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Abstract

Classification of large grass genome sequences has major challenges in functional genomes. The presence of motifs
in grass genome chains can make the prediction of the functional behavior of grass genome possible. The
correlation between grass genome properties and their motifs is not always obvious, since more than one motif may
exist within a genome chain. Due to the complexity of this association most pattern classification algorithms are
either vain or time consuming. Attempted to a reduction of high dimensional data that utilizes DAC technique is
presented. Data are disjoining into equal multiple sets while preserving the original data distribution in each set.
Then, multiple modules are created by using the data sets as independent training sets and classified into respective
modules. Finally, the modules are combined to produce the final classification rules, containing all the previously
extracted information. The methodology is tested using various grass genome data sets. Results indicate that the

time efficiency of our algorithm is improved compared to other known data mining algorithms.
Keyword: Divide and Conquer (DAC), Class within Class (CWC)

1 Introduction

The development of elaborated and specialized bioinformatics computational tools has led to
revolutionary changes in the analysis of genome sequences. Visualizing, manipulating and
predicting molecular structure and function, separating DNA sequence according to grass
genome coding regions, classifying grass genome, DNA and RNA molecules or detecting weak
similarities have come to rely vitally on computational methods [3]. The continuous increase in
size of biological genomic databases requires new and computation-sensitive data mining
approaches, and also presents unique opportunities for new fields of inquiry; among these lies
one of bioinformatics more ambitious goals, the prediction of the functional behavior of grass
genome. Genome are large molecules composed of one or more chains of nucleic acids in a
specific order, which is determined by the base sequence of the nucleotides in the gene coding
of the grass genome.

A DAC technique divide fragments of grass genome sequences large data sets into k/n sub sets.
Common behavioral characteristics and strong structural similarities enable classification of
genomes into genome families. The lack of cost and time-efficient experimental methods has
given rise to computational approaches for grass genome properties identification. Moreover, the
overlapping of grass genome families is almost at all times, the classification of a grass genome
into multiple families with different similarity levels makes the procedure even harder, due to its
ascending complexity. Despite the preceding difficulties, grass genome functionality prediction
could hardly be achieved not only for motifs, short nucleic acid sequences of specific order,
which appear in grass genome chains and play a decisive role in grass genome behavior.
Although a straightforward mapping between motifs and grass genome properties is hard to
achieve due to the presence of multiple motifs in each grass genome chain, they can facilitate
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prediction of grass genome functionality, if the latter is considered to be derived by the
combining effect of many, either conflicting or consistent motifs. Two different types of motifs
can be distinguished into patterns and profiles. The first is the simplest form of a motif and can
be represented by an expression. More complex than a pattern, the profile constitutes a multiple
sequence alignment, symbolized by alignment matrices. The question of occurrence of a
particular motif in a grass genome chain is obtained when a pattern motifs counter is
incremented. The overall procedure of motif identification and detection in a genome sequence
can be carried out in two different ways: unsupervised or supervised. The former can be
accomplished by a large variety of machine learning algorithms, whereas the latter requires prior
information, such as expert opinion or experiment conclusions. Germ plasma, Entrez, Gramene.
Related literature features many data mining algorithms that utilize the presence of motifs in
genome sequences to perform genome classification, originating from the field of pattern
recognition [7], as well as that of artificial intelligence [6]. They include many different
techniques, such as decision trees [14], statistical models, neural networks [5] and Grid
Classification [11]. This paper presents DAC (Genome Classification), a novel methodology that
aims to benefit from the use of DAC technology in data mining applications. The combination of
the two leading technologies can help overcome the computational difficulties often encountered
in genome classification problems. The Genome DAC Class methodology follows a “divide and
conquer” approach comprising three steps: First, Grass Genome data from an expert-based
database are divided into multiple disjoint sets, each one preserving the original data distribution.
Next, the new sets are used as training sets, and multiple modules are derived by clustering the
set of sequences of their motifs with hamming distances means of standard data mining
algorithms [15]. Finally, the modules are combined to produce the final classification rules,
which can be used to classify a given instance and evaluate the methodology.

2. Methodology Outline:

The main goal of the DAC methodology is to utilize existing data mining algorithms in a
parallel-enabled environment, such as the DAC, in order to create a Grass Genomes
classification module. Divide-and-conquer technique is a powerful problem solving technique
that is the basis for many effective sequential algorithms. We analyze the extent to which
divide-and-conquer vyields effective and efficient parallel algorithms. We identify number of
equivalence classes of divide-and-conguer algorithms and determine which classes are good
candidates for parallelization and the architectures for which they are best suited. None of the
classes provide optimal speedup when the maximum possible numbers of processors are used,
and four of them yield no more than constant speedup. However, eleven classes do provide
optimal speedup under limited parallelism, and three of these classes have polylogarithmic
runtime with a polynomial number of processors and they accelerate within a polylogarithmic
factor of optimal under maximum parallelism. The communication cost incurred during
parallelization is found to have a significant impact on the performance of a parallel divide-and-
conquer algorithm. This factor alone can mean the difference between expedite that is within a
poly logarithmic factor of optimal and no speedup at all.

2.1. Data Splitting:

Divide the grass genome sequences dataset into number of sub datasets using splitting
technique. The first step of the DAC methodology, after the creation of the original single
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dataset, is to divide it into multiple datasets. The process is performed by the algorithm Splitter
presented. As input, the algorithm requires datasets with the data to be divided. It then reorders
the data so as to cluster entries with the same grass genome class. Finally, instead of simply
chopping the sequences data into equal parts, datasets employs a method similar to Round-
Robin to equally distribute the members of each class to all the dataset, thus preserving the
initial class distribution. Experimentally, it is found that the method is robust in the class
allocation, both for different number of splits and for varying number of classes involved. The
splitting of the original data being complete, the next step in the DAC methodology is creating
of the individual knowledge modules. Each data set is used to train and test a separate classifier.
Since each dataset contains a disjoint subset of the original data, they can be processed in
parallel for time efficiency. Any classification algorithm that can be applied on nominal values
can be used in this phase. Using the Leader is an incremental algorithm in which L leaders (Lds)
each representing a cluster is generated using a suitable threshold value. As an extension of
leader algorithm, we have implemented Leaders algorithm. In this method, after finding L
leaders using the leader algorithm main leaders are generated within each cluster represented by
a leader, choosing a suitable sub threshold value. Thus, Leaders creates L clusters with L
leaders in the i cluster as shown in Fig.1. Sub leaders are the representatives of the sub clusters
and they in turn help in classifying the given new/test pattern more accurately.

This algorithm can be used to generate a hierarchical structure as shown in Fig.1 and this
procedure may be extended to more than two levels. An each k level hierarchical structure can
be generated in only k database scans and is computationally less expensive compared to other
hierarchical clustering algorithms. Number of database scans is < k since the number of training
patterns to be scanned during clustering decreases as k increases and also we can efficiently
manage the memory. If a representative from each subgroup is chosen then naturally
classification accuracy (CA) would be improved. Hamming distance is used for characterizing
dissimilarity between two patterns in case of grass genome data set. Hamming distance
between two, d dimensional patterns :x and y is given by, threshold values can be initially
chosen depending on the maximum and the minimum hamming distance values between the
objects of a class in case of supervised learning. For unsupervised clustering technique,
threshold value should be chosen properly depending on the number of clusters to be generated.
If the threshold value is too small then a large number of clusters are generated and if the
threshold value is too large then very few clusters are generated. Prototypes (representatives of
the clusters and sub clusters) are generated using the training data set. During
classification/testing phase, for every test pattern of the testing data set, the nearest leader is
found first and then the nearest sub leader in that cluster is determined. Then the test pattern is
classified based on the nearest of these two. For different threshold and sub threshold values,
experiments (both training and testing) are conducted and the results are evaluated. To evaluate
the clustering quality (quality of the prototypes selected) labeled patterns are considered. During
training phase they are treated as unlabelled patterns and prototypes are selected. The quality of
the prototypes is evaluated using the CA obtained for the testing data set [1]. Class-Subclass
algorithm require two database scans (k=2) and its time complexity is O(ndk) and is
computationally less expensive compared to most of the other partitional and hierarchical
Fig-1. Divide and conquer methodology, Clustering and Classification

clustering algorithms as shown in Table 2. Space complexity and the sum of the prototypes is
less than the total number of patterns n. The space requirement will be reduced as only these
representatives are to be stored in the main memory during the testing phase. Even if more
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number of prototypes is generated, classification time is less as only part of the hierarchical
structure is searched during the testing phase

2.2. The Classifier Training process on DAC Computing:

The splitting of the original data being complete the next step in the DAC methodology is
creating of the individual knowledge modules. Since each dataset contains a disjoint subset of
the original data they can be processed in parallel for time efficiency. Any classification
algorithm that can be applied on nominal values can be used in this phase. In order to facilitate
an efficient way to train the multiple modules simultaneously, the training phase makes use of
the DAC resources. The grid genome sequences dataset concept is created in order to provide a
distributed computing infrastructure for advanced science and engineering [9]. It aims to
facilitate the flexible, secure, coordinated and controlled resources sharing among computers, to
distribute computing power, data storage and specialized equipment use among the computing
nodes scattered all over the world and assist the virtual organization , dynamic collection of
individuals, groups. The grid offers the resources needed to run multiple training processes, thus
reducing the total time cost of the classification procedure. The grid infrastructure is then
responsible for assigning the suitable resources according to the description in the DAC grass
genome dataset and queue the appropriate Grid node after the successful execution of the
training process, the resulting output files returned. This process is repeated for the multiple
training processes, each one of them assigned to Grid node for execution. At this point it must be
noted that, contrary to the other parallel classification techniques, the DAC methodology is
independent of the actual data mining algorithm. Any classification algorithm available in
literature can be utilized in the classifier training process, thus providing a degree of freedom to
the methodology. Also, due to the fact that the training dataset were equivalent regarding the
actual data representation, the final knowledge modules are also of equivalent accuracy.

2.3. Merging the Classified datasets:

The efficient combination of the multiple knowledge modules, were extracted in the previous
section. The modules are combined by a process, where each one is represented by a distribution
vector. The performance of the total classifier for a single instance is derived by the average of
all the distribution vectors. The overall efficiency of the module is calculated by testing it on the
original dataset. All Ci classes classified from sub clusters are merged to form a classified single
data set. Repeating the procedure of sub leaders algorithm to make the clusters, and using nearest
neighbor classifier with hamming distance similarity measure the sub classes are obtained. The
algorithm used is presented in more detail in algorithm. Results found through extensive
experimentation have shown that the accuracy of the combined module is equal to the accuracy
of module that has been extracted directly from the original dataset.

Algorithm: Divide and Conquer algorithm

Input:
S: A set of N number of sequences sl, s2, ........ sn
Threshold: Threshold for generating motifs
DistKey: distance key is threshold for creating a new cluster
Num-subs: Number of sub-sets in given data set
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Output:
C: Clustercl, c2 ....... ck
Algorithm:
1. generating M number of motifs ml, m2, ........ m M from given set of sequences using dynamic program

with threshold and fixed length (L).
ml=substring of size L from fist sequence
M=1 // number of motifs
do until end of last sequence
mi=next substring of size L
for j=1 to no. of motifs
find nearest motif exist
end loop j

if nearest motif exist then
ith motif belongs to jth motif
else

M=M+1

Create a new mth motif

end if

end do

2. generating motif frequency table using above motifs from given set of sequences.
fori=1to N
forj=1to M
Freg-table(i,j) = number of times the jth motif appears in the ith sequences
end loop j
end loop i

3. dividing the given data into num_subs

4. fori=1to num_subs
Classifying the sub_sets into Ci classes using nearest- neighbor classifier with hamming distance
measure and Dist_key
end loop i

5. merging all classes generated in step 4
Again classifying the all merged classes into final classes cl, c2 ....... ck using nearest- neighbor
classifies with hamming distance measure and Dist_key

Algorithm: Divide and Conquer classification of Grass genomes

3. Experimental results

Tabel-1[M-fold:10-times cross Validation: DAC experimental results-20000]

GSD DAC-Main Classification DAC-Merge-Sub Classification
DA_C' . Training
validation Total |Training |Time  |Testing Training Training |Testing |c-sub
data |data (S) Time(S) |Class |[CA data Test data |Time(s) |Time(s) |class CA
200000 12000 20 31 77 99.46 14 9 0.2 0.01 5 98.69
Variance 0 0 0.74 .038 | 0.49 0.066 0.676 0.562 0.104 0.18 0.223 0.141
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Tabel-2[Medium size data: DAC experimental results-5000]

DAC-Main Classification DAC-Merge-Sub Classification
Total Training Training Testing Training | Training Testing c-sub
GSD Data Data Time(S) Time(S) Class CA data Time(s) Time(S) class CA
GSD1 5000 3000 22 54 233 98.49 174 0.2 1 5 98.83
GSD2 5000 3000 14 11 29 98.85 22 0.1 0.01 4 98.22
GSD3 5000 3000 43 73 238 99.79 178 0.2 0.01 32 99.21
GSD4 5000 3000 11 16 51 99.20 38 0.2 0.01 3 99.31
GSD5 5000 3000 46 80 219 99.54 132 0.2 0.01 4 99.25

Tabel-3[Large size data: DAC experimental results-20000]

DAC-Main Classification DAC-Merge-Sub Classification
Training Training | Testing Training Training Testing c-sub
GSD Total data Data Time(S) Time(S) | Class CA data Time(s) Time(S) class CA
DAC1 | 20000 12000 20 31 233 99.69 174 1 0.01 5 98.31
DAC2 | 20000 12000 68 106 34| 99.89 26 0.1 0.02 3 98.88
DAC3 | 20000 12000 76 207 271  98.95 175 1 0.01 5 98.95
DAC4 | 20000 12000 82 32 50 99.53 36 0.1 0.01 4 98.85
DAC5 | 20000 12000 43 73 238  98.04 178 1 1 32 98.22

3.1. Data set: Large size data (100000): There are 60000 patterns in the training set, 40000
patterns in the testing set and 826 classes. HDC is suitable for sequence data sets. To test the
algorithms on large data sets, the number of training and test patterns were increased by
updating one of the feature values in each pattern by a very small quantity. Results of sub
classification reduced the training time as well as testing time, and increased classification
accuracy.

Tabel-4[Large size data: Class With in the Class (CWC) - experimental results-20000]

CWC-Main Classification CWC-Sub Classification
Total Training Training Testing Training Training Testing c-sub
GSD Data Data Time(S) Time(S) Class CA data Time(s) Time(S) class CA
DAC1 | 20000 12000 17 12 14 99.95 9 0.2 0.01 4 94.83
DAC2 | 20000 12000 19 36 65 99.46 45 0.2 0.01 18 94.74
DAC3 | 20000 12000 14 15 16 99.93 11 0.2 0.01 9 88.81
DAC4 | 20000 12000 19 15 16 99.91 11 0.2 0.01 9 88.85
DAC5 | 20000 12000 19 36 65 99.46 45 0.2 0.01 18 94.74

3.2. Data set: Medium size data (25000): There are 25000 patterns in the training set, 15000
patterns in the testing set and 154 classes. The results of Hamming Distance classifier (HDC),
leader and Class —Subclass algorithms are as shown in Table 4 for medium data size. HDC is
suitable for sequence data sets. To test the algorithms on Medium size data sets, the number of
training and test patterns were increased by updating one of the feature values in each pattern by
a very small quantity.

3.3. Comparative experimental results

In order to validate the correctness of the methodology, a number of experiments were
performed in comparison with other recorded methods. In the first case, the input dataset was
derived from the 5 input set. The results are shown in Table 2. The number of splits was
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Tabel-5: Time complexity and classification accuracy of DAC for increasing size of data set:

Data Set DAC-Module Classification DAC-Final Classification

GSD TD TrD Tr1(s) TsT(s) TnC CA% TrD TrT(s) TsT(s) CsC CA%
GSD 1 5000 3000 18 21 71 98.10 49 0.1 0.01 4 100
GSD 2 10000 6000 123 90 91 99.99 60 0.1 0.01 14 96.66
GSD 3 15000 9000 206 161 91 99.88 63 0.1 0.01 14 96.66
GSD 4 20000 12000 33 39 22 99. 97 15 0.1 0.1 6 100
GSD 5 25000 15000 36 26 9 99.94 6 0.1 0.01 4 100
GSD 6 30000 18000 55 30 9 99.53 6 0.1 0.01 4 100
GSD 7 35000 21000 125 88 9 99.23 6 0.1 0.01 4 100
GSD 8 40000 24000 146 102 9 99.33 6 0.1 0.01 4 100
GSD 9 45000 27000 69 47 9 99.40 6 0.1 0.01 4 100

Note: 1. (GSD: Grass Genome Sequence Data Sets; TD: Total Data; TrD: Training data; TrT(s): Training Time(s); TsT(s): Testing Time(s);
TnC: Total no of Class;CsC: C-sub class)
2. (Training data of DAC merged class is 2/3 of Total Number of classes)

selected based on the size of the new dataset that would be produced each time, in order to
maintain a similar processing time. It is obvious, that when the number of splits is n, the original
dataset was processed. An improvement in the processing times can be seen from the table, while
the accuracy is fairly constant. At this point, it must be noted that the number of the classes
involved in each of the classification process is much larger due to the overlapping of the classes.
The number of splits for each dataset is different to keep similar dataset sizes, in order to have
comparable results. Results show a substantial improvement in the processing time while
keeping almost constant model accuracy. The processing time in all cases follows the e-ax
model, where a depends on the size of the original dataset and x is the number of splits, with
minor fluctuations owing to the distribution of the instances of the overlapping grass genomes
classes over the different dataset splits.

FIG.4.3 COMPARISON OF CA of THE CLASSIFIER MODULES  FIG. 4.4 COMPARISON OF TRAINING AND TEST TIME OF DAC CLASSIFICATION

3.4 Discussions

The analysis above shows that the running time and space requirement of our algorithm for
computing DAC counts (for ranges of values of k) is dominated by the suffix array construction.
This is especially true for the space requirement. To get an idea of whether our method can be
applied to large sequence sets or not, we have to consider the space requirement of the suffix
array constructions in more detail. The most space efficient suffix array construction requires
(n[log2 n])/8 bytes per input symbol plus 2n/8 bytes for representing the sequence. Given a 32-
bit computer with 4 gigabytes (232 - 1 bytes) of main memory, n has to satisfy the inequality
(2n + n[log2 n])/8 <232 - 1. That is, the sequence length is limited to 1 gigabyte. Since we want
to process considerably larger sequences, we developed a divide-and-conquer approach. This
cuts the sequence into sufficiently small non-overlapping sections, such that for each section we
can compute the corresponding enhanced suffix array on a 32-bit computer (equipped with 4
gigabytes of main memory).The representatives of the Subclass help in improving the CA and
hence the Class—Subclass algorithm performs better than the leader algorithm. In bioinformatics
(consisting of sequence data sets), it is required to find the subgroups/subfamilies in each of the
grass genome group/family and Class-Subclass algorithm can be used for this application. The
Hamming Distance problem has been described and the possible applications are mentioned.
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Though a part of the work was fund to have been done earlier (and therefore, rediscovered), the
approach to obtain similarities as the inner product of the vectors representing the motifs
enables one to use linear algebra techniques to reduce the cost of computation of similarities,
and at the same time, keep the error as low as possible. By also taking into account the
frequency of motifs in the pattern, the errors can be further reduced.

4. Conclusions

We have presented a novel approach for grass genome classification based on grid and parallel
computing concept using Leader classifier and the hamming distance. Grass genome dataset is
divided into multiple disjoint sets, where each one preserves the original class distribution. The
new sets are then mined in parallel for knowledge, using leader classification algorithm, and the
extracted knowledge modules are combined in final classes. Results indicate that the proposed
method is time efficient and shows that overall accuracy is comparable with other methods. It
must be noted that the parallelization of the procedure allow the processing of much larger
datasets as compared to other techniques. The representatives of the subclasses help in
improving the CA. The Class—Subclass algorithm performs better than the leader algorithm.
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Fig-1. Divide and conquer methodology, Clustering and Classification
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