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Abstract The heritability of a trait (h2) is the proportion of its popula-
tion variance caused by genetic differences, and estimates of this parameter
are important for interpreting the results of genome-wide association studies
(GWAS). In recent years, researchers have adopted a novel method for estimat-
ing a lower bound on heritability directly from GWAS data that uses realized
genetic similarities between nominally unrelated individuals. The quantity es-
timated by this method is purported to be the contribution to heritability that
could in principle be recovered from association studies employing the given
panel of SNPs (h2SNP). Thus far the validity of this approach has mostly been
tested empirically. Here, we provide a mathematical explication and show that
the method should remain a robust means of obtaining h2SNP under circum-
stances wider than those under which it has so far been derived.
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Introduction

A central question in the study of quantitative phenotypic variation is the
extent to which such variation is caused by genetic differences. The precise
proportion of the phenotypic variance ascribable to genetic differences is for-
mally known as the heritability. Many definitions of heritability have been
proposed (Bell, 1977), but in this work we employ the narrow-sense heritabil-
ity commonly denoted by h2 (Visscher et al, 2008). The concept of heritability
was introduced by Fisher (1918) and Wright (1921) in their papers laying the
foundations of quantitative genetics, although they did not use the word “her-
itability” in these early writings.

Its success notwithstanding, the imminent demise of quantitative genetics
as a field of research has been repeatedly predicted ever since its first textbook
appeared (Falconer, 1960; Hill and Mackay, 2004). Perhaps the prominent
role in quantitative-genetic theory of heritability—a macroscopic parameter
of a genetic system—has led some to suppose that advancing microscopic
knowledge of the genetics underlying a given trait will superannuate the high-
level approach. This anticipated obsolescence has not occurred, and indeed
the recent explosion of findings from genome-wide association studies (GWAS)
has only intensified the spotlight on the concept of heritability. For example,
the loci found to be associated with a given trait at a strict threshold of
statistical significance typically account for only a small proportion of the
trait’s heritability (as estimated from traditional studies of the correlations
between close relatives), and this discrepancy has led to much discussion of
“missing heritability” (Manolio et al, 2009; Eyre-Walker, 2010; Dickson et al,
2010; Wray et al, 2011; Zuk et al, 2012; Gibson, 2012; Hemani et al, 2013).

The estimation of heritability from the correlations between relatives has
been substantially augmented by a novel technique that makes use of dense
GWAS data from nominally unrelated individuals (Yang et al, 2010; Visscher
et al, 2010; Lee et al, 2011). This technique is perhaps the most important
innovation in quantitative genetics to have been introduced in the last dozen
years, and it has provided what some may regard as decisive evidence for
the view that undiscovered common variants account for a substantial por-
tion of missing heritability. We will follow Benjamin et al (2012) and refer
to this method as genomic-relatedness-matrix restricted maximum likelihood
(GREML).

The descriptions of GREML given in the literature suggest that the math-
ematical basis of this method is not fully understood. For instance, formal
justifications of the method that have been offered so far seem unable to ac-
count for biased estimates occasionally observed in simulation studies. Here we
attempt to further the mathematical understanding of GREML, thereby pro-
viding insight into cases where the method has not worked well. By revealing
the sense in which these cases are extreme, however, our account conversely
shows that GREML estimates are in fact quite robust. We treat the heritability
of a single trait, but our account can be generalized to the genetic correlation
between two traits.
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Conditions for the validity of SNP-based heritability estimation 3

Table 1 SNPs used in simulations of GREML performance in the case of one nonzero

SNP i chromosome MAF (fi)
∑

j Cij

very weakly tagged nonzeros
rs4674229 2 0.0119 2.08
rs4716447 7 0.2460 2.02
rs4968679 17 0.4978 2.09

weakly tagged nonzeros
rs11039838 11 0.0108 5.01
rs4912830 5 0.2514 5.04
rs2654534 15 0.4955 5.02

moderately tagged nonzeros
rs7620645 3 0.0176 11.49
rs12692474 2 0.2526 11.42
rs4870308 6 0.4915 11.41

strongly tagged nonzeros
rs16841231 2 0.0156 16.54
rs6424728 1 0.2505 16.61
rs328890 7 0.4926 16.58

very strongly tagged nonzeros
rs10138824 14 0.0278 30.36
rs2718306 7 0.2521 30.37
rs8006587 14 0.4910 30.34

Subjects and methods

We emphasize here that some of our mathematical arguments employ restric-
tive assumptions about sample size, the number of genotyped markers, and the
values of the variance components. However, the fact that certain assumptions
are sufficient to prove a result does not imply that the assumptions are neces-
sary, and later we provide strong evidence for the generality of our findings.

We illustrate some of our mathematical arguments with numerical simula-
tions, using two GWAS datasets to supply the genetic data. One dataset was
used in a GWAS of European Americans reported previously (Chabris et al,
2013). The quality-control filters left 401 individuals and 661,108 markers (al-
though only subsets of markers on chromosome 1 were used). We employed this
small-sample dataset when it was necessary to relieve computational burden.

The second dataset was taken from the GENEVA Genes and Environment
Initiatives in Type 2 Diabetes (Nurses’ Health Study/Health Professionals
Follow-Up Study). We used PLINK to eliminate individuals of reported non-
European descent, markers missing more than 5 percent of their calls, markers
showing significant deviation from Hardy-Weinberg equilibrium (HWE) (p <
1 × 10−6), markers with minor allele frequency (MAF) < 0.01, individuals
missing more than 5 percent of their genotypes, and one individual from any
pair with a relatedness (Eq. 5) exceeding 0.025 in absolute value; Zaitlen et al
(2013) provide some discussion of the appropriate relatedness cutoff. These
filters left 4,975 individuals and 697,709 markers.

We used the software tool LDAK to calculate the extent to which each SNP
is tagged by its neighbors (Speed et al, 2012). In particular, we computed the
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4 James J. Lee, Carson C. Chow

matrix

Cij =

{
e−λdijr2ij if e−λdij > .125 and r2ij > .01,

0 otherwise,
(1)

where dij is the distance between SNPs i and j in base pairs (equaling ∞ if
the SNPs are on different chromosomes), r2ij is the standard measure of linkage
disequilibrium (LD) between i and j, and λ is chosen so that exp(−λdij) = .125
when i and j are 3 Mbp apart. SNP i’s level of tagging by its neighbors is then
the sum of the elements in the ith row of C. Large values of C correspond to
strong tagging (redundancy), whereas small values correspond to a lack of LD
with neighbors.

Table 1 lists the markers used in the simulations testing the case of a single
marker with a nonzero partial regression coefficient. The mean of

∑
j Cij over

all i was approximately 11.45 and the standard deviation approximately 8.35,
and we chose three SNPs with values close to the mean as the “moderately
tagged” SNPs. Similarly, we choose three SNPs close to the 3rd percentile
(2.05) as the “very weakly tagged” SNPs, three SNPs close to the 20th per-
centile (5.02) as the “weakly tagged” SNPs, three SNPs close to the 80th
percentile (16.58) as the “strongly tagged” SNPs, and three SNPs close to the
97th percentile (30.36) as the “very strongly tagged” SNPs. Within each group
of three markers, one was chosen to have an MAF of ∼ 0.01, another to have
an MAF of ∼ 0.25, and the last to have an MAF of ∼ 0.50. More specifically,
for all markers within a given percentile of the

∑
j Cij distribution plus/minus

0.05, one random selection was made from the markers with MAF in the in-
terval (0.01, 0.02), another from markers in the interval (0.245, 0.255), and yet
another from the interval (0.49, 0.50) to create a set of three markers varying
in MAF but matched with respect to LD. The extent of tagging by neighbors
is moderately correlated with MAF, and there were no candidates for very
strongly tagged markers meeting the initial requirement for low MAF. The
right endpoint of the low-MAF interval was therefore extended by increments
of .01 until the set of candidates was nonempty.

We used GCTA to simulate phenotypes and estimate heritabilities on the
basis of GREML. Each simulation scenario was tested with 200 replicates.

Results

Consider a sample of n unrelated (very distantly related) individuals and p
biallelic markers. Let y ∈ Rn be the vector of standardized phenotypes, e ∈ Rn
the vector of residuals (the sum of non-additive genetic deviations, environ-
mental deviations, and errors of measurement), Z ∈ Rn×p the matrix of stan-
dardized genotypes, and u ∈ Rp the vector of partial regression coefficients in
the regression of the phenotype on standardized genotypes. If Xik is the count
of minor alleles (0, 1, or 2) carried by individual i at marker k, then HWE
implies that the standardized count is Zik = (Xik−2fk)/

√
2fk(1− fk), where

fk is the MAF at marker k. Note that the elements of u are not necessarily
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Conditions for the validity of SNP-based heritability estimation 5

proportional to the average effects of gene substitution (Fisher, 1941; Lee and
Chow, 2013), since a non-causal marker may have a nonzero coefficient because
it is in LD with a causal locus that has not been genotyped. The phenotype
need not be standardized, but it makes our presentation simpler.

The residuals will be uncorrelated with the “chip-based” breeding (addi-
tive genetic) values Zu if gene-environment correlation is absent or properly
controlled (Yang et al, 2011b; Browning and Browning, 2011; Goddard et al,
2011; Janss et al, 2012; Speed et al, 2012) and if Zu and the vector of geno-
typic means are orthogonal. What the latter condition means is that the chip-
based breeding values in Zu must be uncorrelated with both the discrepancy
between true and chip-based breeding values and the non-additive residuals
attributable to dominance and epistasis. This condition is difficult to assess,
but we assume henceforth that it is met. Then from the basic equation

y = Zu + e, (2)

we see that the total phenotypic variance can be written as

Var(Y ) =
1

n
E (y′y)

=
1

n
E (u′Z′Zu + e′e)

= σ2
A,SNP + σ2

E,SNP, (3)

where the expectation is over random residuals. The “SNP-based heritability”
is thus h2SNP = σ2

A,SNP/(σ
2
A,SNP + σ2

E,SNP). If we assume that linkage equi-
librium (LE) holds approximately, then Z′Z ≈ nIp and the additive genetic
variance is approximately u′u.

We emphasize that σ2
A,SNP is the variance that would be removed from the

total phenotypic variance by multiple regression on all markers that happen
to be assayed by the genotyping chip, as sample size goes to infinity. Because
not all causal variants may be genotyped or represented by LD proxy, the
chip-based additive genetic variance denoted here by σ2

A,SNP is smaller than

the true additive genetic variance σ2
A contributed by all causal loci. Similarly,

σ2
E,SNP > σ2

E and h2SNP < h2 = σ2
A/(σ

2
A+σ2

E). Leaving aside these subtleties of
definition, we can see that Eq. 3 holds because (1/n)E (u′Z′Zu) is the variance
of chip-based breeding values and hence equal to σ2

A,SNP.

GREML estimates the parameters σ2
A,GREML and σ2

E,GREML in the model

E (yy′) = E (Zuu′Z′ + ee′)

= Aσ2
A,GREML + Inσ

2
E,GREML, (4)

where, in the notation of Yang et al (2010), A = (1/p)ZZ′ is the matrix of
realized relatedness coefficients. It is helpful to write out the typical element
of A,

Aij =
1

p

p∑
k=1

zikzjk, (5)

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 4, 2014. ; https://doi.org/10.1101/003160doi: bioRxiv preprint 

https://doi.org/10.1101/003160
http://creativecommons.org/licenses/by-nd/4.0/


6 James J. Lee, Carson C. Chow

which is very analogous to the traditional coefficients of relatedness appearing
in the classical formulas for the correlations between close relatives (Crow and
Kimura, 1970; Lynch and Walsh, 1998). Preserving this analogy turns out to
be important because different possible standardizations of the Xik will lead
to different estimates of the variance components. For example, if a matrix
differing from A by a constant factor is used in the place of A, then the
estimate of σ2

A,GREML will be multiplied by that constant (Speed et al, 2012).
The average of the off-diagonal realized relatedness coefficients over all pairs
is zero (Powell et al, 2010), and the diagonal elements of A converge to unity
as p becomes large.

At this point the equality of the first and second lines in Eq. 4 should
be regarded not as a derivable fact but rather as a priori definitions of the
parameters σ2

A,GREML and σ2
E,GREML. Note that σ2

A,GREML + σ2
E,GREML =

σ2
A,SNP + σ2

E,SNP = Var(Y ).
The emergence of the matrix A from the action of the expectation operator

in Eq. 4 implies that A is a constant (up to permutations of the sample)
characterizing the population from which the n individuals have been drawn.
The expectation must thus be interpreted as taken over random samples of
size n sharing the same precise histogram of relatedness coefficients Aij but
differing in the specific entries of e. In this way A is somewhat analogous to
the sum of the squared differences between the independent variable and its
mean (an ancillary statistic) in Fisher’s (1973) discussion of univariate linear
regression. Since fixing Z suffices to fix A, we henceforth assume that Z is
fixed. This interpretation does not seem problematic; across distinct samples
of large size n from the same population, genotyped with the same p-variant
chip, histograms of relatedness coefficients with a reasonable shared bin width
should exhibit little variability.

Let us compare Eqs. 3 and 4. The expectation of ee′ alone is Inσ
2
E,SNP.

Therefore, (σ2
A,GREML, σ

2
E,GREML) = (σ2

A,SNP, σ
2
E,SNP) implies that Zuu′Z′ =

Aσ2
A,SNP, which in turn implies that Zuu′Z′ is proportional to u′uZZ′. Such

proportionality does not hold, however, as a matter of mathematical necessity.
Therefore the question is posed: under what circumstances is

h2GREML =
σ2
A,GREML

σ2
A,GREML + σ2

E,GREML

(the quantity estimated by GREML)

approximately equal to

h2SNP =
σ2
A,SNP

σ2
A,SNP + σ2

E,SNP

(what we wish to know)?

It is important to note that no assumption-free adjustment of h2GREML

can yield a reliable estimate of the true heritability h2 if the genotyping chip
assays a limited panel of markers. For example, it may be that rare causal
variants have large phenotypic effects, and such variants may be absent from
the genotyping chip and poorly represented by LD proxy. Therefore, if it turns
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Conditions for the validity of SNP-based heritability estimation 7

out that h2GREML bears no exact relationship to h2, this should not necessarily
be construed as a fault of GREML. The most that can be reasonably demanded
from the method is that h2GREML ≈ h2SNP, and this is the issue that we address
here.

Yang et al (2010) assume that each element of u can be regarded as an
independent draw from a normal distribution with mean zero and variance
σ2
A,SNP/p. The desired equality between σ2

A,GREML and σ2
A,SNP then follows if

we further suppose that the treatment of u as a vector of independent random
variables justifies the replacement of uu′ with Ipσ

2
A,SNP under the action of

the expectation operator. There are two aspects of this assumption, however,
that seem rather nonbiological. The first is that the number of markers with
nonzero regression coefficients (“nonzeros”) is typically believed to be much
smaller than the total number of genotyped markers (Park et al, 2011; Stahl
et al, 2012), which is inconsistent with a normal distribution. Secondly and
more importantly, the partial regression coefficients in u represent the average
effects of gene substitution (or LD proxies for such effects) and thus cannot
be said to vary randomly across individuals. Hence, while the spectrum of
the coefficients could be described by a normal distribution or some other
distribution, the exterior product uu′ cannot be averaged over this distribution
characterizing markers when given as an input to an expectation operator over
random residuals disturbing the phenotypes of individuals. This implies that
uu′ is not proportional to the identity matrix.

Note the contrast between the meaning of u in the GREML literature
and in the treatment of linear mixed models by Lynch and Walsh (1998). For
instance, in the example of Lynch and Walsh’s Chapter 26, the elements of u
are the breeding values of the pedigree founders and thus can properly be said
to vary randomly across different realizations of the pedigree structure.

For the reasons just given, we refrain from the Yang et al (2010) assump-
tion and treat u as an arbitrary fixed constant rather than a random variable.
Fixing both Z and u implies that the population targeted for inference con-
sists of random samples sharing the same sample value of σ2

A,SNP (Eq. 3). This
limitation does not seem unduly restrictive since, for values of n often used
in GREML applications (∼10,000), different samples from the same popula-
tion (e.g., Northwest Europeans) will scarcely differ in their realized values of
σ2
A,SNP.

We can now write the typical off-diagonal element of the matrix Zuu′Z′

in component form as

(
Zuu′Z′

)
ij

=

(
p∑
k=1

zikuk

)(
p∑
k=1

zjkuk

)
=

p∑
k=1

zikzjku
2
k+
∑
k 6=`

zikukzj`u`. (6)

Now suppose that the constants u2k were all equal to u2 = σ2
A,SNP/p. Then the

first sum in the expression above would become Aijσ
2
A,SNP. However, since

it is surely false that each marker has the same squared coefficient in the
regression on standardized genotypes, we decompose each u2k into the sum
u2 + ∆k = σ2

A,SNP/p + ∆k, where
∑
∆k = 0. If there are many genotyped

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 4, 2014. ; https://doi.org/10.1101/003160doi: bioRxiv preprint 

https://doi.org/10.1101/003160
http://creativecommons.org/licenses/by-nd/4.0/


8 James J. Lee, Carson C. Chow

-0
.5

0.
0

0.
5

V
A

LU
E

S
 O

F 
TH

E
 T

H
R

E
E

 T
E

R
M

S

100 MARKERS 1000 MARKERS

Fig. 1 Boxplots of the three terms in Eq. 7 for pairs of simulated individuals and u. Red
corresponds to Term 1, green to Term 2, and blue to Term 3. The plots on the left display
the results for 100 markers in LE, whereas those on the right display the results for 1,000
markers in LE. Values lying beyond 1.5 times the interquartile range past either the 25th
or 75th percentile are omitted. Note that the average of each term is close to zero.

markers, then u2 is a rather small quantity. If the nonzeros are a small fraction
of the total, then most of the ∆k are equal to −u2. If the kth marker has a
nonzero coefficient, however, then its ∆k has a relatively large positive value.

Then we have, for the typical off-diagonal element of Zuu′Z′,

Aijσ
2
A,SNP︸ ︷︷ ︸

Term 1

+

p∑
k=1

zikzjk∆k︸ ︷︷ ︸
Term 2

+
∑
k 6=`

zikukzj`u`︸ ︷︷ ︸
Term 3

. (7)

We have already stated that the sum of Term 1 over all pairs of individuals is
zero (i.e., the sum of Aij over i 6= j is zero). Since the ∆k are constants, the
sum of Term 2 over all pairs is also zero. The sum of Term 3 over all pairs is
zero as well because knowledge of randomly chosen individual i’s genotype at
marker k cannot provide any information about randomly chosen individual
j’s genotype at marker `, even if k and ` are in perfect LD; only individual j’s
own genotype at k can provide this information.

It might seem that Terms 2 and 3 must be extremely small compared to
Term 1 for each pair of individuals i and j in order for σ2

A,GREML ≈ σ2
A,SNP

to hold. In genetic data, however, this condition will rarely be fulfilled. To
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Fig. 2 Boxplots of the three terms in Eq. 7 for pairs of real genotyped individuals (but
simulated u). Red corresponds to Term 1, green to Term 2, and blue to Term 3. The plots
on the left display the results for 100 contiguous genotyped markers on chromosome 1,
whereas those on the right display the results for 200 such markers elsewhere on the same
chromosome. Values lying beyond 1.5 times the interquartile range past either the 25th or
75th percentile are omitted.

illustrate this fact, we simulated 1,000 individuals with genomes consisting of
100 markers in LE and MAFs drawn uniformly from (0.05, 0.50). The ele-
ments of u were drawn from a normal distribution and constrained to produce
σ2
A,SNP = 0.50. The results of calculating all three terms in Eq. 7 for each pair

show that Term 2 is often comparable in magnitude to Term 1 and that Term
3 is frequently larger (Fig. 1). Increasing the number of markers from 100 to
1,000 only reinforced this conclusion. It is also of some interest to calculate
the three terms in Eq. 7 using real data so as to examine the impact of LD.
We therefore used the Chabris et al (2013) data to run simulations using dis-
tinct sets of 100 and 200 contiguous SNPs on chromosome 1. Each real SNP
typically showed moderate to strong LD with neighbors, and there were pairs
of SNPs with values of r2 exceeding 0.90. As can be seen in Fig. 2, the use
of real data did not cause Terms 2 and 3 to vanish. Note that the average of
each term was still close to zero.

Despite the failure of Terms 2 and 3 to vanish, GREML is often unbiased as
a means of estimating σ2

A,SNP when applied to real genetic data (Speed et al,
2012, 2013; Zhou et al, 2013; Browning and Browning, 2013; Lee et al, 2013),
which implies that the vanishing of the additional terms is not a necessary
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10 James J. Lee, Carson C. Chow

condition. Here we seek a more general characterization of those cases where
GREML is accurate.

The variance components are estimated with GREML using REML (Lynch
and Walsh, 1998; Yang et al, 2010, 2011a; Vattikuti et al, 2012). We now derive
certain conditions that the maximum-likelihood (ML) estimates must satisfy.
The GREML model in Eq. 4 is equivalent to treating y as drawn from a
multivariate normal distribution with mean zero and covariance matrix V =
Aσ2

A,GREML + Inσ
2
E,GREML. In the absence of fixed effects, the log-likelihood

is thus

L(V |y) = −n
2

ln 2π − 1

2
|V| − 1

2
y′V−1y. (8)

The ML estimates of the variance components are obtained by taking the
partial derivatives of Eq. 8 with respect to σ2

A,GREML and σ2
E,GREML and

setting the resulting equations to zero. Now recall that if M is a square matrix
whose elements are multiples of a scalar x, then

∂ ln |M|
∂x

= Tr

(
M−1

∂M

∂x

)
,

∂M−1

∂x
= −M−1 ∂M

∂x
M−1.

Using these facts, we differentiate Eq. 8 and obtain

∂L(V |y)

∂σ2
i

= −1

2
Tr
(
V−1Vi

)
+

1

2
y′V−1ViV

−1y, (9)

where

∂V

∂σ2
i

≡ Vi =

{
In if σ2

i = σ2
E,GREML

A if σ2
i = σ2

A,GREML .

The ML conditions are thus

Tr
(
V̂−1

)
= y′V̂−1V̂−1y,

Tr
(
V̂−1A

)
= y′V̂−1AV̂

−1
y, (10)

where V̂ = Aσ̂2
A,GREML + Inσ̂

2
E,GREML is the ML estimate of V. Since ML

estimates are consistent given mild regularity conditions, we set the estimate(
σ̂2
A,GREML, σ̂

2
E,GREML

)
equal to

(
σ2
A,GREML, σ

2
E,GREML

)
for convenience.

To express the GREML variance components in terms of the observables
y and A (which in turn depend on the parameters of primary interest σ2

A,SNP

and σ2
E,SNP), we need an approximation for V−1. A standard linear algebra

approximation of the matrix inverse is

V−1 ≈ σ−2E,GREML

(
In −

σ2
A,GREML

σ2
E,GREML

A

)
. (11)
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Conditions for the validity of SNP-based heritability estimation 11

Multiplying Eq. 11 by V, we obtain

In −
σ4
A,GREML

σ4
E,GREML

A2, (12)

and thus the vanishing of the second term will render Eq. 11 a good approxi-
mation of V−1. Given p markers in LE, the average of the squared off-diagonal
elements of A is close to 1/p (which we confirmed in the simulations generating
Fig. 1). The typical off-diagonal element of A2,

∑n
j=1 AijAjk, is thus likely

to be smaller than n/p. It follows that σ2
A,GREML � σ2

E,GREML and n� p are

sufficient conditions for Eq. 11 to serve as an approximation of V−1. When
Eq. 11 is substituted into Eq. 10, we obtain

σ−2E,GREML

[
n−

σ2
A,GREML

σ2
E,GREML

Tr(A)

]

= y′σ−4E,GREML

(
In −

σ2
A,GREML

σ2
E,GREML

A

)(
In −

σ2
A,GREML

σ2
E,GREML

A

)
y, (13a)

σ−2E,GREML

[
Tr(A)−

σ2
A,GREML

σ2
E,GREML

Tr
(
A2
)]

= y′σ−4E,GREML

(
In −

σ2
A,GREML

σ2
E,GREML

A

)
A

(
In −

σ2
A,GREML

σ2
E,GREML

A

)
y. (13b)

In principle, we need to solve this system of two equations with two unknowns.
However, for large n and a standardized phenotype we can immediately impose
the equality 1 = σ2

A,GREML+σ2
E,GREML, and noting that Tr(A) ≈ n, we obtain

the single equation

n
(
1− σ2

A,GREML

) (
1− 2σ2

A,GREML

)
=
(
1− σ2

A,GREML

)
y′y−2σ2

A,GREMLy
′Ay
(14)

to first order, which in turn implies

nσ2
A,GREML = n− y′Ay. (15)

Therefore, if σ2
A,GREML = σ2

A,SNP, then y′Ay = nσ2
E,SNP, which corresponds

to a necessary condition for GREML to provide a consistent estimator of
σ2
A,SNP in the small-(n/p), small-

(
σ2
A,GREML/σ

2
E,GREML

)
regime.

We now examine conditions under which y′Ay = nσ2
E,SNP holds. Let us

use Sij to denote the sum of Terms 2 and 3 in Eq. 7. Then the expectation
over random residuals of the quadratic form y′Ay can be written as

E

∑
i,j

Aijyiyj

 =
∑
i,j

Aij

[
Aijσ

2
A,SNP + Sij + E(eiej)

]
. (16)
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12 James J. Lee, Carson C. Chow

The last term is indeed nσ2
E,SNP. The first term,

∑
A2
ijσ

2
A,SNP, has a diago-

nal contribution converging to nσ2
A,SNP and an off-diagonal contribution con-

verging to 2
(
n
2

)
(1/p)σ2

A,SNP. Therefore the first term is approximately (n +

n2/p)σ2
A,SNP. The ratio of the first and last terms is approximately (1 +

n/p)(σ2
A,SNP/σ

2
E,SNP), and thus the sufficient conditions for Eq. 11 to give

V−1 also ensure that the contribution of the last term to Eq. 16 dominates
that of the first.

The second term in Eq. 16,
∑
i,jAijSij = Tr(AS), must also be close

to zero for σ2
A,GREML ≈ σ2

A,SNP. The diagonal contribution to this sum,∑
iAiiSii, converges to

∑
i Sii as p becomes large. Since Sii is the devia-

tion of individual i’s squared breeding value from Aiiσ
2
A,SNP ≈ σ2

A,SNP, the
sum of these deviations over all individuals becomes zero. The off-diagonal
contribution to Tr(AS) can be interpreted as (proportional to) a covariance
between relatedness Aij and the sum of Terms 2 and 3, and this covariance
must also be zero.

The sign of Tr(AS) when it deviates from zero cannot in general be used
to predict the sign of σ2

A,GREML − σ2
A,SNP from Eq. 15, which is derived from

an uncontrolled expansion with an unknown range of validity. The follow-
ing argument for the direction of the bias induced by Tr(AS) 6= 0 appears
to be valid for typical values of n, p, and σ2

A,SNP/σ
2
E,SNP. If there is a posi-

tive covariance between Aij and Sij—meaning that pairs with above-average
(below-average) relatedness also tend to have above-average (below-average)
values of Terms 2 or 3—the phenotypic products yiyj are systematically too
far from zero and thus lead GREML to infer an excessive SNP-based heri-
tability (σ2

A,GREML > σ2
A,SNP). Conversely, if there is a negative covariance

between Term 1 and the sum of Terms 2 and 3, the shrinking of phenotypic
products toward zero leads GREML to underestimate SNP-based heritability
(σ2
A,GREML < σ2

A,SNP). There is a close analogy here to the requirement of
a zero correlation between the causal variable and the residual disturbance
for least-squares regression to provide an unbiased estimate of a linear causal
effect.

Note again that we have made no assumption with respect to whether the
partial regression coefficients in u follow a normal distribution or indeed any
probability distribution. In fact, as we will shortly demonstrate, GREML can
serve as an accurate means of estimating h2SNP in the case of a single nonzero,
and obviously a probability distribution prescribing one nonzero and p − 1
zeros is not normal. Therefore this feature of the genetic architecture per se
should not affect the accuracy of GREML as a method for estimating h2SNP.

We now show that our account provides quantitative explanations of recent
simulation results. Both Speed et al (2012) and Zhou et al (2013) remarked
upon the fact that GREML remains approximately unbiased even as the num-
ber of nonzeros becomes very small. This is perhaps surprising because the
majority of the ∆k in this case are equal to −u2 = −σ2

A,SNP/p. But suppose
that there are s nonzeros, where s is an arbitrary positive integer smaller than
or equal to p. As long as the markers are in LE, then the contribution to
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Conditions for the validity of SNP-based heritability estimation 13

Tr(AS) from the products of relatedness and Term 2 is zero since

∑
i,j

∑
k′

zik′zjk′

(
s∑

k=1

zikzjk∆k −
σ2
A,SNP

p

p∑
k=s+1

zikzjk

)

= n
s∑

k=1

∆k − n
p− s
p

σ2
A,SNP

= n

[
s∑

k=1

(
u2k −

σ2
A,SNP

p

)
− p− s

p
σ2
A,SNP

]
= 0, (17)

where we used the property that LE and large n imply
∑
i zikzik′ = nδk,k′

(δk,k′ is the Kronecker delta). Note that each of the s nonzeros may have an
arbitrary MAF and uk. Furthermore, the typical term in the expansion of the
covariance between relatedness and Term 3 is

zikzjkzi`zjmu`um, (18)

and LE also ensures that the average of this product vanishes. Whenever ` or m
indexes a marker outside of the nonzeros, the product vanishes regardless, and
a single nonzero thus trivially guarantees a zero covariance. Therefore, since LE
guarantees that Tr(AS) = 0 in the small-(n/p), small-

(
σ2
A,GREML/σ

2
E,GREML

)
regime, GREML will accurately estimate the heritability captured by a set of
independent markers even as the number of nonzeros decreases down to one.

It has been reported that the MAF spectrum of the nonzeros can affect
the accuracy of GREML (Speed et al, 2012, 2013; Lee et al, 2013). Because
the calculations related to Eqs. 17 and 18 rely on LE rather than any as-
sumption regarding the MAF spectrum, this sensitivity must arise from LD
and the tendency of higher-MAF variants to be better tagged by neighboring
markers. One way in which LD affects GREML can be easily explained upon
making the convenient assumption that the panel of markers is partitioned
into two subsets, one of which is characterized by complete LE and the other
by complete LD. Then Term 2 can be rewritten as∑
LE set

zikzjk∆k+
∑

LD set

zikzjk∆k =
∑

LE set

zikzjk∆k+|LD set|Aij,LD set

∑
LD set

∆k,

where | · | denotes set cardinality and Aij,LD set is the relatedness over just
the markers in the LD set. The factor can be pulled out from the second sum
because perfect LD implies that zikzjk equals the constant |LD set|Aij,LD set

for each k in the set. Notice that Aij,LD set makes a disproportionate contri-
bution to Aij . For example, if there are 10,000 markers and |LD set| = 5,000,
then Aij is a weighted sum of 5,001 contributions where the weight of the LD
set is 5,000 times as large as any other. If the nonzeros (positive ∆k) are all in
the LD set, then a positive correlation may be induced between Terms 1 and
2. Conversely, if the nonzeros are all in the LE set, then a negative correlation
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Fig. 3 The strong relationship between the extent to which the simulated nonzero SNP
is tagged by neighboring markers and the resulting correlation between relatedness (Eq. 5)
and Term 2 (Eq. 7). Each point represents one of 1,000 contiguous genotyped SNPs on
chromosome 1 in the dataset of Chabris et al (2013). The x-axis represents the sum of the
elements in the row of C (Eq. 1) corresponding to the nonzero SNP, and the y-axis represents
the correlation between relatedness and Term 2. The LOESS curve is displayed in red.

may be induced because ∆k = −u2 for each k in the LD set. A small number
of nonzeros can therefore lead to upward (downward) bias because by chance
the nonzeros may be strongly (poorly) tagged by neighboring SNPs. On the
other hand, suppose that there are an equal number of nonzeros in the LE
and LD sets. So long as there is no tendency for the ∆k of the nonzeros to
be larger in one of the sets, the magnification of the nonzeros in the LD set
should be balanced by the diminution of those in the LE set, leading to an
overall estimate of h2SNP that may be nearly unbiased.

To illustrate the impact of LD on the covariance between relatedness and
Term 2, we performed simulations where each of 1,000 contiguous SNPs on
chromosome 1 in the Chabris et al (2013) data was stipulated to be the single
nonzero. Fig. 3 shows that there was a strong correlation, approaching unity,
between the chosen nonzero’s redundancy with neighboring SNPs (Eq. 1) and
the resulting covariance between relatedness and Term 2. Because we used only
a single nonzero in each simulation, Term 3 was trivially zero for all pairs and
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Conditions for the validity of SNP-based heritability estimation 15

therefore did not need to be computed. The results displayed in Fig. 3 clearly
bear out the fact that a clustering of nonzeros among the most (least) well-
tagged markers leads to a positive (negative) covariance between relatedness
and the additional terms in Eq. 7.

A shortcoming of our mathematical expressions is that they make no pre-
dictions when either n/p or σ2

A,GREML/σ
2
E,GREML is relatively large. However,

because the requirements of small n/p and σ2
A,GREML/σ

2
E,GREML only arise

from our need to approximate V−1 for the purpose of obtaining a closed-form
solution of the ML equations, it is quite plausible that our condition for the
unbiasedness of GREML as a method for estimating h2SNP continues to be
necessary outside of the small-(n/p), small-

(
σ2
A,GREML/σ

2
E,GREML

)
regime. In

particular, the condition of a zero correlation between relatedness and the
additional terms in Eq. 7 should continue to hold for the following intuitive
reason. If we reduced the dataset such that the phenotypic products of pairs
within a given bin of relatedness (plus/minus a small quantity) were aver-
aged together, then the conditional average of the additional terms equaling
zero given any relatedness would ensure that the average phenotypic product
of pairs within a fixed bin of relatedness is equal to that relatedness times
σ2
A,SNP.

We found that the small values of n, p, and s used in our simulations
based on the Chabris et al (2013) dataset prevented the diagonal contribu-
tion to Tr(AS) from closely approaching zero, thereby rendering this dataset
unsuitable for simulations extrapolating our deductions. For this reason we
turned to our second dataset, where n and p are more typical of GREML
applications. In this series of simulations, each of the markers in Table 1 was
specified in turn to be the single nonzero. The true h2SNP was set to 0.50, and

we recorded the ĥ2GREML produced by each replicate.

The results displayed in Fig. 4 bear out our predictions.

1. It is possible for h2GREML ≈ h2SNP even if there is only one nonzero, as long
as its level of LD with neighbors is typical of the SNP panel. In the case
of a moderately tagged nonzero, no average ĥ2GREML missed the true h2SNP

by more than 0.014.
2. Strong (weak) tagging leads to upward (downward) bias in h2GREML as an

estimate of h2SNP, and this bias increases with the nonzero’s deviation from
the typical level of tagging. This dose-response relationship is consistent
with the increasing magnitude of the correlation between relatedness and
Term 2 in Eq. 7 as the nonzero deviates from the typical level of tagging
(Fig. 3). There was one anomalous result: our randomly chosen marker
satisfying our criteria for low MAF and poor tagging (rs11039838) showed

an average ĥ2GREML of 0.487, not far from the true h2SNP. To determine
whether this was an unusual deviation from the overall trend, we reran the
simulation of this scenario, this time specifying all 125 markers satisfying
our criteria for low MAF and poor tagging as nonzeros of equal coefficient
magnitude (uk). The resulting average ĥ2GREML was 0.347 [95% CI = (0.340,

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 4, 2014. ; https://doi.org/10.1101/003160doi: bioRxiv preprint 

https://doi.org/10.1101/003160
http://creativecommons.org/licenses/by-nd/4.0/


16 James J. Lee, Carson C. Chow

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

G
R

E
M

L 
H

E
R

IT
A

B
IL

IY
 E

S
TI

M
A

TE

VERY WEAKLY
 TAGGED

WEAKLY
 TAGGED

MODERATELY
 TAGGED

STRONGLY
 TAGGED

VERY STRONGLY
 TAGGED

Fig. 4 Simulations of GREML performance in the case of a single nonzero. Each group
of three markers was characterized by very similar tagging levels within the group. Red
corresponds to markers with MAF ∼0.01, green to MAF ∼0.25, and blue to MAF ∼0.50.
Each scenario was tested with 200 replicates, which led to very precise estimates of the
central tendencies. The purple horizontal line corresponds to the true h2

SNP of 0.50.

0.353)], further from the true h2SNP and closer to those observed at the other
MAFs within our group of poorly tagged markers.

3. Once the level of tagging is controlled, the MAF of the nonzero has no
discernible systematic impact on h2GREML. Even the anomalous result pro-
duced by our initial choice of a poorly tagged low-MAF marker (rs11039838)
deviated in the opposite direction from the prediction of an account posit-
ing an association between low MAF of a nonzero per se and underestima-
tion of h2SNP.

4. The average of the heritability estimates across all 15 markers (0.525) was
close to the true h2SNP.

To confirm that h2GREML ≈ h2SNP if the nonzeros are representative of the entire
genotyping chip with respect to tagging, we ran another simulation specifying
10,000 randomly chosen markers as the nonzeros. The distribution of tagging
(Eq. 1) in this subset was nearly identical to the distribution among all 697,709
genotyped markers. The mean of the h2GREML estimates was 0.499 [95% CI =
(0.487, 0.511)]. It is worth pointing out that we drew the magnitudes of the
nonzero coefficients from a normal distribution. If the distribution is such that
a few coefficients are much larger than others, than it is possible that chance
unrepresentative tagging of the dominating nonzeros will lead to some bias.
However, this potential problem does not seem too threatening in practice,
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Table 2 Comparison of empirical and GCTA standard errors

SNP i standard deviation mean of GCTA

of ĥ2
GREML standard errors

very weakly tagged nonzeros
rs4674229 0.0456 0.0637
rs4716447 0.0539 0.0661
rs4968679 0.0479 0.0672

weakly tagged nonzeros
rs11039838 0.0593 0.0679
rs4912830 0.0577 0.0681
rs2654534 0.0577 0.0680

moderately tagged nonzeros
rs7620645 0.0613 0.0691
rs12692474 0.0588 0.0684
rs4870308 0.0624 0.0691

strongly tagged nonzeros
rs16841231 0.0596 0.0667
rs6424728 0.0657 0.0678
rs328890 0.0572 0.0660

very strongly tagged nonzeros
rs10138824 0.0014 0.0596
rs2718306 0.0073 0.0606
rs8006587 0.0075 0.0603

because loci of large effect are relatively easy to detect and can be removed
from the analysis.

Interestingly, although we have not mathematically analyzed the stan-
dard errors produced by GREML software, we found in our simulations that
GCTA’s standard errors are reasonably accurate (so long as h2GREML is not
near either boundary) (Table 2). The fact that the GCTA standard errors
are slightly larger than the corresponding empirical standard deviations of
ĥ2GREML is not necessarily a drawback of GCTA because the empirical stan-
dard deviations do not reflect the variation in realized σ2

A,SNP (attributable to
variation in Z) from sample to sample. The figures of Speed et al (2012) and
Zhou et al (2013) show very large standard deviations of heritability estimates
in the case of few nonzeros because they varied the identities of the nonze-
ros across replicates. Across repeated studies of the same phenotype, where
of course the identities of the nonzeros do not vary, it appears that GREML
procedures produce robust standard errors after all.

Discussion

In the present work, we have deduced a necessary condition for equality be-
tween the parameter h2GREML (which is estimated by software packages such
as GCTA) and h2SNP (the proportion of the phenotypic variance attributable
to SNPs assayed by the given genotyping chip), in a regime allowing the in-
verse of the matrix V to be approximated by an explicit expression. In short,
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the condition is that
∑
i,jAijSij = 0, where Aij is the realized relatedness of

individuals i and j and Sij is the deviation of the expected phenotypic product
of individuals i and j from Aijσ

2
A,SNP. This condition in turn requires a zero

correlation between relatedness and Sij .
It is extremely plausible that this condition continues to be necessary

for h2GREML = h2SNP outside of the small-(n/p), small-
(
σ2
A,GREML/σ

2
E,GREML

)
regime in which we derived it. For suppose that the condition fails, perhaps
because Aij and Sij are positively correlated. Inspection of Eq. 7 shows that a
positive correlation and consequent non-vanishing of the additional two terms
causes the average phenotypic product of pairs exhibiting a given positive
relatedness Aij to exceed Aijσ

2
A,SNP. This excess phenotypic similarity be-

tween positively related individuals should “trick” GREML into overestimat-
ing heritability (h2GREML > h2SNP). A positive (negative) correlation between
relatedness and at least Term 2 in Eq. 7 can be induced by an overrepresen-
tation of the nonzeros among the most (least) strongly tagged markers, and
our simulations using small n/p but large σ2

A,SNP/σ
2
E,SNP confirmed that such

overrepresentation leads to a biasing of estimates in the expected direction.
This account appears to be consistent with all simulation studies of GREML

performance that have appeared thus far. Speed et al (2012, 2013) also found
that the extent to which nonzeros are in strong (weak) LD with neighbors
is associated with the degree to which GREML produces upwardly (down-
wardly) biased estimates of h2SNP. In simulations with independent markers,
where of course each nonzero is as well tagged as any other marker, Zaitlen and
Kraft (2012) found that GREML produces unbiased estimates of h2SNP. Speed
et al (2012, 2013), Zhou et al (2013), Browning and Browning (2013), and Lee
et al (2013) used real genetic data characterized by LD in their simulations,
and we replicated their findings that choosing a large and random sample of
markers to serve as the nonzeros leads to an absence of substantial bias. We
note again that many of the simulations by ourselves and others finding that
GREML is unbiased when

∑
i,jAijSij = 0 have not adhered to small n/p

and σ2
A,GREML/σ

2
E,GREML. For example, Zaitlen and Kraft (2012) found that

GREML can be unbiased even in the case that n > p. The restrictive assump-
tions of small n/p and σ2

A,GREML/σ
2
E,GREML that we employed to derive the

condition
∑
i,jAijSij = 0 thus appear to be matters of mathematical conve-

nience only. Therefore studies that partition heritability among different parts
of the genome or that analyze highly heritable phenotypes should be sound,
so long as the condition

∑
i,jAijSij = 0 is satisfied.

We have not discussed the potential for a correlation between Terms 1
and 3 (Eq. 7). Presumably such a correlation might arise if the phenotype
is subject to assortative mating, which tends to induce positive LD between
causal variants (Fisher, 1918; Crow and Kimura, 1970; Lynch and Walsh,
1998). In this case individual i’s genotype at marker k is a weak proxy for i’s
genotype at `, and the fact that i and j show a positive realized similarity
at k (Term 1) may also mean that they tend to show similarity at markers k
and ` (Term 3). However, because phenotypes subject to assortative mating
are probably also subject to natural selection, which tends to induce negative
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LD (Lande, 1977; Bulmer, 1980), it may be that even assortative mating does
not suffice to induce a correlation between Terms 1 and 3 large enough to
invalidate GREML heritability estimates. This is perhaps an important issue
for further research.

Here we provide a sketch of how our account generalizes to the SNP-based
genetic correlation between two traits. If we use v ∈ Rp to denote the vector
of partial regression coefficients in the regression of the second phenotype on
standardized genotypes, then we can write(

p∑
k=1

zikuk

)(
p∑
k=1

zjkvk

)
=

p∑
k=1

zikzjkukvk +
∑
k 6=`

zikukzjkv`

= AijσA,SNP(trait 1, trait 2) + Sij ,

where the definition of Sij is more or less retained from the univariate case.
One complication is that the part of Sij corresponding to LD among distinct
causal loci (Term 3) is defined to be part of the genetic correlation by some
authors (Lynch and Walsh, 1998). If we ignore this complication and assume
LE among causal loci, then the SNP-based genetic covariance will be estimated
without bias by GREML if the markers that are nonzeros with respect to both
traits are an effectively random sample of all genotyped markers. Furthermore,
the GREML-estimated genetic correlation (the ratio of genetic covariance to
the square roots of the genetic variances) may be close to unbiased as an
estimate of the true genetic correlation under fairly general conditions, since
biases attributable to missing causal variants and unrepresentative tagging of
nonzeros may cancel from both the numerator and denominator (Trzaskowski
et al, 2013). These issues may also be a worthwhile focus of future research.

Our explication shows that GREML estimates of SNP-based heritability
will be reasonably accurate under much wider circumstances than those under
this approach has been previously derived. Such estimates are insensitive to
the number, MAF spectrum, and coefficient magnitudes per se of the markers
with nonzero regression coefficients. The sensitivity to the LD properties of the
genomic regions containing the nonzeros, however, does raise some concern.
This is the crucial question: how likely is it that the nonzeros of a given
phenotype are effectively like a large and random sample of all genotyped (or
imputed) markers with respect to tagging?

So far we have two sources of guidance. First, it has been empirically found
that the frequency spectrum of nonzeros tends to be skewed toward low MAF
(Park et al, 2011). Such a skew is also plausible for evolutionary reasons. A
trait-affecting mutation is likely to face a slight selection pressure that disfavors
its frequency increase (Eyre-Walker, 2010), and because a causal variant can
only be in strong LD with a marker if the two sites have similar MAFs (Wray
et al, 2011), the spectrum of markers tagging causal variants should also be
skewed toward low MAF. Since low-MAF variants tend to be less strongly
tagged on the whole, we might then expect h2GREML < h2SNP to be typical.
On the other hand, because the correlation between MAF and tagging is less
than perfect (∼ .30 in our larger dataset), it might be reasonable to expect
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that such a bias will usually be mild if the number of nonzeros is large. In the
simulations of Speed et al (2012, 2013) and Lee et al (2013), even a strong
correlation between MAF and coefficient magnitude introduced biases of only
about .05, and perhaps underestimates of h2SNP to this extent have no practical
bearing on the discussion of missing heritability. Second, Speed et al (2012)
have implemented an ingenious method in the LDAK package that weights
markers by the extent to which they are tagged by neighbors when calculating
realized relatedness. It appears from their simulations that using the resulting
LD-adjusted A matrix to estimate h2SNP is usually successful in removing most
of any bias affecting an estimate based on the unadjusted A matrix (Eq. 5).
When they applied the LDAK method to several real phenotypes, they found
a tendency for the LDAK-corrected estimates to be larger than the standard
GREML estimates (supporting the notion that causal loci tend to reside at
low MAF), but these increases were modest and perhaps of little practical
relevance to the issue of missing heritability.

In future studies we recommend employing both the LDAK and standard
GREML methods and considering their results together. Although LDAK can
markedly attenuate substantial biases affecting standard GREML estimates,
in some cases LDAK introduces a small bias that is otherwise absent (Speed
et al, 2012, 2013; Lee et al, 2013). Perhaps surprisingly, given the mathematical
nonequivalence of what we have called h2SNP and h2GREML, the GREML method
is quite robust. It should remain a valuable tool in quantitative genetics and
gene-trait mapping research for some time to come.

Web Resources

Genome-wide Complex Trait Analysis (GCTA), http://www.complextraitgenomics.
com/software/gcta

Linkage-Disequilibrium Adjusted Kinships (LDAK), http://dougspeed.com/
ldak

PLINK, http://pngu.mgh.harvard.edu/~purcell/plink, https://www.cog-genomics.
org/plink2
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