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Abstract

The living state is cognitive at every scale and level of or-
ganization. Since it is possible to associate a broad class
of cognitive processes with ‘dual’ information sources, many
pathologies can be addressed using statistical models based
on the Shannon Coding, the Shannon-McMillan Source Cod-
ing, the Rate Distortion, and the Data Rate Theorems, as
these impose powerful necessary condition constraints on in-
formation generation and exchange, and on system control.
Deterministic-but-for-error biological codes do not directly
invoke cognition, although they may be essential subcompo-
nents within larger cognitive processes. A formal argument,
however, places such codes within a similar framework, with
metabolic free energy serving as a ‘control signal’ stabilizing
biochemical code-and-translator dynamics in the presence of
noise. Demand beyond available energy supply then expresses
itself in punctuated destabilization of the coding channel, af-
fecting a spectrum of essential biological functions. Aging,
normal or prematurely driven by psychosocial or environmen-
tal stressors, must eventually interfere with the routine oper-
ation of such mechanisms, triggering chronic diseases associ-
ated with senescence. Amyloid fibril formation, intrinsically
disordered protein logic gates, and cell surface glycan/lectin
‘kelp bed’ logic gates are reviewed from this perspective. The
results, however, generalize beyond coding machineries hav-
ing easily recognizable symmetry modes, and strip a full layer
of mathematical complication from the study of phase tran-
sitions in nonequilibrium biological systems.

Key Words: amyloid; chronic disease; gene expression;
glycan code; intrinsically disordered proteins; protein folding

1 Introduction

The understanding of aging has recently become closely inter-
twined with the understanding of cellular mitochondrial func-
tion (D.C. Wallace 2005, 2010). To paraphrase Lee and Wei
(2012), aging is a degenerative process that is associated with
progressive accumulation of deleterious changes with time, re-
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duction of physiological function and increase in the chance
of disease and death. Studies reveal a wide spectrum of al-
terations in mitochondria and mitochondrial DNA with ag-
ing. Mitochondria are the main cellular energy sources that
generate the cellular energy source ATP through respiration
and oxidative phosphorylation in the inner membrane of mito-
chondria. The respiratory chain of that system is also the pri-
mary intracellular source of reactive oxygen species and free
radicals under normal physiological and pathological condi-
tions. In addition, mitochondria play a central role in a great
variety of cellular processes.

Numerous biochemical studies on isolated mitochondria re-
vealed that the electron transport activities of respiratory en-
zyme complexes gradually decline with age in the brain, skele-
tal muscle, liver and skin fibroblasts of normal human sub-
jects. Numerous molecular studies demonstrated that somatic
mutations in mitochondrial DNA accumulate with age in a va-
riety of tissues in humans. These age-associated changes in
mitochondria are well correlated with the deteriorative pro-
cesses of tissues in aging.

However, although abundant experimental data have been
gathered in the past decade to support the concept that de-
cline in mitochondrial energy metabolism, reactive oxygen
species overproduction and accumulation of mitochondrial
DNA mutations in tissue cells are important contributors to
human aging, the detailed mechanisms by which these bio-
chemical events cause aging have remained to be established.

Wallace (2014d) applies necessary conditions statistical
models from communications and control theory to examine
the central role of metabolic free energy (MFE) in biorgula-
tion, using a very general Rate Distortion Theorem develop-
ment. Here, we delve into details, studying the operation and
regulation of a spectrum of biological codes at and across the
cellular level of organization. In essence, failure to provide
adequate levels of MFE can trigger collapse of critical code-
and-translation mechanisms, either to dysfunctional simpli-
fied ‘ground state’ modes having collapsed symmetry states,
or to highly pathological unstable dynamics.

As Ge and Quan (2011) put it, one of the challenging ques-
tions in biological physics is whether nonequilibrium phase
transitions play an important role in living systems. We will
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show this to be very broadly true, with the asymptotic limit
theorems of information and control theories stripping away a
layer of mathematical complication for the systems to which
they apply.

2 Cognition and codes

It has long been maintained that the living state is cognitive
at every scale and level of organization (e.g., Maturana and
Varela 1980; Atlan and Cohen 1998; Wallace 2012c, 2014a).
Since it is possible to associate a broad class of cognitive pro-
cesses with ‘dual’ information sources (e.g., Wallace 2005,
2007, 2012c, 2014a), many phenomena – most particularly,
complex patterns of behavioral pathology – can be addressed
using statistical models based on the Shannon Coding, the
Shannon-McMillan Source Coding, the Rate Distortion, and
the Data Rate Theorems (S/SM/RD/DR), as these provide
powerful necessary conditions on all information generation
and exchange, and on the role of information in system con-
trol (e.g., Wallace 2012c, 2014b, c).

Strictly speaking, biological codes, although they may be
studied using information theoretic methods, as Tlusty (2007,
2008) does for the genetic code, do not actively invoke cogni-
tion, although, as with cognitive gene expression (e.g., Wal-
lace and Wallace 2010), they may become essential subcom-
ponents within larger cognitive processes. Nonetheless, as we
will show here, something similar to the Data Rate Theorem
that connects information and control theories still applies to
biological coding processes, but based on the flow of metabolic
free energy rather than on the flow of control information, as
for the DRT. See the Mathematical Appendix for an explicit
statement of that theorem..

Tlusty’s (2007) information theoretic topological analysis
of the genetic code relies on minimizing certain character-
istic error measures. Wallace (2012a) examined the role of
metabolic free energy in the evolution of such codes, using
similar methods. Here we first generalize the argument, based
on a Black-Scholes ‘cost’ analysis. We then explore a model of
punctuated code failure under free energy constraint that is
roughly analogous to Data Rate Theorem (DRT) limitations
in control theory (e.g., Nair et al. 2007). This will suggest a
deeper understanding of the onset of the chronic diseases of
aging, and of those driven by psychosocial or environmental
stresses that cause premature aging.

The essential point of the DRT is the unification of con-
trol and information theories, finding that certain kinds of
unstable systems cannot be stabilized if the rate of control
information is below a critical limit, defined as the ‘topologi-
cal information’ generated by the unstable system. Metabolic
free energy plays a surprisingly similar role in stabilizing
deterministic-but-for-error biological codes.

Although we will focus primarily on codes having a rel-
atively easily characterized symmetry structure, the general
argument should apply as well to far less symmetric codes, in
the sense of Tomkins (1975).

Tlusty’s (2007) central idea is that

To discuss the topology of errors we portray
the codon space as a graph whose verticies are the
codons... Two codons... are linked by an edge if they
are likely to be confused by misreading... We assume
that two codons are most likely to be confused if all
their letters except for one agree and therefore draw
an edge between them. The resulting graph is nat-
ural for considering the impact of translation errors
on mutations because such errors almost always in-
volve a single letter difference, that is, a movement
along an edge of the graph to a neighboring vertex.

The topology of a graph is characterized by its
genus γ, the minimal number of holes required for a
surface to embed the graph such that no two edges
cross. The more connected that a graph is the more
holes are required for its minimal embedding... [T]he
highly interconnected 64-codon graph is embedded
in a holey, γ = 41 surface. The genus is somewhat
reduced to γ = 25 if we consider only 48 effective
codons...

The maximum [of an information-theoretic func-
tional] determines a single contiguous domain where
a certain amino acid is encoded... Thus every mode
corresponds to an amino acid and the number of
modes is the number of amino acids. This compact
organization is advantageous because misreading of
one codon as another codon within the same domain
has no deleterious impact. For example, if the code
has two amino acids, it is evident that the error-load
of an arrangement where there are two large contigu-
ous regions, each coding for a different amino acid,
is much smaller than a ‘checkerboard’ arrangement
of the amino acids.

This is analogous to the well-known topological coloring
problem. However, in the coding problem one desires maximal
similarity in the colors of neighboring ‘countries’, while in
the coloring problem one must color neighboring countries by
different colors. After some development (Tlusty 2008), the
number of possible amino acids in this scheme is determined
by Heawood’s formula (Ringel and Young 1968). Explicitly,

chr(γ) = Int[
1

2
(7 +

√
1 + 48γ)] (1)

where chr(γ) is the number of ‘colored’ regions, Int is the
integer value of the enclosed expression, and γ is the genus
of the surface, roughly speaking, the number of ‘holes’. In
general, γ = 1− (1/2)(V −E+F ), where V is the number of
code network vertices, E the number of network edges, and
F the number of enclosed faces.

Tlusty (2007) models the emergence of the genetic code as
a transition in a noisy information channel, using an approach
based on the Rate Distortion Theorem, with the optimal code
is described by the minimum of a ‘free energy’-like functional,
allowing description of the code’s emergence as a transition
akin to a phase transition in statistical physics. The basis
for this is the observation that a supercritical phase transi-
tion is known to take place in noisy information channels.
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Figure 1: Adapted from fig. 1.8 of Shmulevich and Dougherty
(2007). DNA meets RNA in modern protein synthesis. The
anticodon at one end of a tRNA molecule binds to its comple-
mentary codon in mRNA derived directly from the genome.
The average distortion D is a measure of the difference be-
tween what is supposed to be coded by a genome sequence
and what is actually expressed as an amino acid sequence.
Sequence-to-sequence translation is not highly parallel, in this
model, and the process can be well characterized by the rate
distortion function R(D) representing the minimum channel
capacity needed to produce average distortion less than D.
Similar, but more complex, biological matching occurs with
intrinsically disordered protein reactions, and at the cell sur-
face, with glycan/lectin interaction. It is, however, possible to
imagine translation-at-a-distance in which molecular species
do not interact directly, but via intermediate chemical signals,
in the sense of Tomkins (1975).

The noisy channel is controlled by a temperature-like param-
eter that determines the balance between the information rate
and the distortion in the same way that physical temperature
controls the balance between energy and entropy in a physi-
cal system. Following Tlusty’s equation (2), the free energy
functional has the form D − TS where D is the average er-
ror load’, equivalent to average distortion in a rate distortion
problem, S is the ‘entropy due to random drift’, and T mea-
sures the strength of random drift relative to the selection
force that pushes towards fitness maximization. This is es-
sentially a Morse function (Pettini 2007; Matsumoto 2002).
According to Tlusty’s analysis, at high T the channel is to-
tally random and it conveys zero information. At a certain
critical temperature Tc the information rate starts to increase
continuously.

The average distortion D measures the average difference
between the genetic ‘message’ sent by a complicated codon
‘statement’ and what is actually expressed by the genetic (and
epigenetic) translation machinery in terms of an amino acid
sequence. See figure 1.

Here we envision a multi-step process in which the rate
distortion function R(D) – described more fully in the next
section – between codon sequence and amino acid sequence

plays the central role. In the first step, R(D), a nominally
extensive quantity, but one physically limited by the chan-
nel construction of figure 1, serves as a temperature-analog
in a one-parameter distribution of information source uncer-
tainties representing different coding strategies, from which
a free energy functional is constructed. While R(D) is not
‘temperature-like’ – e.g., under a given circumstance it can be
increased as much as one likes by establishing parallel chan-
nels – the physical structure of translation constrains that
approach, ensuring the ‘locally intensive’ nature of the rate
distortion function. Pettini’s (2007) ‘topological hypothesis’
implies that topological shifts in code structure accompany
phase transitions in a free energy functional constructed from
the distribution of information source uncertainties arising
from possible code topologies.

The second stage of the argument revolves around the rela-
tion between intensive indices of metabolic free energy avail-
ability – e.g., underlying energy per molecular transaction,
and/or efficiency of its use – and R(D), leading to a second
free energy-like functional that undergoes another set of punc-
tuated phase changes.

While the genetic code has received much attention, Hecht
et al. (2004) note that protein α-helices have the ‘code’
101100100110... where 1 indicates a polar and 0 a non-
polar amino acid. Protein β-sheets have the simpler coding
10101010... Wallace (2010), in fact, extends Tlusty’s topolog-
ical analysis via Heawood’s graph genus formula to the more
complicated protein folding classifications of Chou and Mag-
giora (1998). Wallace (2012b) argues, in addition, that a simi-
lar argument must apply to the basic monosaccharides associ-
ated with glycan ‘kelp frond’ production at the surface of the
cell. Wallace (2012d), as we shall show, provides machinery
for including intrinsically disordered protein and glycan/lectin
cell surface reactions within the overall perspective. Again,
here we shall be interested in calculating metabolic costs nec-
essarily associated with limiting error across such biological
codes, and will model both punctuated code evolution and
a form of instability triggered by metabolic energy restric-
tion, or by the growth of energy demand beyond available
resources.

3 Some information theory

The existence of a code implies the existence of an informa-
tion source using that code, and the behavior of such sources
is constrained by the asymptotic limit theorems of informa-
tion theory. That is, the interaction between biological sub-
systems associated with a code can be formally restated in
communication theory terms. Essentially, observation of a
code directly implies existence of an information source using
it.

Think of the machinery listing a sequence of codons as com-
municating with machinery that produces amino acids, and
compare what is actually produced with what should have
been produced, perhaps by a simple survival of the fittest
selection mechanism, perhaps via some more sophisticated
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error-correcting systems.
Suppose a sequence of signals is generated by a biologi-

cal information source Y having output yn = y1, y2, ... –
codons. This is ‘digitized’ in terms of the observed behav-
ior of the system with which it communicates, for example
a sequence of ‘observed behaviors’ bn = b1, b2, ... – amino
acids. Assume each bn is then deterministically retranslated
back into a reproduction of the original biological signal,
bn → ŷn = ŷ1, ŷ2, ....

Define a distortion measure d(y, ŷ) which compares the
original to the retranslated path. Many distortion measures
are possible. The Hamming distortion is defined simply as

d(y, ŷ) = 1, y 6= ŷ

d(y, ŷ) = 0, y = ŷ.

For continuous variates the squared error distortion is just
d(y, ŷ) = (y − ŷ)2.

There are many possible distortion measures. The dis-
tortion between paths yn and ŷn is defined as d(yn, ŷn) ≡
1
n

∑n
j=1 d(yj , ŷj).

A remarkable characteristic of the Rate Distortion Theorem
is that the basic result is independent of the exact distortion
measure chosen (Cover and Thomas 2006).

Suppose that with each path yn and bn-path retransla-
tion into the y-language, denoted ŷn, there are associated
individual, joint, and conditional probability distributions
p(yn), p(ŷn), p(yn, ŷn), p(yn|ŷn).

The average distortion is defined as

D ≡
∑
yn

p(yn)d(yn, ŷn) (2)

This is essentially the ‘error load’ of Tlusty’s (2007) equa-
tion (1).

It is possible to define the information transmitted from the
Y to the Ŷ process using the Shannon source uncertainty of
the strings:

I(Y, Ŷ ) ≡ H(Y )−H(Y |Ŷ ) = H(Y ) +H(Ŷ )−H(Y, Ŷ ),

where H(..., ...) is the standard joint, and H(...|...) the condi-
tional, Shannon uncertainties (Cover and Thomas 2006).

If there is no uncertainty in Y given the retranslation Ŷ ,
then no information is lost, and the systems are in perfect
synchrony.

In general, of course, this will not be true.
The rate distortion function R(D) for a source Y with a

distortion measure d(y, ŷ) is defined as

R(D) = min
p(y,ŷ);

∑
(y,ŷ)

p(y)p(y|ŷ)d(y,ŷ)≤D
I(Y, Ŷ ) (3)

The minimization is over all conditional distributions p(y|ŷ)
for which the joint distribution p(y, ŷ) = p(y)p(y|ŷ) satisfies
the average distortion constraint (i.e., average distortion ≤
D).

The Rate Distortion Theorem states that R(D) is the min-
imum necessary rate of information transmission which en-
sures the communication between the biological vesicles does
not exceed average distortion D. Thus R(D) defines a mini-
mum necessary channel capacity. Cover and Thomas (2006)
or Dembo and Zeitouni (1998) provide details. The rate dis-
tortion function has been calculated for a number of systems.

Cover and Thomas (2006, Lemma 13.4.1) show that R(D)
is necessarily a decreasing convex function of D for any rea-
sonable definition of distortion.

That is, R(D) is always a reverse J-shaped curve. This will
prove crucial for the overall argument. Indeed, convexity is
an exceedingly powerful mathematical condition, and permits
deep inference (e.g., Rockafellar 1970). Ellis (1985, Ch. VI)
applies convexity theory to conventional statistical mechanics.

For a Gaussian channel having noise with zero mean and
variance σ2, using the squared distortion measure,

R(D) = 1/2 log[σ2/D], 0 ≤ D ≤ σ2

R(D) = 0, D > σ2 (4)

Recall the relation between information source uncertainty
and channel capacity (Cover and Thomas 2006):

H[X] ≤ C (5)

where H is the uncertainty of the source X and C the channel
capacity. Remember also that

C ≡ max
P (X)

I(X|Y ) (6)

where P (X) is chosen so as to maximize the rate of informa-
tion transmission along a channel Y .

Note that for a parallel set of noninteracting channels, the
overall channel capacity is the sum of the individual capac-
ities, providing a ‘consensus average’ that does not apply in
the case of modern molecular coding.

Finally, recall the analogous definition of the rate distor-
tion function above, again an extremum over a probability
distribution.

Recall also the homology between information source un-
certainty and free energy density. More formally, if N(n) is
the number of high probability ‘meaningful’ – that is, gram-
matical and syntactical – sequences of length n emitted by
an information source X, then, according to the Shannon-
McMillan Theorem, the zero-error limit of the Rate Distortion
Theorem,

H[X] = lim
n→∞

log[N(n)]

n
= lim
n→∞

H(Xn|X0, ..., Xn−1)

= lim
n→∞

H(X0, ..., Xn)

n+ 1
(7)

whereH(...|...) is the conditional and H(..., ...) is the joint
Shannon uncertainty.

In the limit of large n, H[X] becomes homologous to the
free energy density of a physical system at the thermodynamic
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limit of infinite volume. More explicitly, the free energy den-
sity of a physical system having volume V and partition func-
tion Z(β) derived from the system’s Hamiltonian – the energy
function – at inverse temperature β is (e.g., Pettini, 2007)

F [K] = lim
V→∞

− 1

β

log[Z(β, V )]

V
≡ lim
V→∞

log[Ẑ(β, V )]

V

with Ẑ = Z−1/β . The latter expression is formally similar to
the first part of equation (7), a matter having deep implica-
tions: Feynman (2000) describes in great detail how informa-
tion and free energy have an inherent duality. Feynman, in
fact, defines information precisely as the free energy needed
to erase a message. The argument is surprisingly direct, and
for very simple systems it is easy to design a small (ideal-
ized) machine that turns the information within a message
directly into usable work – free energy. Information is a form
of free energy and the construction and transmission of infor-
mation within living things consumes metabolic free energy,
with nearly inevitable losses via the second law of thermody-
namics. If there are limits on available metabolic free energy
there will necessarily be limits on the ability of living things
to process information.

From one perspective, the Shannon-McMillan Theorem can
be said to define a nonequilibrium steady state that can un-
dergo nonequilibrium phase transitions in the sense of Ge and
Qian (2011). These are analogous to, but different from those
of physical systems. A similar development produces an ana-
log to Onsager-like nonequilibrium theomodynamic relations.

4 Groupoid symmetry shifting

Here we follow, in part, the argument of Wallace (2012a).
The direct model finds codons generated by a black box infor-
mation source whose source uncertainty is constrained by the
richness of the coding scheme of Tlusty’s analysis. More com-
plex codes will be associated with higher information source
uncertainties, i.e., the ability to ‘say’ more in less time, us-
ing a more complicated coding scheme. Suppose there are n
possible coding schemes. The simplest approach is to assume
that, for a given rate distortion function and distortion mea-
sure, R(D), under the constraints of figure 1, serves much as
an external temperature bath for the possible distribution of
information sources, the set {H1, ...,Hn}. That is, low distor-
tion, represented by a high rate of transmission of informa-
tion between codon machine and amino acid machine, permits
more complicated coding schemes according to a classic Gibbs
relation

Pr[Hj ] =
exp[−Hj/λR(D)]∑n
i=1 exp[−Hi/λR(D)]

(8)

where Pr[Hj ] is the probability of coding scheme j having
information source uncertainty Hj .

We assume that Pr[Hj ] is a one parameter distribution in
the ‘extensive’ quantity R(D) (monotonic convex, however, in
D) rather than a simple ‘intensive’ temperature-analog. This
is permitted under the ‘structurally intensive’ circumstance
of figure 1.

The free energy-like Morse Function FR associated with
this probability is defined as

exp[−FR/λR(D)] =
n∑
i=1

exp[−Hi/λR(D)] (9)

Applying Landau’s spontaneous symmetry lifting argument
to FR (Pettini 2007) generates topological transitions in codon
graph structure as the ‘temperature’ R(D) increases, i.e., as
the average distortion D declines, via the inherent convexity
of the Rate Distortion Function. That is, as the channel ca-
pacity connecting codon machines with amino acid machines
increases, more complex coding schemes become possible:

1. The genus of the embedding surface for a topological
code can be expressed in terms of the Euler characteristic of
the manifold, γ = 1− 1

2χ.
2. χ can be expressed in terms of the cohomology structure

of the manifold (Lee 2000, Theorem 13.38).
3. By the Poincare Duality Theorem, the homology groups

of a manifold are related to the cohomology groups in the
complementary dimension (Bredon 1993, p. 348).

4. The (co)homology groupoid can be taken as the disjoint
union of the (co)homology groups of the embedding manifold.

One can then invert Landau’s Spontaneous Symmetry
Breaking arguments and apply them to the (co)homology
groupoid in terms of the rising ‘temperature’ R(D), to obtain
a punctuated shift to increasingly complex genetic codes with
increasing channel capacity. See the Mathematical Appendix
for a summary of standard material on groupoids. Brown
(1987) and Weinstein (1996) provide more detail.

What, then, drives R(D), as this, in turn, drives punctu-
ated changes in the genetic code? Here we will significantly
diverge from the arguments in Wallace (2012a), invoking a
Black-Scholes formalism for ‘cost’ in terms of demand for
metabolic free energy. Later, we will use a similar argument
to examine failures in the dynamics of evolutionarily fixed
codes under free energy restraints.

5 Metabolic energy costs

Suppose that metabolic free energy is available at a rate H
determined by environmental structure and previous evolu-
tionary trajectory, which may be prior to the emergence of ef-
ficient photosynthesis, predation, mutualism, parasitism, and
the like. We iterate the treatment and consider H as the
temperature analog in a Landau model on the Rate Distor-
tion Function itself. That is, let R(D) be the Rate Distortion
Function describing the relation between system intent and
system impact. This is essentially a channel capacity, and in-
formation transmission rate between the coding machine and
the structure or structures that biological code is attempting
to affect.

The distortion represents the dynamics of the disjunction
between the intent of a code and the actual productions of the
system. Let Rt be the RDF of the channel connecting them
at time t. The relation can, under conditions of both white
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noise and volatility, be expressed as

dRt = f(t, Rt)dt+ bRtdWt (10)

Let H(Rt, t) represent the rate of incoming metabolic free
energy that is needed to achieve Rt at time t, and expand
using the Ito chain rule:

dHt = [∂H/∂t+ f(Rt, t)∂H/∂R+
1

2
b2R2

t∂
2H/∂R2]dt

+[bRt∂H/∂R]dWt (11)

Define L as the Legendre transform of the free energy rate
H, a kind of entropy, having the form

L = −H+R∂H/∂R (12)

Using the heuristic of replacing dX with ∆X in these ex-
pressions, and applying the results of equation (11), produces:

∆L = (−∂H/∂t− 1

2
b2R2∂2H/∂R2)∆t (13)

Analogous to the Black-Scholes calculation, the terms in f
and dWt cancel out, so that the effects of noise are subsumed
in the Ito correction involving b. Clearly, however, this also
invokes powerful regularity assumptions that may often be
violated. Matters then revolve about model robustness in the
face of such violation.
L, as the Legendre transform of the free energy rate mea-

sure H, is a kind of entropy that can be expected to rapidly
reach an extremum at nonequilibrium steady state (nss).
There, ∆L/∆t = ∂H/∂t = 0, so that

1

2
b2R2∂2H/∂R2 = 0 (14)

having the solution

Hnss = κ1R+ κ2 (15)

This ‘simple’ result, we will show, permits a Landau-analog
phase transition analysis in which the metabolic free energy
available from the embedding ecosystem serves to raise or
lower the possible richness of a system’s possible biological
codes. As Wallace (2012a) argues, if H is relatively large then
there are many possible complex codes. If, however, sufficient
metabolic free energy is not available, then the system can
only entertain a few simplified codings.

While the aerobic transition apparently enabled endosym-
biotic processes producing eukaryotic organisms, it may
also have enabled evolution of the extraordinarily rich gly-
can/lectin cell surface codings essential to all multicellular
organisms. Wallace (2012b), however, infers a paradox: that
full coding, having 5,000-7,500 ‘glycan determinant’ amino
acid analogs made up of the appropriate basic set of monosac-
charides, would require a coding manifold with topological
genus in the millions, suggesting the need for an intermediate
layer of cognitive mechanism at the cell surface.

6 Code/translator stability

Van den Broeck et al. (1994, 1997), Horsthemeke and Lefever
(2006), and others, have noted that analogous results relating
phase transition to driving parameters in physical systems can
be obtained by using the rich stability criteria of stochastic
differential equations.

The motivation for this approach is the observation that
a Gaussian channel with noise variance σ2 and zero mean
has a Rate Distortion Function R(D) = 1/2 log[σ2/D] using
the squared distortion measure for the average distortion D.
Defining a ‘Rate Distortion entropy’ as the Legendre trans-
form

SR = R(D)−DdR(D)/dD = 1/2 log[σ2/D] + 1/2 (16)

the simplest possible nonequilibrium Onsager equation (de
Groot and Mazur 1984) is just

dD/dt = −µdSR/dD = µ/2D (17)

where t is the time and µ is a diffusion coefficient. By in-
spection, D(t) =

√
µt, the classic solution to the diffusion

equation. Such ‘correspondence reduction’ serves as a base to
argue upward in both scale and complexity.

But deterministic coding does not involve diffusive drift
of average distortion. Let H again be the rate of available
metabolic free energy. Then a plausible model, in the presence
of an internal system noise β2 in addition to the environmen-
tal channel noise defined by σ2, is the stochastic differential
equation

dDt = (
µ

2Dt
−M(H))dt+

β2

2
DtdWt (18)

where dWt represents unstructured white noise and M(H) ≥
0 is monotonically increasing.

This has the nonequilibrium steady state expectation

Dnss =
µ

2M(H)
(19)

Using the Ito chain rule on equation (18) (Protter 1990;
Khasminskii 2012), one can calculate the variance in the dis-
tortion as E(D2

t )− (E(Dt))
2.

Letting Yt = D2
t and applying the Ito relation,

dYt = [2
√
Yt(

µ

2
√
Yt
−M(H)) +

β4

4
Yt]dt+ β2YtdWt (20)

where (β4/4)Yt is the Ito correction to the time term of the
SDE.

A little algebra shows that no real number solution for the
expectation of Yt = D2

t can exist unless the discriminant of
the resulting quadratic equation is ≥ 0, producing a minimum
necessary rate of available metabolic free energy for stability
defined by

M(H) ≥ β2

2

√
µ (21)
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Values of M(H) below this limit will trigger a phase transi-
tion into a less integrated – or at least behaviorally different –
system in a highly punctuated manner, much as in the Landau
example.

From equations (15) and (19),

M(H) =
µ

2σ2
exp[2(H− κ2)/κ1] ≥ β2

2

√
µ (22)

Solving for H gives the necessary condition

H ≥ κ1
2

log[
β2σ2

√
µ

] + κ2 (23)

for there to be a real second moment in D, under the sub-
sidiary condition that H ≥ 0.

Given the context of this analysis, failure to provide ade-
quate rates of metabolic free energy H would represent the
onset of a regulatory stability catastrophe. The corollary, of
course, is that environmental influences increasing β, σ, the
κi, or reducing µ, would be expected to overwhelm internal
controls, triggering similar instability.

Variations of the model are possible, for example, apply-
ing the formalism to the ‘natural’ channel, having the rate
distortion function R(D) = σ2/D. The calculation is direct.

Equation (23) is a close analog to the Data Rate Theorem
(Nair et al. 2007, Theorem 1). Again, see the Mathematical
Appendix for a statement of that theorem. The implication is
that there is a critical rate of available metabolic free energy
below which there does not exist any quantization, coding,
or control scheme, able to stabilize an (inherently) unstable
biological system.

Normal, or stress-induced, aging would, at some point, be
expected to affect the magnitudes of the parameters on the
right hand side of the expression in equation (23), while si-
multaneously decreasing the ability to provide metabolic free
energy – decreasing H. This would result in onset of serious
dysfunctions across a range of scales and levels of organiza-
tion, from genetic to protein folding to cell surface signaling,
and beyond (Tomkins 1975).

7 Extending the model

It is possible to reinterpret the results of equation (23) from
the perspective of Section 3, producing a more general picture
of code failure under metabolic energy limitations. Suppose
we agree that equation (15) is only a first approximation, and
that we can take the Rate Distortion Function R as a mono-
tonic increasing function of available metabolic free energy
rate H that we begin to interpret as an effective system ‘tem-
perature’. Suppose also there are very many more possible
‘modes’ of code behavior, in addition to the simple stabil-
ity/instability break point implied by equation (23). That is,
we now expect complex ‘phase transitions’ in code function
with either changing demand for, or ability to provide, rates
of metabolic free energy to the coding/translating machine(s).

Given a large enough set of possible modes of
code/translation behavior, we write another pseudoprobabil-
ity like equation (8),

Pr[Hj ] =
exp[−Hj/ωH]∑n
i=1 exp[−Hi/ωH)]

(24)

where Hj is the source uncertainty to be associated with each
functional mode j.

This leads to another ‘free energy’ Morse Function, F , de-
fined now in terms of the rate of available metabolic free en-
ergy

exp[−F/ωH] =
n∑
i=1

exp[−Hi/ωH] (25)

Certain details of information phase transitions for this sys-
tem can be calculated using ‘biological’ renormalization meth-
ods (Wallace, 2005, Section 4.2) analogous to, but much dif-
ferent from, those used in the determination of physical phase
transition universality classes (Wilson, 1971).

Given F as a free energy analog, what are the transitions
between functional realms? Suppose, in classic manner, it is
possible to define a characteristic ‘length’, say l, on the sys-
tem. It is then possible to define renormalization symmetries
in terms of the ‘clumping’ transformation, so that, for clumps
of size L, in an external ‘field’ of strength J (that can be set
to 0 in the limit), one can write, in the usual manner (e.g.,
Wilson 1971)

F [Q(L), J(L)] = f(L)F [Q(1), J(1)]

χ(Q(L), J(L)) =
χ(Q(1), J(1))

L
(26)

where χ is a characteristic correlation length and Q is an
‘inverse temperature measure’, i.e., ∝ 1/ωH.

As described in Wallace (2005), very many ‘biological’
renormalizations, f(L), are possible that lead to a number
of quite different universality classes for phase transition. In-
deed, a ‘universality class tuning’ can be used as a tool for
large-scale regulation of the system. While Wilson (1971) nec-
essarily uses f(L) ∝ L3 for simple physical systems, follow-
ing Wallace (2005), it is possible to argue that, since F is so
closely related to information measures, it is likely to ‘top out’
at different rates with increasing system size, so other forms
of f(L) must be explored. Indeed, standard renormalization
calculations for f(L) ∝ Lδ,m log(L)+1, and exp[m(L−1)/L]
all carry through.

This line of argument leads to complex forms of highly
punctuated phase transition in code/translator function with
changes in demand for, or supply of, the metabolic free energy
needed to run the machine.

8 Amyloid fibril formation

Another possible inference from the considerations of Sections
3 and 6 is that, under MFE inadequacy, grossly simplified ‘de-
facto’ codes may sometimes begin to operate in place of the
full code. The most direct example, perhaps, is the collapse
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of the ‘protein folding code’ from the relatively complicated
symmetries described in Wallace (2010) to β-sheet amyloid
plaques and fibrils in many protein folding disorders.

More specifically, globular proteins, following the observa-
tions of Chou and Maggiora (1998), have four major, and per-
haps as many as another six minor, classifications. This sug-
gests a Tlusty code error network that is, essentially, a large
‘sphere’, having one minor, and possibly as many as three
more subminor attachment handles, according to Heawood’s
formula. These basic structures build a highly complicated
‘protein world’ that cannot be simply characterized.

The prebiotic ‘amyloid world’ of Maury (2009), in contrast,
is built on a single β-sheet structure, and shows, by contrast
to the protein world, in its full extent, a simple eight-fold
steric zipper (Sawaya et al. 2007).

As Goldschmidt et al. (2010) put the matter,

We found that [protein segments with high fibril-
lation propensity] tend to be buried or twisted into
unfavorable conformations for forming beta sheets...
For some proteins a delicate balance between pro-
tein folding and misfolding exists that can be tipped
by changes in environment, destabilizing mutations,
or even protein concentration...

In addition to the self-chaperoning effects de-
scribed above, proteins are also protected from fib-
rillation during the process of folding by molecular
chaperones...

Our genome-wide analysis revealed that self-
complementary segments are found in almost all pro-
teins, yet not all proteins are amyloids. The implica-
tion is that chaperoning effects have evolved to con-
strain self-complementary segments from interaction
with each other.

Clearly, effective chaperoning requires considerable
metabolic energy, and failure to provide levels adequate for
both maintaining and operating such biochemical translation
machinery would trigger a canonical ‘code collapse’, most
likely in a highly punctuated manner with available metabolic
free energy.

Indeed, Budrikis et al. (2014) use a similar nonequilibrium
phase transition model for protein accumulation in the endo-
plasmic reticulum to interpret experimental data on amyloyd-
β clearance from the central nervous system.

9 Intrinsically disordered proteins

The relatively direct translation machinery of figure 1 is much
more complicated in the case of intrinsically disordered pro-
teins (IDP), or of more-or-less structured proteins having in-
trinsically disordered regions (IDR). Here, we adapt the ap-
proach of Wallace (2012d) to metabolic energy considerations.

The essential problem is that many proteins have no unique
tertiary structure in isolation – or have regions without such
structure – although they have distinct physiological function
or functions in partnership with other chemical species. They

Figure 2: Adapted from Tompa et al. (2005). The partner,
represented by the tilted square, can bind in two ways with
the incoming IDP. The shaded oval represents activated, and
the rectangle, inhibited species. The ‘choice’ between them
is, in this model, to be made by an ‘information catalysis’
in which an incoming signal – itself requiring a minimum of
metabolic free energy – shifts the lowest energy state between
the two otherwise thermodynamically competitive conforma-
tions. This is one example of a vast spectrum of similar chem-
ical ‘logic gates’.

lack a hydrophobic core, but lock with other molecules to
engage in defined biological roles. That is, there is always
some complex version of figure 1, implying the existence of
an underlying code, and hence of some information channel.

Tompa et al. (2005) have observed that intrinsically dis-
ordered proteins provide unprecedented examples of protein
signal moonlighting – multiple, often unrelated, functions of
the same molecule – by eliciting both inhibiting and activat-
ing action on different partners, or even on the same partner.
Figure 2, adapted from their paper, provides one schematic.
The disordered protein can bind to more than one site on
the partner molecule represented by a tilted square on the
left of the figure. Binding to one site, as indicated by the
shaded oval, creates an activated conformation, while binding
to another site, the rectangle, results in an inhibited complex.
Tompa et al. (2005) indicate, however, several different such
possible mechanisms that are not mutually exclusive.

We are interested in a single mode of such a switch, i.e., ei-
ther the top or the bottom configuration. Assume it possible
to extend nonrigid molecular group theory (Wallace 2012d)
to the long, whip-like frond of an IDP/IDR anchored at both
ends, via a sufficient number of semidirect and/or wreath
products over an appropriate set of finite and/or compact
groups. The dynamic mechanism of translation linkage with
other chemical species is taken as parameterized by an index
of ‘frond length’ L ∝ a binding energy index H ≡ |M| for
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some binding energy M which might crudely be measured
by the total number of amino acids in the IDP/IDR. At the
very least, a potential energy barrier must be overcome for
binding to take place. More generally, molecular species must
be constructed and transported before binding, consuming
metabolic free energies.

In general, the number of group elements can be expected
to grow exponentially, as

∑
Πj |Gj ||Vj |L, where |Gk| and |Vk|

are the size, in an appropriate sense, of symmetry groups Gk
and Vk. Hence, for large L ∝ H, we are driven to a spon-
taneous symmetry shifting statistical mechanics approach on
a Morse function, following the arguments of Pettini (2007)
and Matsumoto (2002). Typically, many such Morse func-
tions are possible, and it is possible to construct one using
group representations.

Take an appropriate group representation by matrices and
construct a ‘pseudo probability’ P for nonrigid group element
ω as

P[ω] =
exp[−|χω|/ωH]∑
ν exp[−|χν |/ωH]

(27)

where χφ is the character of the group element φ in that
representation, i.e., the trace of the matrix assigned to φ, and
|...| is the norm of the character, a real number. For systems
that include compact groups, the sum may be an appropriate
generalized integral. The most direct assumption is that the
representation is ‘faithful’, having as many matrices as there
are group elements, but this may not be necessary.

The central idea is – again – that F̂ in the construct

exp[−F̂ /ωH] =
∑
ν

exp[−|χν |/ωH]

(28)

will be a Morse Function in the metabolic free energy measure
H to which we can apply Landau’s classic arguments on phase
transition. Recall again the underlying idea, that, as the tem-
perature of a physical system rises, more symmetries of the
Hamiltonian become accessible, and this often takes place in
a punctuated manner. As the temperature declines, these
changes are characterized as ‘spontaneous symmetry break-
ing’. Here, we take the frond length L ∝ H as the temper-
ature index, and postulate punctuated changes in IDP/IDR
function and reaction dynamics with its magnitude.

Recall that, given the powerful generalities of Morse The-
ory, virtually any good Morse Function will produce sponta-
neous symmetry shifts under these circumstances.

The observed ‘sloppiness’ of biological lock/key molecular
reaction dynamics suggests that binding site symmetry may
be greater than binding ligand symmetries: binding ligands
may be expected to involve (dual, mirror) subgroups of the
nonrigid group symmetries of the IDP/IDR frond.

A kind of ‘fuzzy lock theory’ emerges by supposing the ‘du-
ality’ between a subgroup of the IDP/IDR and its binding
site can be expressed as

Bα = CβDγ (29)

where Bα is a subgroup (or set of subgroups) of the IDP/IDR
nonrigid symmetry group, Dγ a similar structure of the target
molecule, and Cβ is an appropriate inversion operation or set
of them that represents static or dynamic matching of the
fuzzy ‘key’ to the fuzzy ‘lock’.

If C is a single element, and B,D fixed subgroups, then
the matching would be classified as ‘static’. Increasing the
number of possible elements in C, or permitting larger sets
representing B and D, leads to progressively more ‘random’
structures in an increasingly dynamic configuration, as the
system shifts within an ensemble of possible states, or, per-
haps, even a superposition of them.

A more complete treatment probably requires a groupoid
generalization of nonrigid molecule theory – extension to ‘par-
tial’ symmetries like those of elaborate mosaic tilings, partic-
ularly for the target species. This approach has been highly
successful in stereochemisty.

Again, molecular binding is not a free lunch. At the very
least, potential energy barriers must be overcome. Such
binding energy H = |M| must be provided by embedding
metabolic free energy, and failure to deliver will trigger un-
wanted simplifications of physiologically essential IDP/IDR
reactions.

10 A digression on free energy and
regulation

More generally, the output of the logic gate in figure 2 can
be viewed as constituting an information source – 0 for off, 1
for on – in which an external regulatory signal ‘chooses’ which
configuration has the lower energy state. This can be formally
expressed using the information theory chain rule (Cover and
Thomas 2006). That is, information sources are often not
independent, but are correlated, so that a joint information
source can be defined having the properties

H(X1, ..., Xn) ≤
n∑
j=1

H(Xj) (30)

with equality only for isolated, independent information
streams.

The chain rule has implications for free energy consump-
tion in regulation and control processes. Again, Feynman
(2000) describes how information and free energy have an
inherent duality, defining information precisely as the free en-
ergy needed to erase a message. Information is a form of free
energy and the construction and transmission of information
within living things – the physical instantiation of informa-
tion – consumes considerable free energy, with inevitable –
and massive – losses via the second law of thermodynamics.

Suppose an intensity of available free energy is associated
with each defined joint and individual information source hav-
ing Shannon uncertainties H(X,Y ), H(X), H(Y ), e.g., rates
HX,Y , HX ,HY .

Although information is a form of free energy, there is nec-
essarily a massive entropic loss in its actual expression, so
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that the probability distribution of a source uncertainty H
might again be written in Gibbs form as

P [H] ≈ exp[−H/ωH]∫
exp[−H/ωH]dH

(31)

assuming ω is very small.
To first order, then,

Ĥ ≡
∫
HP [H]dH ≈ ωH (32)

and, using equation (30),

Ĥ(X,Y ) ≤ Ĥ(X) + Ĥ(Y )

HX,Y ≤ HX +HY (33)

Thus, as a consequence of the information chain rule, al-
lowing crosstalk consumes a lower rate of free energy than
isolating information sources. That is, in general, it takes
more free energy – higher total cost – to isolate a set of in-
formation sources than it does to allow them to engage in
crosstalk.

Hence, at the free energy expense of supporting two infor-
mation sources, – X and Y together – it is possible to catalyze
a set of joint paths defined by their joint information source.
In consequence, given a physiological system (or set of them)
having an associated information source H(...), an external
information source Y can catalyze the joint paths associated
with the joint information source H(..., Y ) so that a particu-
lar chosen reaction pathway – in a large sense – has the lowest
relative free energy.

At the expense of larger global free information expendi-
ture – maintaining two (or more) information sources with
their often considerable entropic losses instead of one – the
system can feed, in a sense, the generalized physiology of a
Maxwell’s Demon, doing work so that regulatory signals can
direct system response, thus locally reducing uncertainty at
the expense of larger global entropy production.

That is, proper ongoing maintenance and operation of the
IDP/IDR ‘switch’ implied by figure 2 – or any such logic gates
– can require considerable metabolic free energy expenditure.

11 Glycan/lectin interaction

Glycan/lectin interaction at the surface of the cell, however,
follows a different charateristic pattern. The actual ‘gly-
can/lectin logic switch’ has a markedly different dynamic from
the IDP/IDR logic gate: no fuzzy-lock-and-key. Nonetheless,
the MFE considerations of equations (30-33) still apply.

An example. The carbohydrate α-GalNAc interacts with
the lectin biotinylated soybean agglutinin (SBA) in solu-
tion to form a sequence of increasingly complicated inter-
linked conformations at appropriate concentrations of react-
ing species. Dam et al. (2007) describe this ‘bind-and-slide’
process in terms of a change in topology, according to figure
3.

Figure 3: From Dam et al. (2007). (A) At first, lectin diffuses
along and off the glycan kelp frond, until, (B), a sufficient
number of sites are occupied. Then (C), the lectin-coated
glycan fronds begin to cross bind and the reaction is satu-
rated, and the gate thrown. (D) shows an end-on view of
the complex in (C). A kind of spontaneous symmetry break-
ing with increasing lectin concentration is evident, with mode
(A) far ‘freer’ than the locked-in state of modes (C) and (D).
Details will vary with the particular glycan kelp frond and
the impinging lectin species.
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Initially, the lectin diffuses along (and off) the glycan kelp
frond until a number of sites are occupied. Then the lectin-
coated glycan fronds begin to cross bind, until the reaction
saturates in a kind of inverse spontaneous symmetry break-
ing. Figure 3D shows an end-on view of the complex shown
longitudinally in figure 3C.

Dam and Brewer (2008) generalize:

The bind-and-slide model for lectins binding to
multivalent glycosides, globular, and linear glyco-
proteins is distinct from the classical ‘lock and key’
model for ligand-receptor interactions. The bind and
slide (internal diffusion) model allows a small frac-
tion of bound lectin molecules to dynamically move
from carbohydrate to carbohydrate epitope in glob-
ular and linear glycoproteins. This, in turn, can fa-
cilitate lectin-mediated cross-linking of such glyco-
proteins on the surface of cells... Such cross-linked
receptors, in turn, trigger signal transduction mech-
anisms... Indeed, a large number of transmembrane
receptors are found clustered... Thus the affinity and
hence specificity of ligand-receptor interactions may
be regulated by epitope and receptor clustering in
many biological systems.

Under typical physiological circumstances, glycans form a
literal kelp bed bound to cellular surfaces, and the essential
topological ‘intensity parameter’ – the temperature analog –
becomes area density of the fronds. See Dam and Brewer
(2010) for details. Oyelaran et al. (2009), for example, con-
ducted density-dependent fluorescence experiments, and it
was possible to take the observed intensity of that fluores-
cence as an index of chemical information channel capacity
and switch operation, since no information transmission indi-
cates no reaction, producing no fluorescence.

While IDP/IDR switches appear directly amenable to a
direct symmetry analysis, the construction and operation of
‘glycosynapses’ at the cell surface may require more study,
both because of the apparently cognitive mechanisms produc-
ing the glycan kelp bed itself, and the diffusion-lock mecha-
nism of the glycan/lectin switch.

Note that, from the perspective of Oyelaran et al., figure 3
could be reinterpreted as displaying a spontaneous symmetry
breaking with increasing ‘kelp frond’ area concentration at a
given lectin concentration: from the relatively free modes of
3A, to the suddenly locked-in ‘on’ state of 3C and 3D. Al-
though this is examined by Wallace and Wallace (2013) using
an IDP-like model, but it seems likely that a different ap-
proach may be needed. That is to say, the ‘code’ implied by
figure 3 is necessarily different from the ‘codes’ implied by fig-
ures 1 and 2. Nevertheless, something much like equation (23)
will dominate the stability of the basic switching mechanisms
at the cell surface, since the transmission of information is,
often critically, a matter of free energy availability and control
signal strength.

12 The embedding symmetries of
cognition

The arguments leading to equations (23), (25), and (30-33)
are not restricted to face-to-face chemical interaction. Very
many specific case histories, however, in the sense of Tomkins
(1975), fall under the general rubric of a ‘metabolic code’:

Complex regulation is characterized by two enti-
ties not operating in simple mechanisms: metabolic
‘symbols’ and their ‘domains’. The term ‘symbol’
refers to a specific intracellular effector molecule
which accumulates when a cell is exposed to a
particular environment... Metabolic symbols need
bear no structural relationship to the molecules
which promote their accumulation in a nutritional
or metabolic crisis... Another important property
of intracellular symbols is metabolic liability, which
allows their concentrations to fluctuate quickly in
response to environmental change...

Since a particular environmental condition is cor-
related with a corresponding intracellular symbol,
the relationship between the extra- and intracellular
events may be considered as a ‘metabolic code’ in
which a specific symbol represents a unique state of
the environment...

A second essential concept is complex regulation
is that of the ‘domain’ of a symbol, defined as all
the metabolic processes controlled by the symbol...
[so that] the biochemical reactions included in the
domain of a symbol are related by their biological
effects rather than their chemical mechanisms...

This, however, is an argument perilously close to Atlan
and Cohen’s (1998) characterization of cognition in biological
systems. Under such circumstances, punctuated symmetry
changes occur as groupoid shifts in cognitive function, rather
than as simple amyloid-style shape change – an important
observation that is worth some further comment.

Buried in the review by Motlagh et al. (2014) regarding
the ensemble nature of biomolecular allostery is the striking
statement that

It is not obvious how the phenomenon of allostery
can be understood and described in terms that can
do equal justice to both highly structured and highly
disordered systems.

Their figure 2 outlines an increasing dynamics of disorder
or fluctuation in allostery, from rigid body motions, through
side-chain dynamics, backbone dynamics, local unfolding, to
intrinsically disordered systems.

Here, we have explored the metabolic dynamics of the often
subtle symmetries of certain codes involved in the transmis-
sion of information within organisms, at several scales and
levels of organization. There is, however, a more profound
level of symmetry that dominates these structures and their
dynamics. The various codes and blindingly complicated logic

11

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 23, 2014. ; https://doi.org/10.1101/003384doi: bioRxiv preprint 

https://doi.org/10.1101/003384
http://creativecommons.org/licenses/by-nd/4.0/


gates that are at the center of much current study instantiate
cognitive mechanisms that, meshing together, constitute the
living state. Very many cognitive processes can be character-
ized in terms of information sources having inherent symme-
tries, in a limited sense. The construction is curiously direct,
and we follow the direction of Atlan and Cohen (1998), who
first elucidated the ‘language of cognition’ for the immune
system. They argue that the central feature of cognition is
the comparison of a perceived signal with an internal, learned
or inherited picture of the world, and then choice of one re-
sponse from a much larger repertoire of possible responses.
Thus cognitive pattern recognition-and-response proceeds by
an algorithmic combination of an incoming external sensory
signal with an internal ongoing activity, incorporating the in-
ternalized picture of the world, and triggering an appropriate
action based on a decision that the pattern of sensory activity
requires a response.

Incoming ‘sensory’ input – in a large sense – is, then, mixed
in an unspecified but systematic manner with a pattern of in-
ternal ongoing activity to create a path of combined signals
x = (a0, a1, ..., an, ...). Each ak thus represents some func-
tional composition of the internal and the external. An ap-
plication of this perspective to a standard neural network is
given in Wallace (2005).

This path is fed into a similarly unspecified ‘decision func-
tion’ h, generating an output h(x) that is an element of one
of two disjoint sets B0 and B1 of possible system responses.
Let B0 ≡ {b0, ..., bk}, and B1 ≡ {bk+1, ..., bm}.

Assume a graded response, supposing that if h(x) ∈ B0,
the pattern is not recognized, and if h(x) ∈ B1, the pattern
is recognized, and some action bj , k + 1 ≤ j ≤ m takes place.

Interest focuses on paths x triggering pattern recognition-
and-response: given a fixed initial state a0, examine all possi-
ble subsequent paths x beginning with a0 and leading to the
event h(x) ∈ B1. Thus h(a0, ..., aj) ∈ B0 for all 0 ≤ j < m,
but h(a0, ..., am) ∈ B1.

For each positive integer n, let N(n) be the number of high
probability paths of length n that begin with some particular
a0 and lead to the condition h(x) ∈ B1. Call such paths
‘meaningful’, assuming that N(n) will be considerably less
than the number of all possible paths of length n leading from
a0 to the condition h(x) ∈ B1.

Identification of the ‘alphabet’ of the states aj , Bk may de-
pend on the proper system coarse graining, in the sense of
symbolic dynamics (Beck and Schlogl, 1993).

Combining algorithm, the form of the function h, and the
details of grammar and syntax, are all unspecified in this
model. The assumption permitting inference on necessary
conditions constrained by the asymptotic limit theorems of
information theory is that the finite limit

H ≡ lim
n→∞

log[N(n)]

n
(34)

both exists and is independent of the path x. Recall that
N(n) is the number of high probability paths of length n.

We define such a pattern recognition-and-response cogni-
tive process as ‘ergodic’. Not all cognitive processes are likely

to be ergodic, in this sense. Then H, if it exists in the limit
n → ∞ (Khinchin 1957), is path dependent, although ex-
tension to nearly ergodic processes appears possible (Wallace
2005, pp. 31-32).

Now invoke the Shannon-McMillan Theorem. It is possi-
ble to define an adiabatically, piecewise stationary, ergodic
information source X associated with stochastic variates Xj

having joint and conditional probabilities P (a0, ..., an) and
P (an|a0, ..., an−1) such that appropriate joint and conditional
Shannon uncertainties satisfy the classic relations of equation
(7)

Indeed, this is one of the ‘master equations’ inherent to
the nonequilibrium systems that generate information. As
Khinchin (1957) emphasizes, nonergodic sources will have H-
values that are path dependent, leading to ‘manifold’ struc-
tures (Wallace 2005, Section 3.1).

Such an information source will be called dual to the un-
derlying ergodic cognitive process.

‘Adiabatic’ means that, when the information source is pa-
rameterized according to some appropriate scheme, within
continuous pieces, changes in parameter values take place
slowly enough so that the information source remains as close
to stationary and ergodic as needed to make the fundamental
limit theorems work. ‘Stationary’ means that probabilities
do not change in time, and ‘ergodic’ (roughly) that cross-
sectional means converge to long-time averages. Between
pieces it is possible to invoke various kinds of phase change
formalism, for example a biological form of standard renor-
malization theory (Wallace, 2005).

Recall that the Shannon uncertainties H(...) are
cross-sectional law-of-large-numbers sums of the form
−
∑
k Pk log[Pk], where the Pk constitute a probability

distribution. See Cover and Thomas (2006) for the standard
details.

We are not constrained to the Atlan-Cohen model of cogni-
tion, which involves representation, but can embrace as well
more general insights. The basic idea is that a large class of
cognitive phenomena – with or without representation – can
be associated with a dual information source: cognition in-
evitably involves choice, choice reduces uncertainty, and this
implies the existence of an information source, a language-
analog.

The symmetries arise through an equivalence class algebra
that can be constructed by choosing different origin points,
a0, and defining the equivalence of two states, am, an, by the
existence of a high probability meaningful path connecting
them to the same origin point. Disjoint partition by equiva-
lence class, analogous to orbit equivalence classes for dynam-
ical systems, defines the vertices of a network of cognitive
dual languages. Each vertex then represents a different in-
formation source dual to a cognitive process. This is not a
representation of a physical network as such. It is, rather, an
abstract set of ‘languages’ dual to the set of cognitive biolog-
ical processes, and it is interactions across this set that will
are of interest here.

Such a set of equivalence classes generates a groupoid,
whose algebraic properties – an important extension of the
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idea of both a symmetry group and an equivalence class – are
summarized in Wallace (2012a, c). For a groupoid, a product
need not be defined globally. Again, see Brown (1987) and
Weinstein (1996) for details, and the Mathematical Appendix
for a summary.

Cognitive groupoids, in conjunction with the asymptotic
limit theorems of communication and control theories, pro-
vide sufficient structure to impose significant ‘symmetry’ con-
straints on a vast range of biological subsystems.

Once the underlying groupoid nature of the cognitive pro-
cesses that embrace ‘codes’, allostery, logic gates, and other
constituent phenomena, is recognized, then it becomes pos-
sible to parse out the instantiating machinery according to
dual information sources and their groupoid indices, defining
another pseudoprobability in terms of available metabolic free
energy as

Pr[Hν ] =
exp[−Hν/ωH]∑n
i=1 exp[−Hν/ωH)]

(35)

where ν represents the appropriate cognitive groupoid ele-
ment. Then arguments like equations (24)-(26) can be im-
posed, or the dynamics explored using Onsager-like nonequi-
librium thermodynamic formalism.

Define a ‘symmetry entropy’ based on the Morse Function
F arising from equation (35) over a set of structural param-
eters Q = [Q1, ..., Qn] (that may include the rate of available
metabolic free energy H and other information source uncer-
tainties) as the Legendre transform

S = F(Q)−
∑
i

Qi∂F(Q)/∂Qi

= F(Q)−Q · ∇QF (36)

The dynamics of such a system will be driven, at least in
first approximation, by Onsager-like nonequilibrium thermo-
dynamics relations having the standard form (de Groot and
Mazur, 1984):

dQi/dt =
∑
j

Ki,j∂S/∂Qj (37)

where the Ki,j are appropriate empirical parameters and t is
the time. A biological system involving the transmission of
information may, or may not, have local time reversibility: in
English, for example, the string ‘eht’ has a much lower prob-
ability than ‘the’. Without microreversibility, Ki,j 6= Kj,i.

Since, however, biological systems are quintessentially
noisy, a more fitting approach is through a set of stochastic
differential equations having the form

dQit = Ki(t,Q)dt+
∑
j

σi,j(t,Q)dBj (38)

where the Ki and σi,j are appropriate functions, and different
kinds of ‘noise’ dBj will have particular kinds of quadratic
variation affecting dynamics (Protter, 1990).

Several properties become evident:
1. Setting the expectation of equation (38) equal to zero

and solving for stationary points gives attractor states since
the noise terms preclude unstable states.

2. This system may converge to limit cycle or pseudoran-
dom ‘strange attractor’ dynamics.

3. What is converged to is not a simple state or limit cycle
of states. Rather it is an equivalence class, or set of them, of
highly dynamic modes coupled by mutual interaction through
crosstalk and other interactions. Thus ‘stability’ in this struc-
ture represents particular patterns of ongoing dynamics rather
than some identifiable static configuration. These are quasi-
stationary nonequlibrium states.

4. Applying Ito’s chain rule for stochastic differential equa-
tions to the (Qjt )

2 and taking expectations allows calculation
of variances. These may depend very powerfully on a system’s
defining structural constants, leading to significant instabili-
ties depending on the magnitudes of the Qi, as in the Data
Rate Theorem.

5. Following the arguments of Champagnat et al. (2006),
this is very much a coevolutionary structure, where funda-
mental dynamics are determined by the feedback between
‘internal’ and ‘external’.

In particular, setting the expectation of equation (38) to
zero generates an index theorem (Hazewinkel 2002) in the
sense of Atiyah and Singer (1963), that is, an expression that
relates analytic results – the solutions of the equations – to
underlying topological structure, the eigenmodes of a compli-
cated geometric operator whose groupoid spectrum represents
‘hidden symmetries’ of the overlying biocognitive dynamic
that entrains the various constitutent allosteric and related
molecular mechanisms.

13 Discusson and conclusions

For many ‘coded’ systems, some version of equations (23) and
(30-33) will always emerge. Although equation (23) is built
around rate distortion arguments for a Gaussian channel, the
result extends to other channel architectures, since it is based
on the convexity of the rate distortion function with the av-
erage distortion. Punctuated Data Rate Theorem instability
failures, however, need not be restricted to the kind of sym-
metry collapse associated with amyloid formation.

Again, strictly speaking, biological codes, although they
may be partly analyzed using information theoretic methods
as Tlusty does, do not fall so easily within direct characteriza-
tion by S/SM/RD/DR models. Such codes do not, in fact, in-
voke cognition, although, as argued above, they may become
essential subcomponents within larger cognitive processes, re-
flecting the entraining symmetries of those processes.

Nonetheless, the argument leading to the Data Rate Theo-
rem analog of equation (23) – and the generalization of Sec-
tion 7 and equations (30-33) – place code stability within a
recognizably similar framework, with MFE serving as a gen-
eral ‘control signal’ roughly in the sense of Tomkins (1975),
stabilizing efficient operation of complex biochemical cod-
ing and translation machinery, including – but not limited
to – IDP/IDR mechanisms and the cell surface ‘Kelp bed’.
Demand beyond available metabolic energy supply then ex-
presses itself in punctuated destabilization, degradation, or
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pathological simplification, of the code/translation channel,
possibly affecting gene expression, protein folding, IDP/IDR
reactions, the operation of the glycan/lectin interface, and the
more extensive mechanisms implied by Tomkins (1975).

Normal aging, or its acceleration by psychosocial or envi-
ronmental stressors, must eventually interfere with routine
code/translation operation – via deterioration in mitochon-
drial function and other possible mechanisms – triggering on-
set of many chronic diseases associated with senescence that
involve failures of these essential biological processes.

By the development of Section 12, however, this may be a
universal phenomenon, in which failing metabolic free energy
degrades the full spectrum of biocognitive dynamics.

That is, the arguments of equations (15) and (23) – char-
acterizing the role of metabolic free energy in the stability
of biological control – and the ‘symmetry’ extension in Sec-
tion 12, appear to be quite general, acting both at the kind
of higher order cognitive functions implied by Maturana and
Varela (1980) and Wallace (2014a, c), and at low level ‘basic’
code/translator scales, illuminating the role of mitochondrial
deterioration in aging at all scales and levels of organization.

We have answered something of the question raised by Ge
and Quan (2011) – and many others – regarding whether
nonequilibrium phase transitions play an important role in
living systems, and, perhaps, made some progress in resolv-
ing the allosteric paradox raised by Motlagh et al. (2014).

14 Mathematical Appendix

The Data Rate Theorem
The Data-rate Theorem (DRT), a generalization of the

classic Bode Integral Theorem for linear control systems, de-
scribes the stability of feedback control under data rate con-
straints (Nair et al., 2007). Given a noise-free data link be-
tween a discrete linear plant and its controller, unstable modes
can be stabilized only if the feedback data rate I is greater
than the rate of ‘topological information’ generated by the
unstable system. For the simplest incarnation, if the linear
matrix equation of the plant is of the form xt+1 = Axt + ...,
where xt is the n-dimensional state vector at time t, then the
necessary condition for stabilizability is that

I > log[|detAu|] (39)

where det is the determinant and Au is the decoupled unstable
component of A, i.e., the part having eigenvalues ≥ 1. The
determinant represents a generalized volume. Thus there is a
critical positive data rate below which there does not exist any
quantization and control scheme able to stabilize an unstable
system (Nair et al. 2007).

The new theorem, and its variations, relate control theory
to information theory and are as fundamental as the Shannon
Coding and Source Coding Theorems, and the Rate Distor-
tion Theorem for understanding complex cognitive machines
and biological phenomena (Cover and Thomas, 2006). Very
clearly, however, the DRT speaks to the centrality of the ques-
tion whether nonequilibrium phase transitions play an impor-
tant role in living systems.

Groupoids

A groupoid, G, is defined by a base set A upon which
some mapping – a morphism – can be defined. Note that
not all possible pairs of states (aj , ak) in the base set A can
be connected by such a morphism. Those that can define the
groupoid element, a morphism g = (aj , ak) having the natu-
ral inverse g−1 = (ak, aj). Given such a pairing, it is possi-
ble to define ‘natural’ end-point maps α(g) = aj , β(g) = ak
from the set of morphisms G into A, and a formally as-
sociative product in the groupoid g1g2 provided α(g1g2) =
α(g1), β(g1g2) = β(g2), and β(g1) = α(g2). Then, the prod-
uct is defined, and associative, (g1g2)g3 = g1(g2g3). In addi-
tion, there are natural left and right identity elements λg, ρg
such that λgg = g = gρg.

An orbit of the groupoid G over A is an equivalence class
for the relation aj ∼ Gak if and only if there is a groupoid
element g with α(g) = aj and β(g) = ak. A groupoid is called
transitive if it has just one orbit. The transitive groupoids
are the building blocks of groupoids in that there is a natural
decomposition of the base space of a general groupoid into
orbits. Over each orbit there is a transitive groupoid, and
the disjoint union of these transitive groupoids is the original
groupoid. Conversely, the disjoint union of groupoids is itself
a groupoid.

The isotropy group of a ∈ X consists of those g in G with
α(g) = a = β(g). These groups prove fundamental to classi-
fying groupoids.

If G is any groupoid over A, the map (α, β) : G→ A×A is
a morphism from G to the pair groupoid of A. The image of
(α, β) is the orbit equivalence relation ∼ G, and the functional
kernel is the union of the isotropy groups. If f : X → Y is a
function, then the kernel of f , ker(f) = [(x1, x2) ∈ X ×X :
f(x1) = f(x2)] defines an equivalence relation.

Groupoids may have additional structure. For example, a
groupoid G is a topological groupoid over a base space X if
G and X are topological spaces and α, β and multiplication
are continuous maps.

In essence, a groupoid is a category in which all morphisms
have an inverse, here defined in terms of connection to a base
point by a meaningful path of an information source dual to
a cognitive process.

The morphism (α, β) suggests another way of looking at
groupoids. A groupoid over A identifies not only which ele-
ments of A are equivalent to one another (isomorphic), but it
also parameterizes the different ways (isomorphisms) in which
two elements can be equivalent, i.e., in our context, all possible
information sources dual to some cognitive process. Given the
information theoretic characterization of cognition presented
above, this produces a full modular cognitive network in a
highly natural manner.
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