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ABSTRACT

Delineating the strategies by which cells contend with combinatorial changing
environments is crucial for understanding cellular regulatory organization.
When presented with two carbon sources, microorganisms first consume the
carbon substrate that supports the highest growth rate (e.g. glucose) and then
switch to the secondary carbon source (e.g. galactose), a paradigm known as
the Monod model. Sequential sugar utilization has been attributed to
transcriptional repression of the secondary metabolic pathway, followed by
activation of this pathway upon depletion of the preferred carbon source. In
this work, we challenge this notion. Although Saccharomyces cerevisiae cells
consume glucose before galactose, we demonstrate that the galactose
regulatory pathway is activated in a fraction of the cell population hours
before glucose is fully consumed. This early activation reduces the time
required for the population to transition between the two metabolic programs
and provides a fitness advantage that might be crucial in competitive
environments. Importantly, these findings define a new paradigm for the
response of microbial populations to combinatorial carbon sources.
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INTRODUCTION

Microbial cells are continuously bombarded by diverse and changing combinatorial
environmental stimuli. To survive and reproduce, a cell must accurately detect, assess, and
selectively respond to these signals. Specifically, in competitive and unpredictable
environments, cells need to constantly integrate information about the nature and
quantities of nutritional substrates to scavenge maximum nutritional value[1]. Organisms
that can balance the anticipation of future environmental shifts without sacrificing the rate
of reproduction by excess metabolic burden exhibit a fitness advantage. However, optimal

metabolic strategies for achieving this balance have not been thoroughly explored.

Studies of the response of microbial cells to the availability of multiple sugars has a long
history, starting with the seminal work of Dienert in yeast[2,3] and Monod in bacteria[4,5].
When presented with both glucose and galactose, microbial cells consume these carbon
substrates in a sequential manner rather than simultaneously metabolizing both, resulting
in two separate growth phases[5]. In the first phase, cells preferentially metabolize the
sugar on which they can grow the fastest (glucose in this case). Upon glucose depletion,
cells transition to metabolizing the less preferred sugar (galactose). This response,
classically known as “catabolite repression”, posits that the synthesis of the enzymes
needed to metabolize the less preferred sugar is inhibited across the whole population.
This inhibition is relieved by depletion of the preferred sugar, which triggers the diauxic
shift. Crucially, in this model, the sequential consumption of the two sugars is generally

attributed to the sequential expression of the enzymes needed for their metabolism[6].


https://doi.org/10.1101/002907
http://creativecommons.org/licenses/by-nc-nd/4.0/

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

bioRxiv preprint doi: https://doi.org/10.1101/002907; this version posted February 21, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

In this work, we demonstrate that while S. cerevisiae cells indeed undergo sequential sugar
consumption in the presence of combinations of glucose and galactose, the synthesis of the
enzymes needed for the metabolism of galactose is not necessarily sequential. Specifically,
we find that for a large combinatorial space of glucose-galactose inputs, a subpopulation of
cells arises where the galactose transcriptional program is induced hours before the
depletion of glucose. Intriguingly, these cells have a fully active galactose transcriptional
program, yet they do not metabolize this sugar until glucose is exhausted. We demonstrate
that this heterogeneous strategy is essential for rapid growth during the metabolic
transition from glucose to galactose. These data suggest that the response of
microorganisms to combinatorial environments may frequently involve diversification of
phenotypes across a population. Furthermore, this strategy integrates direct
environmental sensing with an anticipation of future environmental shifts. As such, it
constitutes an elaboration on bet-hedging mechanisms that often rely on stochastic
fluctuations to produce subpopulations with different phenotypes without a dominant

input from the environment[7].

RESULTS

We studied the time-resolved response of a population of yeast cells to combinatorial
inputs of glucose and galactose using our automated flow cytometry setup that measures
gene expression approximately every 20 min for 14 hours (Fig. 1A)[8]. This technology
enabled us to measure the galactose (GAL) pathway activity dynamics in single-cells using
the epimerase GALI0O promoter (pGAL10) driving Venus (YFP) and to dissect the

quantitative growth patterns of the microbial culture.
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For sufficiently low glucose concentrations, pGAL10 induced as a single monomodal
distribution. By contrast, pGAL10 did not activate over the course of the experiment for
glucose concentrations significantly higher than those of galactose. These behaviors
recapitulate previously observed phenotypes[9,10]. However, for a large spectrum of
combinatorial glucose-galactose inputs aggregating around the regime of equal
concentration of these two sugars, we observed the emergence of a bimodal gene
expression response in which only a fraction of the population induced pGAL10 (Fig. 1A,B).
In this regime, bimodality was transient since the cohort of OFF cells uniformly switched
ON following a delay. The promoters of the galactokinase GAL1 (pGAL1), permease
transporter GALZ (pGALZ2) and transferase GAL7 (pGAL7) exhibited similar gene
expression patterns, indicating that this transient bimodality was a general feature of the

GAL pathway in response to a mixture of glucose and galactose (Supplementary Fig. 1).

Stochastic switching between the ON and OFF states in the transient bimodality region
would generate a population of cells with intermediate fluorescence levels. This is due to
the slow dynamics of protein synthesis and the high stability of fluorescent proteins,
resulting in the decay rate of the fluorophore being dominated by dilution after cell division.
However, in our data, the ON and OFF subpopulations were clearly separated from each
other in the bimodal region and we did not detect cells of intermediate fluorescence values.
In addition, for a given dual-sugar input, the fraction of GAL ON cells did not change
significantly over time in the bimodality region (highlighted box in Supplementary Fig.
2A,B). Taken together with a previous study demonstrating that the GAL system can only

exhibit stochastic transitions between states in the absence of the GAL80 negative feedback
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loop but not in wild type[11], our data indicate that it is unlikely that cells are continuously
switching between the ON and OFF states. Therefore, this phenomenon is distinguishable

from previously observed stochastic switching between phenotypes[12,13].

Using a Gaussian mixture model (GMM) to deconvolve the two populations (see Methods),
we quantified three measures of the response: the time to early activation for conditions
with a detectable early activated population (8.), the delay between early and late
activation for conditions with transient bimodality (8., highlighted panels), and the fraction
of ON cells quantified at the midpoint between the half-max of the early and delayed
activation responses (Fon-mida) (Fig. 1B, see Methods). 6. was modestly increased by glucose
and reduced by galactose (Fig. 1C). By contrast, 65, showed a substantial linear increase as a
function of initial glucose (highlighted panels in Fig. 1A, Fig. 1D). However, §; was not
significantly modified by the initial galactose concentration (Supplementary Fig. 3A). Fon-
mid Significantly increased with the initial galactose level and was reduced by the initial
glucose concentration for any given concentration of galactose (Fig. 1E). 6g and Fon-mia were
modified in a set of mutants including regulators of the GAL pathway and glucose
repression, suggesting that these phenotypes are modulated by a complex molecular

program involving many factors (Supplementary Text, Supplementary Fig. 5A-D).

The existence of a subpopulation of cells in which the galactose transcriptional pathway
was active in the transient bimodality regime suggested that the population might be
consuming galactose concurrently with glucose. To test this hypothesis, we measured

glucose, galactose and the fraction of ON cells (Fon) as a function of time in response to
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91  0.1% glucose and 0.1% galactose, a condition in which the population exhibits a bimodal
92  response. While these data recapitulated the known sequential order of sugar utilization,
93  Fon increased immediately following the dual-sugar stimulus and transiently plateaued
94  before the cells consumed the available glucose (highlighted box in Fig. 2A and
95  Supplementary Fig. 2). The initial concentration of glucose determined the duration of this
96 plateau (Supplementary Fig. 2C). Fon underwent a second increase to approximately 100%
97  precisely at the time of total glucose depletion. Therefore, the timing of the delayed
98 activation of the repressed subpopulation, and consequently the magnitude of &, seemed
99  to be determined by the time of glucose depletion. In agreement with this hypothesis, 6
100  was inversely related to the initial cell density No, which modifies the rate of sugar
101  consumption (Supplementary Fig. 3B). In addition, a population that received a first step of
102  glucose and galactose, followed by an additional step input of glucose after 5 hours had a
103  significantly larger 6, than a population that received only the initial dual-sugar input,
104  further corroborating the fact that 64 is tuned by the concentration of glucose
105  (Supplementary Fig. 3C). In contrast to 8 Fon-mia Was approximately equal in conditions
106 thatreceived one or two steps of glucose, suggesting that the second glucose input did not
107  induce substantial switching between OFF and ON states (Supplementary Fig. 3D).
108
109  Our results indicate that galactose consumption did not commence for hours despite the
110  presence of a substantial subpopulation of GAL ON cells. Indeed, galactose consumption
111  did not initiate until approximately 85% of cells were activated (Fig. 2C and Supplementary
112  Fig. 4). Therefore, there is a broad regime where inhibition of galactose metabolism does

113  notrequire transcriptional repression of the GAL genes. In this region, the population
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114  adopts a previously undocumented bimodal regulatory strategy of activated and repressed
115  GAL states.

116

117  The absence of galactose metabolism does not result from decoupling galactose sensing
118  and trafficking. In this inducer exclusion model[14], extracellular galactose is sensed,

119 triggering GAL gene induction, but galactose does not permeate the cell due to glucose-

120  dependent inhibition of galactose transport. However, Gallp and Gal3p are the only known
121  sensors of galactose and these proteins function intracellularly, indicating that a sufficient
122 amount of galactose was entering the cells to induce pathway activation[15]. Furthermore,
123  we observed a significant induction of pGALZ2, accumulation of the fluorescently tagged

124  Gal2 permease in the activated subpopulation, localization of Gal2p-Venus to the

125 membrane in the presence of glucose and galactose and strong correlation between a Gal2
126  fluorescent protein fusion and pGAL10 in the presence of mixtures of glucose and galactose
127  (Supplementary Figs. 1 and 6).

128

129  To further rule out the possibility of inducer exclusion as an explanation of our findings, we
130  tested whether the level of Gal2p was limiting for the activation of the GAL pathway in the
131  presence of glucose. To do so, we used a TET inducible promoter to vary the concentration
132  of GalZp in a strain deleted for the endogenous GALZ gene, and assessed the fraction of GAL
133  ON cells (as quantified using a pGAL10-Venus reporter) in response to simultaneous

134  addition of 0.5% galactose and a range of glucose levels (Supplementary Fig. 6D). We did

135 not observe any dependence of the fraction of ON cells on aTc concentration, and hence on
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136  Gal2p levels, suggesting that inducer exclusion does not dominate pathway activation in
137  the presence of glucose.

138

139  Taken together, our data suggest that in the cells where GAL genes are induced,

140 transcriptional and metabolic control seem to be decoupled. These results counter a central
141  premise of the Monod diauxic sugar model, predicated on the idea that expression of a

142  secondary sugar pathway is repressed in the presence of a preferred carbon source,

143  therefore blocking the utilization of the secondary sugar[4]. At the same time, our data are
144  consistent with the observation that the inhibition of galactose consumption in response to
145 aglucose pulse occurs on a timescale faster than can be explained by changes in

146  transcriptional regulation or protein degradation, therefore making it unlikely that the
147  catalytic degradation of Gal2p is the main effector of metabolic inhibition in the GAL

148  pathway[16].

149

150 To understand how the structure of the GAL regulatory network could generate the

151  observed transient bimodality in response to dual-sugar inputs, we constructed a

152  simplified mathematical model of this circuit based on canonical knowledge about the

153  galactose system (Supplementary Text)[17]. The GAL network has been shown to exhibit
154  memory of galactose and glucose exposure, suggesting bistability as the source bimodality
155  in this system[17,18]. In our model, the galactose input activates the signal transducer

156  Gallp (G1) forming G1*, which inhibits the repressor Gal80p (G80) from sequestering the
157  transcriptional activator Gal4p (G4), thus leading to GAL gene activation (Fig. 3A). The

158 inhibition of G80 liberates G4 to induce expression of G1 and G80, establishing a positive
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159 and negative feedback loop. Since glucose has been shown to reduce the activity of the GAL
160 system, we coupled this model to an input of glucose[19]. We modeled GAL repression by
161  glucose assuming that a repressor R (such as Mig1), can be activated by the glucose signal
162  forming R* which can then repress the promoters of GAL1 and GAL4.

163

164 A salient qualitative feature of this mathematical model is that it can undergo a bifurcation
165 from monostability to bistability as a function of its two inputs: glucose and galactose (Fig.
166  3B).Inresponse to low glucose and high-galactose inputs, the model exhibits one steady-
167  state, corresponding to the experimental ON state (high total G1 levels). For high glucose
168 and low galactose inputs, the only steady-state corresponds to the OFF state (low total G1
169 levels). Similar concentrations of the two inputs produce two stable steady-states that

170  correspond to the bimodality observed in the experiments.

171

172 This model also predicts the emergence and disappearance of bistability in the GAL system
173  as afunction of time for a given dual sugar input. By assuming that the system traverses a
174  series of quasi-steady-states as a function of decaying sugar concentration (highlighted
175 panelsin Fig. 1), a given model trajectory crosses through a region of bistability, which is
176  then transformed to monostability as glucose drops below a critical threshold (bifurcation
177  point) due to cellular consumption (representative trajectory in Fig. 3B). This transition
178  from bistable to monostable behavior at the glucose bifurcation point corresponds to the
179  synchronized delayed activation of the repressed cohort of cells. The observed monomodal
180 activation for sufficiently low glucose concentrations (left of highlighted panels in Fig. 1B)

181 and significantly delayed activation (right of highlighted panels in Fig. 1B) are also

10
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182  explained by the model (Supplementary Fig. 7). Furthermore, the model indicates that if
183  the glucose concentration were maintained above its value at the bifurcation point, for
184  example by replenishment of glucose (Supplementary Fig. 3C), then the window of time
185  where bistability exists in the system would be extended. This is precisely the case since
186  cultures that received an initial pulse of glucose and galactose followed by a second pulse
187  of glucose exhibited bimodality for a longer period of time compared to a culture that

188 received only the initial sugar mixture (Supplementary Fig. 3C).

189

190 In addition to explaining the origin of transient bimodality, the model made predictions
191 about different features of the system. First, the model had predictions about the role of
192  feedback loops. Removing the GAL80 feedback loop in the model augmented the range of
193  glucose and galactose concentrations that produced bistability. This prediction was

194  qualitatively consistent with our data showing that the range of glucose and galactose

195 inputs that produced experimental bimodality was expanded in a strain lacking the Gal80p
196 feedback loop (Supplementary Fig. 8).

197

198  The bifurcation hypothesis provided by the model also implied that the amount of time
199 required for glucose to decrease to a threshold concentration corresponding to the

200  bifurcation point in the system (6p) should decrease if galactose is added at different times
201  following the glucose input (rather than concomitantly with glucose--for example, 0, 3.2,
202 3.5 3.7 or 3.9 hours following an initial glucose step) (Fig. 3C). This increasing delay in
203  galactose administration signifies a decreasing glucose concentration in the culture due to

204  cellular consumption at the time of galactose addition, and hence a reduced window of time

11
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205 for bistability. The delayed activation response corresponds to the loss of bistability as
206  glucose crosses a threshold bifurcation point. Hence §;and 6y reflect similar properties of
207  the system.

208

209 To experimentally test this prediction, we applied a step input of 0.1% galactose at

210  different times to a set of cultures that had all received 0.1% glucose from time zero. In
211  condition A, both sugars were added simultaneously at time zero, while in cultures B-E,
212  galactose was added 3.1, 4.2, 5.3 and 6.3 hours following the glucose stimulus (arrows in
213  Fig. 3D). Matching the trend of decreasing 6y in the model (Fig. 3C), bimodality emerged at
214  the time of the galactose input and §; contracted and eventually disappeared with the

215 increased delay in this input (right panel in Fig. 3D, Supplementary Fig. 9).

216

217  Finally, the model indicated that the response time of the system to transition from the OFF
218  tothe ON state decreases as glucose decays. The system’s response time is dictated by both
219  the domain of attraction and the magnitude of the dominant eigenvalue of the ON steady-
220  state (Supplementary Text), which both increase as glucose decreases (Fig. 3E). Therefore,
221  the model predicts that the response time of the fraction of ON cells should decrease in the
222  delayed galactose experiment. Corroborating this insight, our experimental data

223  demonstrated a decrease in the response time of Fony with an increase in the delay of the
224  galactose input (Fig. 3F,G). Therefore, in addition to providing a framework that explains
225  the transition of the GAL system between different phenotypic modes, our model and its
226  validated predictions demonstrate the intricate modulation of quantitative properties of

227  this network by its environmental inputs. As we discuss below, this constitutes an

12
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228 important feature that distinguishes this strategy from previously documented

229  stochastically dominated bet-hedging mechanisms.

230

231  We next probed the physiological impact of the observed anticipatory induction of the GAL
232 regulatory program hours in advance of galactose consumption by analyzing the

233  relationship between the timing of GAL pathway activation and the population’s growth
234  rate and metabolism. To do so, we quantified the concentrations of glucose, galactose and
235  growth rates for the different cultures that were subjected to delayed galactose inputs over
236  time in the experiment described above. Irrespective of galactose timing, glucose decayed
237  atasimilar rate for all conditions (Fig. 4A). Despite the presence of glucose at the time of
238  the galactose stimulus for conditions A-D, galactose consumption was delayed compared to
239  the culture that received glucose and galactose simultaneously (Fig. 4B,C). Furthermore,
240  the delay in galactose consumption was increased commensurately with the delay in

241  galactose administration. Notably, during the metabolic shift between carbon sources, the
242  population that received galactose simultaneously with glucose exhibited a transient

243  growth rate advantage, reaching approximately 25% compared to the population that

244  received this sugar after a 6.3-hour delay (E) (Fig. 4D, Supplementary Fig. 10). Since the
245  growth rate is proportional to the current size of the population in exponential phase, the
246  significance of this fitness difference increases with each cell generation. Overall, the delay
247  in galactose input caused a monotonic increase in the transient growth defect, which was
248 manifested as an increase in the “lag” time between the two phases of growth documented
249 by Monod (Supplementary Fig. 10A)[4]. Importantly, the presence of galactose did not

250  benefit the population of cells until total glucose depletion (Fig. 4D inset, Supplementary

13
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251  Figs. 10A and 11, Supplementary Text). Taken together, these data indicate that the

252  induction of the GAL pathway many cell generations before these genes are required

253  provides a transient fitness advantage during the shift between carbon sources.

254

255  This beneficial pre-emptive induction of the GAL pathway genes only occurs in a subset of
256  the population. To investigate the tradeoffs that might motivate this bimodal induction,
257  versus a uniform strategy in which all the cells in the population pre-emptively but

258  coherently induce the GAL pathway, we sought to control GAL gene expression

259 independently of galactose. To do so, we used an estradiol inducible Gal4 chimera in a
260  strain lacking endogenous Gal4p[20,21]. In this strain, we could activate GAL gene

261  expression on demand at specific times before glucose depletion in cultures subjected to
262 0.1% glucose and 0.1% galactose from time zero (Supplementary Fig. 12A).

263

264  Since the synthetic inducible system is not connected to the feedback structure of the

265  natural circuit, GAL gene expression was monomodal (graded) as opposed to bimodal in
266  this strain. In this case, early activation of the GAL pathway generated a lower consumption
267  rate of glucose compared to late activation, demonstrating that constitutive GAL gene

268  expression can inhibit glucose consumption (Supplementary Fig. 12B). The expression
269 level of pGAL10 induced by this synthetic system was very similar to the expression level of
270  pGAL10 in the wild type (Supplementary Fig. 13A). Therefore, the effects we observed are
271 notlikely to be a consequence of over or under expression of the GAL genes. Constitutive
272  induction of the GAL pathway through over expression of Gal3p also reduced the glucose

273  consumption rate (Supplementary Fig. 13, Supplementary Text). Together, these data

14
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274  highlight an important tradeoff that the system has to balance: induction of the GAL genes
275  Dbefore they are required results in faster galactose consumption upon glucose depletion,
276  facilitating the transition between carbon substrates. At the same time, wholesale induction
277  of these genes across the entire population comes at the cost of a reduced rate of glucose
278  consumption. In agreement with this observation, the repressed subpopulation had

279  approximately 20% faster growth rate on average than that of the activated subpopulation
280  in the transient bimodal region in the wild type (Supplementary Fig. 14, Supplementary
281  Text). However, in this bimodal regime, the glucose consumption rate of the whole

282  population was not saliently reduced by GAL gene expression in a subpopulation of cells
283  (Fig. 4A). Therefore, the bimodal strategy seems to be efficiently balancing the tradeoffs
284 imposed by the pre-emptive induction of the galactose transcriptional program.

285

286  DISCUSSION

287  In this work, we demonstrate that a combinatorial input of glucose and galactose triggers
288  diverse regulatory states across a population of cells. This transient bimodality establishes
289  the co-existence of two subpopulation of cells--one that prepares hours in advance for a
290  future shift in carbon metabolism and a second that defers pathway activation over many
291  cell generations until these genes are required. The fraction of cells that occupy each state
292  istuned by the dual-sugar mixture, standing in contrast to canonical models in which the
293  output of a pathway is proportionally matched to the level of its inputs in all cells of the
294  population[22,23]. This mechanism also seems to be an elaboration on bet-hedging

295  processes where stochastic fluctuations diversify the phenotypic states of a population in

296  the absence of an environmental trigger[7,13,24], although in some instances,

15
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297  environmental cues have been implicated in biasing the distribution of phenotypic

298  states[25,26]. There are some examples of biological networks that seem to have evolved
299  the ability to activate multiple distinct signaling pathways simultaneously in response to a
300 single environmental input as a consequence of temporal correlations between different
301 environmental signals[27,28]. The strategy we describe is also unique in that the response
302 ofthe GAL system integrates direct environmental sensing with pre-emption of a future
303  metabolic shift.

304

305  Although our data do not pinpoint the exact mechanism by which glucose inhibits the

306 metabolism of galactose in GAL ON cells, previous studies hint that this inhibition might be
307 mediated by the dominant glucose kinase Hxk2p. Indeed, glucose and galactose are

308 consumed simultaneously in cells lacking Hxk2p[29]. Furthermore, in S. cerevisiae, glucose
309 was shown to block the maltose pathway (MAL) by a novel mechanism at the signaling
310 level, which is also linked to Hxk2p[30] and distinct from inducer exclusion. It is therefore
311 possible that the GAL and MAL pathways share similar post-translational inhibitory

312  mechanisms by glucose.

313

314  Our data reveal that the induction of the GAL pathway in a fraction of the S. cerevisiae

315 population before depletion of its preferred sugar (glucose) provides a kinetic advantage
316 by shortening the lag phase before growth can resume on the secondary sugar.

317  Evolutionary tuning of the duration of the lag phase has been shown to be a crucial variable
318  for fitness of microbial populations in fluctuating environments[31]. Therefore, it is

319 tempting to speculate that the advantage we characterize may be substantial for cells facing
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320 competition from other species for limited resources[32,33]. In agreement with this

321 hypothesis, heterogeneity in the expression of the Lac operon in E. coli has recently been
322  shown to modify the growth rates of single cells during the transition from glucose to

323  lactose metabolism[34]. Furthermore, combinatorial carbon sources have been shown to
324  trigger genetic mutations that produce phenotypic population diversification in E. coli[35].
325  Future studies that probe the broad adoption of similar strategies in other microorganisms,
326 including S. cerevisiae, may yield insights into the precise evolutionary advantages of this
327 response, and explore its use as a general paradigm for survival and reproduction in

328 complex competitive environments.
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329 MATERIALS AND METHODS

330 Growth conditions and flow cytometry

331 Cells were grown in yeast peptone media for approximately 12 hours and then diluted to
332  an optical density (OD) of approximately 0.3 prior to induction with glucose and galactose.
333  Single-cell fluorescence was measured on a LSRII analyzer (BD Biosciences). A blue (488
334 nm) laser was used to excite YFP and emission was detected using a 530/30 nm filter.

335 1000-20,000 cells were collected for each dynamic measurement.

336

337 Automated flow cytometry measurements

338 A 500 pl culture volume was used in 96-well plate format for the automated flow cytometry
339 measurements as described in ref. 9. For each time point, a 30 pl sample was removed from
340 the culture for measurement on the cytometer and 30 pl of fresh media containing the

341 appropriate 1X concentration of glucose and galactose was used as replacement to

342  maintain a constant culture volume.

343

344  Flask measurements

345 A 60 ml culture volume was used for the flask experiments in which the sugar

346  concentrations were quantified. Less than 5% of the total volume was removed over the
347  course of the experiment to quantify the single cell fluorescence, sugar concentrations and
348 absorbance at 600 nm (OD). OD was measured on a Nanodrop 2000c spectrophotometer
349  (Thermo Scientific).

350

351 Quantitative analysis of gene expression dynamics
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352  The ratio of YFP fluorescence to side scatter was used to quantify the total fluorescence per
353  cell. Flow cytometry distributions were analyzed using a Gaussian mixture model algorithm
354 (GMM, MATLAB) and each distribution was classified as either unimodal or bimodal as

355 described in ref. 19. The delay time 8§, was computed as the time required to reach the half-
356 max of the mean of the activated subpopulation. §; was defined as the difference between
357  the time required to reach the half-max of the mean of the activated and repressed

358 subpopulations. The fraction of ON cells (Fon) was computed as the fraction of the cell

359  population higher than a fluorescence threshold (10-92 a.u.) that corresponds to

360 approximately the lowest density of single-cell fluorescence between the OFF and ON

361  expression states. Fon-mia Wwas quantified at the midpoint between the half-max of the

362  activated (8.) and repressed subpopulations. The response time was defined as the time to
363 reach the half-max of Fon (Fon = 0.5). At each time point, individual cells were assigned to
364 the OFF and ON states using the Fon threshold on gene expression described above. The
365 subpopulation growth rates were computed as the slope of a line fit to the log; of the

366 number of cells that accumulated in the OFF and ON states over time.

367

368 Sugar measurements

369  Glucose and galactose were measured using the Amplex Red glucose oxidase and galactose
370  oxidase kits (Molecular Probes, Life Technologies). A Tecan Safire plate reader (Tecan) was
371 used to quantify the fluorescence. A standard of known concentration for each sugar was
372  used to determine the quantitative relationship between the fluorescence and sugar

373  concentration.

374
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375 Microscopy measurements

376  Cells were attached to glass-bottom wells in a 96-well plate (Matrical) functionalized with
377  concanavalin-A (Sigma). Fluorescence images were taken at room temperature on a Nikon
378  Ti-E equipped with a Perfect Focus System and a Coolsnap HQ2 CCD camera

379  (Photometrics).

380

381 Computational modeling

382  We used custom made code for mathematical modeling written in MATLAB (Mathworks)
383 and Mathematica (Wolfram Research). Details about the model construction are provided
384 inthe Supplementary Text. The domain of attraction of the ON steady state was defined as
385 the fraction of initial conditions that were assimilated by the ON equilibrium point and was
386 determined by randomly sampling 5000 initial conditions using the Latin Hypercube

387 Method[17]. A minimum and maximum bound on the concentration of each species was
388 used based on the parameters of the model. The dominant eigenvalue was defined as the

389 eigenvalue of smallest absolute value of the linearization at the ON equilibrium point.
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FIGURE LEGENDS

Figure 1

Dynamic responses of the GAL pathway to combinatorial inputs of glucose and
galactose. (A) Single cell fluorescence distributions of pGAL10-Venus as a function of time
in wild type S. cerevisiae obtained using automated flow cytometry for a wide range of
glucose and galactose concentrations. In each subplot, the x-axis is time and the y-axis is
fluorescence. Dashed box indicates the condition shown in panel B and highlighted
conditions were used to quantify the duration of bimodality (6;) in panel D. (B)
Fluorescent microscopy image of pGAL10-Venus induced simultaneously with 0.25%
glucose and 0.5% galactose at time zero and measured after 6 hours (top, corresponds to
dashed box in panel A). pGAL10-Venus flow cytometry distributions as a function of time
highlighting transient bimodality (bottom). 6. represents the response time of the early
activated subpopulation, §; represents the duration of bimodality for quantifiable
conditions in panel A (highlighted conditions) and Fon-mia denotes the fraction of cells in the
ON state at the midpoint of the transient bimodal region (16). (C) Relationship between
initial glucose levels and 8. for a range of initial galactose concentrations. (D) Relationship
between initial glucose concentrations and §; for different initial galactose levels. (E)
Relationship between initial galactose levels and Fon-miqa for different initial concentrations
of glucose.

Figure 2

Glucose is consumed before galactose despite the presence of a subpopulation of
cells with an active GAL pathway. Wild type cells were exposed to 0.1% glucose and 0.1%
galactose simultaneously at time zero. (A) Representative dynamic measurements of
glucose, galactose and the fraction of ON cells (Fon) for wild type expressing pGAL10-Venus.
Highlighted box indicates plateaued region. Lines represent fitted Hill functions. (B) Scatter
plot of glucose concentrations and Fon for the GAL1, GALZ2, GAL7 and GAL10 promoter
fusions to Venus measured over time. (C) Scatter plot of galactose concentrations and Fon
for pGAL1, pGALZ2, pGAL7 and pGAL10.

Figure 3

Computational model of GAL system with glucose and galactose inputs explains the
origin of transient bimodality and predicts the dependence of the system on its
inputs. (A) Schematic diagram of GAL circuit. Glu represents glucose and gal represents
galactose. The activated molecules are represented by R* and G1*. Pointed and blunted
arrows indicate activation and repression, respectively. (B) Bifurcation diagram at steady-
state. Bistability is represented by white and colored regions denote monostability. Total
concentration of G1 is denoted by G1t. Time zero is indicated by to and solid lines highlight
a model trajectory of sequential consumption of the two sugars by a cell population. (C)
Bifurcation diagram at steady-state (left). Arrows denote the addition of galactose at
different times to a system that received glucose at to. 6y is computed as the time required
for glucose to decay to the bifurcation point threshold (right). (D) Mean expression levels
of ON and OFF subpopulations for the delayed galactose experiment (left) and duration of
bimodality (8¢ ) (right). Arrows indicate the time of the galactose stimulus. (E) The fraction
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of initial conditions (IC) and the dominant eigenvalue for the ON equilibrium state as a
function of glucose for 150 nM galactose. (F) Experimental measurements of Foy in the
galactose step experiment over time. Response time of Foy for each condition (right). Error
bars indicate one s.d. from the mean of two replicates.

Figure 4

Early GAL pathway induction establishes a growth advantage during carbon source
switch. Measurements of glucose, galactose and growth rates for delayed galactose
experiment in which 0.1% galactose was added to a set of cultures at different times that
had all received 0.1% glucose from time zero. Arrows indicate the time of the galactose
stimulus. (A) Glucose concentrations as a function of time for each condition. (B) Galactose
concentrations as a function of time for each condition. Lines represent fitted Hill functions.
(C) Fractional change in the half-max of the galactose decay curves for each condition
relative to condition A. (D) Normalized growth rates of conditions B-F compared to A (red
line). Un-normalized growth rates for each condition (inset). Error bars represent one s.d.
from the mean of two replicates.
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