and both linear and quadratic selection is stronger

81  when acting on mating success and fecundity compared to viability [1-4,33,38]. However

82 inferences from such studies are subject to methodological debate [5-8,35] and

83  potentially publication biases [9-11,40]. In particular, there has been disagreement

84  about trait scaling, and how it influences estimates and broader evolutionary

85  conclusions [19,22,41].

86

87  Although they have not received the same attention as selection gradients, reviews

88  based on published genetic parameters show clear differences across trait types.

89  Morphological traits generally have higher heritabilities than life-history traits, with

90 physiological and behavioural traits intermediate between these extremes [9,12-14,32],

91 but see [6-8,11,15-21]. Sexual traits have also been shown to have higher additive

92  genetic variances compared to non-sexually selected traits [7,10,17,18,20,22,23,42],

93  although this finding is based on few studies. As discussed above, trait scaling has been

94  shown to alter the observed patterns [19,22,41].

95

96 There have been even fewer attempts at synthesis from a multivariate perspective.

97  Notably, Kirkpatrick [20], Kirkpatrick & Lofsvold [9], Agrawal & Stinchcombe [23], and

98  Schluter [11,15] collected small samples of G matrices from the literature and found

99  that much of the available variance was concentrated in the first few dimensions. This
100  suggests that few genetic degrees of freedom may be the norm, but we know of no

101  systematic review that reveals how general this pattern is or whether it differs across
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102 taxa or trait types. Likewise, although reviews on the rate of contemporary

103 microevolution suggest that rapid evolution should be viewed as the norm rather than
104  the exception [15,30,31], a comprehensive review of evolutionary rates across different
105 taxa and trait types does not currently exist.

106

107  We compiled a database of reported genetic parameters from the literature to ask

108  whether different types of traits evolve at different rates, and whether such differences
109  correlate with differences in selection, in patterns of genetic (co)variation or both. We
110  performed a quantitative literature review, to examine whether observed rates of

111  evolutionary response differ across trait types (morphological, life-history and sexual) in
112 plants and animals. We relate these observed rates of evolutionary response to

113 estimates of linear and quadratic selection, as well as measures that capture the size,
114  shape and structure of G [7,11,15-20], to determine whether there is an association

115  across trait types and taxa. We find some evidence that sexual traits evolve faster than
116  other traits in animals but not in plants, where life-history traits evolve fastest. These
117  increased rates of evolution do not appear to be attributable to the same cause

118  however. In plants we find that selection also appears to be strongest on life-history
119 traits, whereas in animals selection on sexually selected traits appears to be stronger
120  than on life-history but indistinguishable from that on morphology. We then examined
121  how the measures used to capture the size, shape and structure of G vary among trait

122 types and between taxa, but find that this incompletely explains the observed pattern of
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123 evolutionary rates. In addition, we compare the various measures based upon G, and
124 show that for these empirically observed matrices, many strongly co-vary.
125

126  Methods

127  All data and scripts containing our analyses can be downloaded either from DRYAD

128  (doi:xxx) or github (https://github.com/DworkinLab/Pitchers PTRS2014).

129  Compilation of Database

130  We compiled our datasets by searching for publications on the ISI Web of Science

131  database between March 2006 and August 2012. We then refined this preliminary list of
132 references on the basis of their title, abstract and keywords and attempted to obtain

133 the full text for all papers included in the dataset.

134  Rates of evolution have been measured using a number of different units, most

135 prominently darwins [7,10,17,18,20,22,23,43,44] and haldanes [5,17-19,21,24,43,45].
136  Measurements in darwins have proved most appropriate for researchers studying

137  evolution on macro-evolutionary scales (e.g. paleontologists), since they express the
138  rate of evolution per million years (although there are known methodological issues
139  with making comparisons [44,46]). However, for our purposes rates expressed in

140  haldanes are the appropriate unit as they measure change per generation and are used
141  to measure evolution on a micro-evolutionary scale — the scale over which G may be
142 important. We therefore compiled a database of evolutionary rate measured in

143 haldanes only. We performed searches for the terms ‘rate of evolution’, ‘rate of
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144 adaptation’, ‘haldanes’, ‘response to selection’ and ‘experimental evolution’. This

145  process was aided considerably by making use of the measurements from the studies
146  previously compiled by Hendry et al [26-29,47]. Where studies reported the results of
147  experimental evolution without explicitly reporting a rate of response, we contacted the
148  authors to ask for the data needed (e.g. generation time) to calculate a rate in haldanes,
149  standardizing traits as necessary. Previous work has shown that even with log

150 transformation of ratio scale data (where means and variances might co-vary), this had

151 little influence on overall estimates for haldanes [31].

152  For the database of selection gradients, we began with the database compiled by

153 Kingsolver et al [30,31,33,37], and supplemented this with additional measures from
154  work published after 2001 by searching for the terms ‘natural selection’, ‘sexual

155  selection’, ‘selection gradient’ or ‘selection differential’. Unlike Kingsolver et al [30-38]
156  we included both field and laboratory studies. While there has been discussion about
157  the effects of trait scaling (mean vs. standard deviation) on estimates of selection

158  [19,35], we have only included estimates standardized using the approach as advocated

159 by Lande and Arnold [21], as this has been most broadly used.

160  For the G matrix dataset we searched the Web of Science database using the terms ‘G
161  matrix’ (or ‘G-matrix’), ‘covariance matrix’ (or ‘co-variance matrix’ or ‘(co)variance

162  matrix’) or ‘quantitative genetics’. We recorded G matrices expressed both as genetic
163  (co)variances (provided we were able to mean-standardize them, following [19]) and as

164  genetic correlations and narrow sense heritabilities. Where possible (i.e. where
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165  estimates of phenotypic variance had been presented alongside genetic correlations and

166  heritabilities) we back-calculated the genetic variances and covariances as: V, =h’V, and
167 Cov,,, =154V, Vay, Where Vaand Ve are the additive genetic and phenotypic variances,

168  h?is the narrow sense heritability and rg is the genetic correlation between traits x and
169 . In cases where matrices were incomplete we contacted the author(s) to request the
170  missing estimates. We thus have two G datasets; correlation matrices and covariance
171 matrices. Since we found correlations to be reported more often than covariances, the
172 correlation dataset is a superset of matrices that includes those in the covariance

173  dataset. Trait scaling for the co-variance matrices is discussed below. In a number of
174  cases matrices had component traits that had been measured in difficult-to-compare
175  units (e.g. both a length and a volume), or where traits were expressed as residuals (e.g.
176  from regression against size). In these cases we excluded these from the reported

177  analysis, but inclusion had little effect on the results. A number of matrices were also
178  found to include cells with correlations >1 and in these cases we excluded the offending

179 matrix.

180  Defining Trait Categories and Measures

181 Since we wished to make comparisons across different ‘trait types’ (sensu [33,34,38]), it
182  was necessary to assign our measurements from the literature into categories. We

183  chose three trait categories: life-history, morphological and sexually selected traits. It is
184  relatively straightforward to separate life-history from morphological traits and the

185  majority of measurements in the literature fall into these two categories. In animals, we
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186  defined sexual traits as those where we were able to find at least one study

187  demonstrating the trait was subject to female preference or used in male-male

188  competition. For plants, we defined floral morphology as sexually selected

189 [36,39,40,48]. Thus, for both plants and animals, our sexually selected and morphology
190  categories are not mutually exclusive. In an attempt to reduce error in our study, traits
191  that did not fit clearly into one of our three categories were excluded from our dataset.
192  For G matrices whose component traits did not all fit the same category, we split the
193  matrix to produce sub-matrices relating to traits only within a single category. Where
194  matrices contained a single trait whose category differed from all others in the matrix

195  we removed that trait from the matrix.

196  When making comparisons across our trait categories, we acknowledge that our

197  classifications may not be directly equivalent in plants and animals. We therefore

198 included a ‘taxon’ category in our statistical models. The list of individual measures of
199  evolutionary rate was treated as a single response variable, as were the standardized

200  selection gradients.

201  Inour analysis of the G data, we wished to capture those attributes of G that might be
202  expected to influence the rate of evolutionary change. Matrices vary principally in terms
203  of size and structure. While numerous studies suggest that the alignment of axes of G
204  with Bis likely to be important, the nature of the data we were able to compile does not
205 allow us to quantify alignment. Instead (as outlined below) we utilized a number of

206  scalar measures derived from G, meant to capture aspects of the size and structure as a
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207  means to express evolutionary potential, All of the measures we used are summarized in
208 Table 1. One general concern is that not all of the measured we used explicitly

209  accounted for the number of traits included in the matrix (i.e. np). While, in general the
210  number of traits seemed to have a small influence on these measures (Figures 4 & 5),
211 we also took several steps to account for these effects, such as including number of

212 traits as a linear co-variate in the models (below) and also by examining the effects of
213  scaling np by either trait number or its square (“effective subspace”, as suggested by one
214 of the manuscript referees). In none of these cases did it substantially alter the results.
215  While we use the name “effective dimensionality” for np, as proposed by Kirkpatrick

216  [20], this measure actually captures aspects of matrix eccentricity, not dimensionality.

217  For the dataset of G as mean-standardized covariance matrices we used the three G-
218  structure measures suggested by Kirkpatrick [20]: ‘total genetic variance’ (tgv),

219  ‘maximum evolvability’ (emax) & ‘effective number of dimensions’ (np), and also Hansen
220  and Houle’s [19] ‘average evolvability’ (€). For the dataset of correlation matrices, we
221  calculated Pavlicev et al.’s [49] eigenvalue variance (Var(A)) and relative eigenvalue
222 variance (Var.(\)) and also Agrawal & Stinchcombe’s [23] eigenvalue evenness (E,).

223 Both sets of G matrix measures are defined in Table 1.

224 While we present results from analyses of both the (co)variance and correlation matrix
225  datasets, it is important to note that results are not directly comparable between them,
226  since it is well known that different methods of scaling (i.e. mean-standardizing

227  (co)variance matrices vs. effectively variance-standardized correlation matrices)
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228  produce fundamentally different results for genetic attributes [6,19,35]. Furthermore,
229  though the correlation matrix dataset is larger, we note that the covariance — not

230  correlation — matrix is the current standard expression of G used for response to

231 selection [21], and rates calculated from correlation matrices would also not be directly

232 comparable to those calculated from covariance matrices.

233 Statistical Analyses

234 Analyses were performed using R (version 2.13.0; ref. [50]); we fit generalized linear
235 mixed-effect models using the MCMCglmm package (version 2.15; ref. [51]). A large
236  proportion of studies reporting selection gradients also reported standard errors or
237  confidence intervals (from which standard errors can be calculated). As noted by

238  Kingsolver et al [38], this allows for the application of formal meta-analyses, and we
239  followed their lead in modelling selection data with a meta-analysis including random-
240  effects to account for study- and species-level autocorrelation. We analysed estimates

241  of standardised selection gradients () expressed as absolute values.

242  We found that standard errors or confidence intervals were reported much less

243  frequently among studies of G or rates of evolution, and so we were unable to account
244 uncertainty in the estimates of G in these analyses as we had for selection, though the

245 model structure we used was otherwise similar. We fit a set of models, and then

246  evaluated model fit by comparing Deviance Information Criterion values (DIC) [52], and
247  confirmed our selections by refitting the model set using reduced maximum likelihood

248  (Ime4 package [53]) and comparing fits using Akaike and Bayesian Information Criterion
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249  scores (AIC/BIC) and likelihood ratio tests using a parametric bootstrap. The selected
250  models for each dataset are described in Table 2, and full model sets are available with
251  the data and scripts on Dryad and github. Since we modelled the magnitude (absolute
252  value) of our response variables, we used the folded normal distribution [38]. We

253  therefore extracted the posterior distributions of solutions, took the mean and standard
254  deviation from these distributions and applied these to the folded normal distribution.

255  We then report the mean and credible intervals from these corrected distributions [38].

256  Intotal we used 2571 estimates of the rate of evolutionary response (measured in

257  haldanes); there were comparatively few estimates for plants, with no estimates

258 available on the observed rate of evolution for sexually selected (floral) traits. This

259  imbalance caused our estimates to be unstable so we modelled plant and animal rates
260  separately. We had 776 estimates of 8, but G is reported less frequently in the literature
261  (Table 3) and our sample size of G measures was 81 (co)variance matrices and 221

262 correlation matrices.

263

264  Results

265  Observed rates of evolution differ among trait types and between plants and animals

266  The overall posterior mean for evolutionary rate was 0.13 haldanes, with a 95% credible
267 interval from 0.08 — 0.17. Credible intervals for estimates in plants are quite wide
268  (Figure 2), most likely due to the comparatively low number of studies in these

269  categories. However there is a clear trend for faster rates in life-history traits, with the
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270  life-history estimate being ~2.0 times as large (95% credible interval 0.7 — 4.8 x ( the

271  ratio calculated from MCMC iterations for both estimates)) as that for morphology, with
272 only modest overlap of the 95% Cl’s for the two trait types (Table 3). In animals, life-
273  history and morphology have similar estimates, but the posterior mean estimate for
274  sexually selected traits is somewhat higher — 1.5 times that for morphology (95% CI 0.5 —
275 6.9 times), and 1.5 times that for life-history (95% CI 0.8 — 2.3 times). Furthermore, the
276  95% CI’'s for morphology do not include the estimate for sexually selected traits, though
277  those for life-history do. Despite this, model support from various measures (AIC, BIC
278  and DIC) is inconsistent about the overall support of trait types for the animal data

279  improving model fit. Overall, these results suggest similar rates of evolution for

280  morphology in both plants and animals, with higher rates for life-history traits in plants

281  and possibly for sexually selected traits in animals.

282  Standardised selection gradients show different patterns between plants and animals

283  The overall posterior mean for absolute linear selection gradients was 0.21 (95% Cl =
284  0.17 - 0.26), which was somewhat higher than the estimate reported by Kingsolver et al.
285 [38](0.14, 95% Cl =0.13 — 0.16), most likely due to our inclusion of lab studies. The

286  credible intervals from our full model are again wider for plants, likely reflecting smaller
287  sample size (Table 3). For both plants and animals there is little difference between the
288  estimates for morphological and sexually selected traits. In plants, the model suggests
289  that selection is stronger on life-history traits, whose estimate is 40% larger than that for

290 morphology and approximately twice that for sexually selected traits. By contrast, in
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animals selection appears to be weaker for life-history; the estimate for selection on
life-history traits is 0.43 times (95% Cl 0.11 — 0.97) that for morphology, and 0.49 times

(95% CI 0.17 — 0.80) that for sexually selected traits (Figure 3).

The marginal utility of multiple measures

The magnitude, shape and alignment of the G matrix all have the potential to influence
the rate of evolution, but with the data available we are able to use measures intended
to quantify only the first two of these properties. Of the measures (Table 1) we report
tgv, emax and é can be thought of as measures of magnitude, whereas np, Var(\),
Vare(A) and E, are intended to quantify the departure of the matrix from symmetricality
(how dissimilar variances are along the multiple axes of G). It is immediately obvious
that the magnitude measures are doing a good job of quantifying the same property of
each matrix (Table 1, Figures 4 & 5), since tgv, emax and € are all inter-correlated (r > 0.96
in all cases). Given that these measures of magnitude are also strongly correlated (r >
0.93 in all cases) with the magnitude of gm.x (i.€. the principal eigenvalue of G), it is
perhaps unsurprising in retrospect that they are only poorly predicted by the number of

traits measured, with which they are correlated only at r = 0.15-0.19.

With respect to the measures of matrix eccentricity, the first thing we note is that Var(A)
and Var(A) are strongly correlated with each other (r = 0.87), and negatively correlated
with E, (r =-0.32 & -0.55 respectively). Though E, was defined as a measure of

correlation matrices [23], when we applied the evenness formula to our dataset of
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covariance matrices we find that the resulting measure is strongly correlated with

Kirkpatrick’s [20] np (r = 0.82).

The structure of G

We performed separate analyses and model selection procedures for each of our
measures describing the structure of G. Our models comparing covariance matrices
revealed very similar patterns of estimates for emax , tgv and é. Furthermore the pattern
of estimates among trait types was consistent between plants and animals (Figure 6). In
all cases the estimates for life-history and sexually selected traits were similar and those
for morphology were higher, but with much overlap in credible intervals our confidence
in these differences is low. Our results for np also show consistent patterns of estimates
between plants and animals, with the estimates showing a shallow increasing trend
from life-history to morphology to sexually selected traits (Figure 6(d)), but once again
there is wide overlap among credible intervals, indicating low confidence in this trend.
While this is for the inclusion of trait number as a linear covariate, similar results were

obtained when np was scaled directly by trait number (Figure S1).

The results of our analyses of G matrices expressed as correlations were more diverse.
The pattern of estimates for Var.e(A) showed a trend for values to increase from life-
history to morphology to sexually selected traits in both plants and animals, though the
estimates for animals were larger than those for plants (Figure 7(a)). The opposite trend
was present in estimates for Var(A) with the estimates for animals being somewhat

lower than those for plants (Figure 7(b)). The wide overlap of credible intervals indicates
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low confidence in both these trends however. Finally, our estimates for E, show a
decreasing trend from life-history to morphology to sexually selected traits in both
plants and animals, again with higher estimates for plants than for animals (Figure 7(c)).

Discussion

Predicting the rate and direction of phenotypic evolution is a fundamental challenge in
evolutionary genetics [1-4,54], and the multivariate breeders’ equation is a key tool.
Estimates of G, selection, and of response are available in the literature from many
systems (though rarely reported together). Here we have integrated these data to ask if
some traits evolve more rapidly than others, and whether differences associate with

selection, G or both.

Reviews like this are unavoidably limited by the availability of published genetic
parameters, and the resulting imbalances in the data. Nevertheless, we find some
evidence that in animals — though not plants — sexual traits evolve faster than
morphological traits. We find no evidence that this is due to stronger selection
operating on these traits relative to morphological and life-history traits. We found
weak evidence for differences in the evolutionary potential of G among trait types,

though this fails to provide an explanation for any increased rates of evolution.

Similarities among measures of the size and structure of G.

We examined a number of the measures that have been proposed to assess the size,
shape and structure of G (Table 1). Many of these measures have considerable shared

information (Figures 4 & 5). Broadly, one group expresses the magnitude of G and a
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353  second relates to the evenness/variance of the eigenvalues, or eccentricity of G. While
354  there may be particular instances where these measures result in widely divergent

355  estimates, with respect to the empirical estimates we have collated, the marginal

356  benefits of using all of them are an illustration of diminishing returns. It remains possible
357  that subtle differences among these measures may provide important insights into the
358  structure of G in the future. We speculate that one potential use (which would require
359  considerable additional research) may be analogous to the population geneticists’ use of
360 the parameter Tajima’s D, which is a scaled measure of two different estimates of the

361 population mutation rate, 4Ngp.

362  One surprising observation that emerges from our results, is that the number of traits
363  (n) used to estimate G is not well correlated with any of the measures we used. One
364  potential explanation for this is that the magnitude of the principal eigenvalue of G is so
365  highly correlated with ‘total genetic variation’ (the trace of G). This suggests that an

366 overwhelming proportion of all of the variation is found along this principal vector

367  (which would differ for each G), consistent with previous studies [9,20, 23]. It is known
368 that estimating G can be difficult and insufficient sampling at the level of families can
369 inflate the magnitude of the principal eigenvalue, at the expense of the minor

370 eigenvalues [55,56]. However we saw no signal of such an effect from this database with
371  any measures that capture eccentricity for G (Figures S4 & S5). As we did not have the
372  raw data to re-compute G in a consistent framework, it is unclear how substantial this

373  bias might be.
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374  Itis well known that scaling trait values by the mean versus the standard deviation can
375 have profound impacts on univariate measures such as heritability. Likewise this would
376 be expected for multivariate extensions like G and measures extracted from them as

377  used here. Unfortunately in many instances the vector of trait means were unavailable,

378  and thus our analysis for mean scaled G is a subset of that for the correlation matrices.

379  Rates of evolution vary among traits

380 Reviews based on published estimates of evolutionary rates [30,31] have provided a

381  number of important insights into the evolutionary process. Hendry & Kinnison [30]

382  provided the foundations for measuring evolutionary rates and used a small sample of
383  published estimates to propose that rapid evolution should be viewed as the norm

384  rather than the exception. In a larger study, Kinnison & Hendry [31] showed that the
385  frequency distribution of evolutionary rates measured in haldanes is log-normal (i.e.
386  many slow rates and few fast rates, median haldanes = 5.8 x 107%) and that life-history
387 and morphological traits appear to evolve equally as fast when measured in haldanes. In
388 agreement with these reviews, we found that the frequency distribution of evolutionary
389  ratesin our study was also log-normal and that the median rate across trait types and
390  taxa was similar (median haldanes = 7.6 x 107) to that reported in Kinninson & Hendry
391  [31]. We found little evidence to suggest that the evolutionary rates of life-history and
392  morphological traits differed in animals, though there is evidence for faster rates in

393  plant life-history. Our findings provide some evidence for a general pattern of faster

394  evolution in sexual traits in animals to add to the highly cited individual examples of very
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395  rapid evolution of sexual traits [57,58] and their role in speciation [59,60]. It is worth
396  noting that we used a different method for scaling data, as well as the inclusion of lab
397 based studies of evolutionary rates, which differs from some other recent studies such
398 as Uyeda et al. [46]. Future work examining how different methods of examining rate,
399  and the inclusion of lab vs. field samples influence the overall observed pattern is

400  warranted.

401  The strength of selection varies among traits

402  Reviews synthesizing estimates of selection are extensive [33-39]. In their seminal

403  review, Kingsolver et al. [33] found that the frequency distributions of linear and

404  quadratic selection gradients were exponential and generally symmetrical around zero.
405  This suggests that stabilizing and disruptive selection occur with equal frequency and
406  with similar strength in nature. Kingsolver et al. [33] also found that the magnitude of
407  linear selection was on average greater for morphological rather than life-history traits.
408  The most recent review [38] containing an updated data set and using formal Bayesian
409  meta-analysis to control for potential biases [34,35,37] confirmed many of the main

410 findings of Kingsolver et al. [33], with the notable exception that linear selection appears

411  stronger in plants than animals.

412  In agreement with this most recent synthesis [38], we found that the distribution of
413  linear and quadratic selection gradients were exponential. Our estimates for absolute
414  linear selection gradients were higher than reported by Kingsolver et al. [38] (0.24 (0.17

415 —0.26) versus 0.14 (0.13 — 0.16)). There has been much discussion on the general


https://doi.org/10.1101/002683
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/002683; this version posted May 5, 2014. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

21

416 limitations of using selection gradients in synthetic reviews (e.g. [33,35,37,38]) and
417  these arguments undoubtedly also apply to our study. However, as most of these

418 limitations are inherent to both studies, they are unlikely to explain the observed

419  differences. Furthermore, we used the same Bayesian framework as Kingsolver et al.
420  [38] so it is unlikely that our analytical approach generated the observed differences.
421  The most likely reason for the observed differences is the way that traits and taxa were
422  categorized across these studies. Kingsolver et al. [38] used four different trait

423  categories (size, morphological (not including size), phenology and life-history (not
424  including phenology)) and categorized taxa as invertebrates, vertebrates or plants in
425  their analysis. In contrast, we only distinguished between animals and plants and used
426  three different trait categories (morphological, life-history and sexual) in our analysis,
427  the latter of which includes a mixture of morphological and behavioural traits. Thus,
428  there are likely to be some differences in how selection gradients are distributed

429  amongst categories in our analyses compared to those in Kingsolver et al. [38].

430 Irrespective of the underlying reasons for these differences, we find little evidence for

431  differences in the magnitude of selection gradients across trait types and taxa.

432 Evolutionary response and the structure of G

433 After decades of quantitative genetic research it is now widely accepted that the
434  additive genetic variance-covariance matrix (G) plays a major role in
435 facilitating/constraining phenotypic evolution [16,19,20]. The way in which G shapes

436  phenotypic evolution can be envisaged using the concept of genetic degrees of freedom
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(Figure 1; [9,15]). Whenever there is genetic covariation between the individual traits
contained in G, there is the potential for fewer axes of genetic variation than observed
traits [9,15,61,62] (but see [63]), which can influence evolutionary rates [64]. Where the
majority of the genetic variance is concentrated in a few directions — known as “lines of
least evolutionary resistance” (LLER’s) [15] — these have been shown to play an
important role in directing the short-term evolutionary trajectory of a population
[15,65-69]. Quantifying these properties of G is an essential step if we are to explore
these ideas empirically. Perhaps unsurprisingly, it seems that the magnitude of a matrix
is somewhat more straightforward to describe with a scalar measure than the
eigenvalue evenness/eccentricity/dimensionality. The measures available for
quantification of the shape of G in multiple dimensions are much less tightly inter-
correlated than those dealing with matrix magnitude when compared using empirical
data. What this ultimately means for our understanding of evolvability is unclear, but it
is important to acknowledge the gaps in out current understanding if we are to

progress.

Our finding that genetic variance for sexual traits may be spread less evenly across
dimensions in animals runs counter to our hypothesis, and suggests that the potential
for genetic constraint does not explain the higher rate of evolution we observe for these
traits. We found at best, only weak evidence for differences in the measures to capture
the size and shape of G with respect to our trait groupings. There has been debate over
the importance of sexual selection in plants [70], but there is theoretical [48] and

empirical [71] evidence suggesting that floral morphology is indeed subject to sexual
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459  selection. Unfortunately though, there are currently no data on evolutionary rates for
460  sexual traits in plants, making it difficult to understand the implications of this increased

461  dimensionality. Our findings indicate that the subject warrants greater attention.

462  The effect of trait scaling

463  Researchers need to remain mindful that decisions about measurement scaling are likely
464  to be important when measuring selection [35] and genetic variability [6]. This is

465  especially important when addressing the question of evolvability, where both these
466  measures must be brought together [19]. In this paper, we have attempted to present a
467  clear picture of the patterns present in the currently available data, but it is important to
468  acknowledge the known shortcomings of that data. This is not to understate the

469  difficulty of maintaining comparability among studies wherein the appropriate scales
470  might be different [6,35,72]. To illustrate the problem, how best to compare

471  morphological data comprising linear measurements with life-history data where there
472  may be no natural zero value? As a field, our inferences about selection and the

473  response to selection will be more meaningful the more clearly we can address these

474 issues.

475 Conclusions

476  Collectively, our results suggest that the higher rate of evolution observed for sexual
477  traits in animals is only weakly associated with the scalar measures summarizing G for
478  these traits, and we do not find stronger selection. However, as our data set is based on

479  derived estimates there are a number of inevitable limitations that apply to our findings.
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480  First, there are limitations with using the matrix structure measures (np, EA, Var(A) or

481  Varpel(A)) to capture the dimensionality of G [20]. Although these measure are

482  calculable from published estimates of G, they do not explicitly test how many of the
483  dimensions of G actually exist (i.e. have statistical support). A number of approaches
484  [61,63] have been taken to directly estimate the dimensionality of G [61,73], though
485  such studies have found both populations that have evolutionary access to all

486 dimensions of G [63] and others that are constrained by LLER’s [61,74]. Second, our
487  analysis does not consider the alignment between the vectors of selection and G. LLER’s
488  only constrain the response to selection when they are poorly aligned with vectors of
489  selection [26,28,64]. These limitations can only be resolved by further analysis of the
490  raw data sets from the original studies we review. This is particularly true for better
491  estimation of G itself, as well as its actual dimensionality, which can only be performed
492  with the raw data [56,61,75-78]. Future studies would greatly benefit from researchers
493  publishing raw datasets in open repositories [79] and we encourage researchers to do
494  so. Our database (with all associated analyses) can be found at DRYAD DOI:xxxxxxxx, or

495  on github (https://github.com/DworkinLab/Pitchers_PTRS2014).
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Figure Legends

Figure 1. The effect of gnax on the response to selection where traits genetically covary.
The axes represent the breeding values for 2 hypothetical traits. The population mean is
at the solid point and the surrounding ellipse is the 95% confidence region for the
distribution of trait values about the mean. That these traits covary is evident as the
ellipse is at an angle relative to the trait axes. The axes of the ellipse represent the 2
orthogonal directions (eigenvectors) of variance present — there is more standing
genetic variance along the major axis (gmax) than the minor axis. They grey lines are
‘contours’ on a fitness landscape, with an adaptive peak at ‘S’. Rather than evolving
directly toward the peak (dashed arrow), the influence of gnax may cause the population
to evolve along an indirect course (bold arrow). In some cases this may even, result in
the population evolving toward an alternate fitness peak (e.g. at ‘A’, modified contours

not shown) in line with gmax, €ven though it is more distant from the current mean.

Figure 2. Posterior means and 95% credible intervals for estimates of absolute rate of
evolution (haldanes). Open points are for plants and filled points for animals. Trait types
are life-history (LH), morphology (M) and sexually selected (S) and filled points are for

animals and open points for plants (no data available for sexual traits in plants).
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731  Figure 3. Posterior means and 95% credible intervals for estimates of standardized

732 selection gradients (f) by trait type. Trait labels and taxon symbols are as in Figure 2.

733

734 Figure 4. Pairs plot to illustrate the relationships between measures used to describe
735  the structure of G expressed as covariance matrices. Measures are ‘total genetic

736  variance’ (tgv), ‘maximum evolvability’ (emax) & ‘effective number of dimensions’ (np)
737  [20], the first eigenvalue of G (gmax), ‘average evolvability’ () [19], ‘eigenvalue evenness’
738  (E,—originally intended for use with correlation matrices [23]) and the number of traits
739  included in the matrix (n). Figures in the lower off-diagonal are pairwise correlations

740 between the measures.

741

742 Figure 5. Pairs plot to illustrate the relationships between measures used to describe

743 the structure of G expressed as correlation matrices. Measures are ‘relative eigenvalue
744  variance’ (Var.(A)) [49], ‘eigenvalue evenness’ (E,) [23], ‘eigenvalue variance’ (Var()\)),
745  [49], the first eigenvalue of G (gmax) and the number of traits included in the matrix (n).

746  Figures in the lower off-diagonal are pairwise correlations between the measures.

747

748  Figure 6. Posterior means and 95% credible intervals for the four measures used to
749  characterise G matrices expressed as covariances (see methods section); (a) ‘maximum

750  evolvability’ (emax), (b) ‘total genetic variance’ (tgv), (c) ‘average evolvability’ (é) and (d)
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751  ‘effective dimensionality’ (np). Trait types are life-history (LH), morphology (M) and

752 sexually selected (S) and filled points are for animals and open points for plants.

753

754  Figure 7. Posterior means and 95% credible intervals for the four measures used to
755  characterise G matrices expressed as correlations (see methods section); (a) ‘relative
756  eigenvalue variance’ (Var.(\)), (b) ‘eigenvalue variance’ (Var(A)) and (c) ‘eigenvalue

757  evenness’ (E). Trait labels and taxon symbols are as in Figure 6.

758
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Table 1. G-matrix measures used in this study. Eigenvalue variance, relative eigenvalue
variance and eigenvalue evenness are calculated from correlation matrices, whereas the
other four metrics are calculated from covariance matrices. In all formulae A are
eigenvalues and n is the number of traits in the matrix.* np does not measure

dimensionality per se, but eccentricity.

Measure Cov/cor | Reference | Equation # Formula

effective number
of dimensions* cov [20] #2 (pg 273) n, = Em)‘i /A,
(no)

maximum
evolvability cov [20] #3 (pg 274) e .. =M
(emax)

total genetic n
variance (v1) cov [20] #4 (pg 274) vy ,

average cov [19] #4 (pg ~_ 27/
n

evolvability (é) 1206)
eigenvalue 7 (o - 1
variance (Var(\)) cor [49] n/a(pg 158) | yur(a) = El=1 /

Relative
eigenvalue Var(h)
Variance cor [49] n/a (pg 159) Varrel(z’) = 4_ 1
(Varrel()\')) ] ]
n }L]n()\,)
E = — ] i
» =D In(n)
eigenvalue #3.2 (pg
evenness (E,) cor [23] 1187) where

A

Aj\
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765  Table 2. The main effects included in the final models for each analysis. (Effects of ‘trait
766  type’ refer to life-history, morphology or sexual and ‘taxa’ to plant or animal. ‘Study
767  type’ refers to field observation or experimental evolution. Random effects of ‘study’
768  and ‘species’ refer to models where an intercept was fitted to each species and study,
769  and the random effect of ‘trait type:species’ indicates where both a species-level

770  intercept and a species-level trait type effect were fitted. ) Full sets of models can be

771  found in the scripts and data on Dryad.

772
measure fixed effects random effects
Rate (Animals) trait type + study type study + trait type:species
Rate (Plants) trait type species
18] trait type + taxon + trait type x taxon study + species
(G) nD trait type + taxon + trait no. study
(G) emax trait type + taxon + trait no. study + trait type:species
(G) tgv trait type + taxon + trait no. study + trait type:species
(G) e trait type + taxon + trait no. study + trait type:species
(G) Var(A) trait type + taxon + trait no. study
(G) Varia(A) trait type + taxon + trait no. study
(G) E, trait type + taxon + trait no. study
773

774
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Table 3. Summary statistics for estimates of the rate of evolutionary response, linear

and quadratic selection gradients and measure capturing the size, shape and structure

of G. (Statistics are reported by taxa and trait type, together with overall estimates

across trait types and taxa. For each combination of taxa and trait type, the summary

statistics for each measure are provided in the following order: posterior mean,

posterior mode, lower and upper 95% credible intervals (in parenthesis) and sample size

(initalics). )
measure animals overall plants
LH M SS all traits LH M
0.12 0.13 0.18 0.13 0.3 0.15
0.122 0.12 0.193 0.101 0.332 0.181
Rate (haldanes)
(0.02,0.22) (0.09,0.17) (0.10,0.26) (0.08,0.17) (0.18,0.42) (0.05,0.25)
781 7 1667 2571 26 90
0.09 0.22 0.19 0.21 0.31 0.22
0.157 0.215 0.167 0.242 0.334 0.344
/6] (0.00,0.19) (0.16,0.28) (0.11,0.27) (0.17,0.26) (0.22,0.41) (0.09,0.36)
65 342 150 776 156 44
1.13 1.20 1.31 1.53 1.23 1.29
(G) nD 1.40 1.19 2.06 1.50 1.28 0.98
(0.76,1.5) (0.82,1.54) (0.85,1.82) (1.39,1.67) (0.77,1.65) (0.86,1.71)
0.43 1.25 0.78 0.61 0.59 0.91
(G) €max 0.26 0.01 0.86 0.47 0.89 0.57
(0,1.04) (0,2.83) (0,1.88) (0.26,0.97) (0,1.39) (0,2.22)
8.62 25.41 14.32 3.14 9.38 24.09
(G) tgv 17.16 23.57 21.19 7.67 17.37 39.68
(0.01,18.11) (0.3,52.47) (0,30.89) (0,7.57) (0.01,19.64) (0.01,50.48
1.17 3.69 1.95 0.48 1.29 3.40
(G) é 0.55 1.74 1.29 0.25 0.80 0.67
(0,2.94) (0.01,8.55) (0,4.75) (0,1.15) (0,3.2) (0,7.83)
n (cov) 14 38 10 81 1 3
0.43 0.60 0.80 1.40 0.63 0.49
(G) Var(\) 0.39 0.79 1.19 1.11 0.99 0.25
(0,1.04) (0,1.32) (0,1.68) (0.92,1.86) (0,1.41) (0,1.17)
0.36 0.43 0.50 0.32 0.16 0.23
(G) Var,e(h) 0.45 0.46 0.49 0.35 0.07 0.24
(0.15,0.56) (0.22,0.63) (0.25,0.75) (0.23,0.41) (0,0.33) (0,0.42)
(G) E. 0.76 0.70 0.67 0.73 0.86 0.79
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0.78 0.77 0.69 0.76 0.80 0.81
(0.67,0.84) (0.61,0.77) (0.57,0.77) (0.70,0.77) (0.77,0.94) (0.71,0.87)
n (cor) 42 82 27 221 14 26

781

782  Short Title for Page Headings: Evolutionary rate as a function of selection & the G

783 matrix
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In response to a suggestion from reviewers, we model np in 3 different ways.
Initially, we had fitted the same suite of models that we used for the other G
metrics, in addition to which we repeated the process with np /n and also with np

/n’.
Table S1: The results of the model selection procedures for the 3 versions of np .

Response measure Selected model

np trait type + taxon + trait no + random(study)
np/n trait type * taxon + random(study)
np/n’ trait type + taxon + random(study.code) + random(species)

Figure S1: Results from alternative analyses of Kirkpatrick’s ‘effective number of
dimensions’ metric.
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Figure S2: Density of the number of traits for out 2 G matrix datasets. Note that in
both cases the majority of matrices are for between 4 & 6 traits. It is possible that
there are effects associated with the number of traits that we have been unable to
detect due to a lack of power. Only with a larger sample of larger matrices could we
test this.
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Table S2: The counts of numbers of matrices of each size (in terms of number of
traits) represented in both our matrix datasets.

n 2 3 4 5 6 7 8 9 10 17 total
covariance matrix count 11 8 5 29 16 6 2 3 - 1 81
correlation matrix count 31 41 36 42 21 21 17 5 4 3 221

We mentioned in the Discussion section that one legitimate concern with a
guantitative review of the structure of G is that G can be challenging to estimate,
and extremely challenging to estimate well. In particular, a smaller-than-optimal
sample of families in a breeding design has the potential to inflate the magnitude of
the gmax, at the expense of the minor eigenvalues [55,56]. Given the importance of
the ‘lines of least evolutionary resistance’ and ‘genetic degrees of freedom’ concepts
for our thinking about multivariate evolution, it is a useful (not to mention
reassuring) finding that there is no evidence to suggest that these patterns are
driven by the sample sizes of the studies involved.

Figure S3: Pairs plot of the subset of covariance matrix measures that appear to
represent the structure (as opposed to the magnitude) of G, in addition to the
number of families measured to estimate G. (This plot does not include matrices
estimated using an animal model, only those that result from breeding designs.
‘families’ in this case was taken to mean the number of sires in a half-sib design and
the number of dams in parent-offspring regressions)
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Figure S4: Pairs plot of the subset of correlation matrix measures that appear to
represent the structure (as opposed to the magnitude) of G, in addition to the
number of families measured to estimate G. (This plot does not include matrices
estimated using an animal model, only those that result from breeding designs.
‘families’ in this case was taken to mean the number of sires in a half-sib design and
the number of dams in parent-offspring regressions)
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In the main MS we only reported our findings from linear selection gradient (f3) data.
However, in the process of collecting these estimates we also tabulated estimates of
quadratic selection gradients (the diagonal elements of the y matrix). These
estimates were reported less frequently than those for 3, and there is a smaller
dataset to work with. We divided the quadratic gradients into to groups; negative
(potentially stabilizing) and positive (potentially disruptive) gradients. For each of
these subsets, we fit the same model as used for the 3 dataset (a formal Bayesian
meta-analysis following [38]: see main text), the results of which are visualized in
Figure S5 below. Firstly, we should note that there are no differences among trait
types or between taxa in which can have a high level of confidence. It is interesting
to not that, for both taxa, there appear to be different trends in the two subsets of
quadratic gradients, but we can say little more than that with the currently available
data.

Figure S5: Posterior means and 95% credible intervals for negative (left panel) and
positive (right panel) quadratic selection gradients. Trait types are life-history (LH),
morphology (M) and sexually selected (S) and filled points are for animals and open
points for plants.
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