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Abstract 

Background 

RNAseq provides remarkable power in the area of biomarkers discovery and disease 

stratification. The main technical steps affecting the results of RNAseq experiments 

are Library Sample Preparation (LSP) and Bioinformatics Analysis (BA). At the best 

of our knowledge, a comparative evaluation of the combined effect of LSP and BA 

was never considered and it might represent a valuable knowledge to optimize 

alternative splicing detection, which is a challenging task due to moderate fold change 

differences to be detected within a complex isoforms background. 

Results 

Different LSPs (TruSeq unstranded/stranded, ScriptSeq, NuGEN) allow the detection 

of a large common set of isoforms. However, each LSP also detects a smaller set of 
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isoforms, which are characterized both by lower coverage and lower FPKM than that 

observed for the common ones among LSPs. This characteristic is particularly critical 

in case of low input RNA NuGEN v2 LSP.  

The effect on statistical detection of alternative splicing considering low input LSP 

(NuGEN v2) with respect to high input LSP (TruSeq) on statistical detection of 

alternative splicing was studied using a benchmark dataset, in which both synthetic 

reads and reads generated from high (TruSeq) and low input (NuGEN) LSPs were 

spiked-in. Statistical detection of alternative splicing (AltDE) was done using 

prototypes of BA for isoform-reconstruction (Cuffdiff) and exon-level analysis 

(DEXSeq). Exon-level analysis performs slightly better than isoform-reconstruction 

approach although at most only 50% of the spiked-in transcripts are detected. Both 

isoform-reconstruction and exon-level analysis performances improve by rising the 

number of input reads. 

Conclusion 

Data, derived from NuGEN v2, are not the ideal input for AltDE, specifically when 

exon-level approach is used. It is notable that ribosomal depletion, with respect to 

polyA+ selection, reduces the amount of coding mappable reads resulting detrimental 

in the case of AltDE. Furthermore, we observed that both isoform-reconstruction and 

exon-level analysis performances are strongly dependent on the number of input 

reads. 
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Background  

The application of next-generation sequencing (NGS) to transcriptomics analysis, 

namely RNAseq, has allowed many advances in the characterization and 

quantification of transcripts. Recently, several developments in RNAseq methods 

have provided an advance in the complete characterization of RNA molecules [1]. 

These developments include improvements in transcription start site mapping, strand-

specific measurements, gene fusion detection, small/long RNA characterization and 

detection of alternative splicing events. [1]. More recently further advances in the 

application of RNAseq were focused to RNA sequencing approaches allowing RNA 

quantification from very small amounts of cellular materials or even single cells [2-6]. 

The main technical steps affecting the outcomes of RNAseq experiments are Library 

Sample Preparation (LSP) and Bioinformatics Analysis (BA). NGS applications 

require specific LSP in which fragmented DNA or cDNA molecules are fused with 

adapters amplified by PCR and sequenced [7]. Since different LSP can have 

significant impacts on downstream analysis and interpretation of RNAseq data [8], it 

is evident that robust library preparation methods that produce a representative, non-

biased source of nucleic acid material from the genome under investigation are 

critical. Nevertheless, it has become clear that LSPs contain biases that compromising 

the quality of NGS datasets can lead to erroneous interpretations [7]. The LSPs now 

available on the market are various, but they can be organized in two main classes: i) 

unstranded (high or low input total RNA) and ii) stranded (polyA+ selected or rRNA 

depleted).  

As introduced before, the choice of LSPs does not represent the only critical step in 

RNAseq. Indeed, the sequence data generated need to be converted into transcript 

information, e.g. transcript structure, transcript quantification, etc., this step requires 

an accurate selection of the methodologies for bioinformatics and statistical analysis. 

The BA for the detection of differentially expressed transcripts are characterized by 

multiple steps [9] that can have strong influence on the final results. BA can be 

divided in two categories: i) isoform-reconstruction based differential expression, ii) 

exon-based differential expression. This work focuses on the definition of the limits 

and the strengths of LSP as well as the effect of BA on statistical detection of 
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alternative splicing (AltDE). In detail, we investigated the effect of different LSPs 

(NuGEN v2, TruSeq unstranded/stranded, ScriptSeq) as well as the effect of polyA+ 

selection versus ribosomal depletion on isoform level detection. Furthermore, we 

compared NuGEN low input protocol with standard TruSeq protocol in AltDE using 

prototypic BA for isoform-reconstruction (Cuffdiff) and exon-level analysis 

(DEXSeq). 
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Results  

Library sample preparation (LSP) effects on isoforms detection and isoforms 

characteristics. 

We observed how high (100-1500 ng), low (0.5-2 ng) input protocol, polyA+ 

selection and ribosomal RNA depletion affect isoforms detection. Specifically, we 

analysed the LSP effect on isoforms coverage/FPKM, exons and exon-exon junctions 

counts. Total RNA, extracted from the D1 mouse dendridic cell line, was split in 

aliquots and converted in libraries using the following sample preparation kits: 

NuGEN v2, ScriptSeq v1, TruSeq unstranded/stranded. The input of total RNA was 

0.5 (nu05), 2 (nu2) and 100 ngs (nu100) for NuGEN v2 (nu), 1500 ng for ScriptSeq 

v1 (ss), 100 (ts100) and 1000 ng (ts1000) for TruSeq unstranded (ts) and 100 ng for 

TruSeq stranded (tss). All above-mentioned LSPs were performed after polyA+ 

selection, but the TruSeq stranded LSP, which was also used in association with the 

ribo-zero ribosomal RNA depletion method (tss_total). For each experimental 

condition (n05, nu2, nu100, ss, ts100, ts1000, tss, tss_total) 80 million paired-end 

reads were collected. Reads were mapped against the mouse genome version 9 

(mm9). Mapped reads were associated with their corresponding transcript using 

UCSC annotation and cufflinks [10], as prototypic method for isoform quantification. 

For each experimental condition we retained only the transcripts characterized by 

FPKM > 0.1 and average coverage > 0 (Table 1). To define the number of common 

transcripts detected by the various LSPs we used as reference ts100 detected 

transcripts. Ts100 was selected as reference because 100 ng total RNA input 

represents the quantity that can be obtained from a wide range of biological samples, 

e.g. cell lines, animal model tissues, biopsies, etc.. 

Effect of polyA+ selection versus rRNA depletion. All LSPs allow the detection of a 

similar number of transcripts (Table 1) except for tss_total, generated using total 

RNAs upon ribosomal depletion, where the number of transcripts is reduced to 46% 

approximately. In tss_total, the number of mapped reads was in the same order of 

magnitude of the other experiments. However, the relative amount of coding polyA+ 

transcripts is diluted, since the input material contains also non-coding RNAs, 

resulting in a lower sampling of coding transcripts. The above concept is reinforced 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 26, 2014. ; https://doi.org/10.1101/005546doi: bioRxiv preprint 

https://doi.org/10.1101/005546
http://creativecommons.org/licenses/by-nd/4.0/


Carrara et al. Page 6 

Optimization of alternative splicing detection workflow 
 

by the observation that transcripts undetectable in tss_total are those characterized by 

low coverage/FPKM distributions in ts100 (Fig. 1), as instead the transcripts detected 

both by tss_total and ts100 show similar coverage and FPKM distributions (Fig. 1).  

Transcripts detection in low input protocol. We observed that the number of detected 

transcripts, in NuGEN v2, dependents on the amount of the input material (Table 1). 

The number of transcripts in common with the ts100 increases moving from 0.5 to 

100 ng of total RNA input. Moreover, the number of NuGEN specific transcripts 

(Table 1, Fig. 2A) increases. The coverage of NuGEN detected transcripts (Fig. 2B, 

yellow and green boxes) is lower than ts100 detected transcripts (Fig. 2B, violet 

boxes). This is particularly true for NuGEN specific transcripts (Fig. 2B, yellow 

boxes). However, the behaviour observed for the coverage does not apply to FPKM 

distribution (Fig. 2C). Unless for nu05 dataset, NuGEN detected transcripts show 

FPKM distribution (Fig. 2C, yellow/green boxes) similar to that observed for ts100 

dataset (Fig. 2C, violet boxes).  

We analysed the coverage and FPKM distributions for ss, tss and ts1000 with respect 

to ts100 (Fig. 3). The coverage and FPKM distributions of transcripts in common 

between ss, tss, ts1000 and ts100 are very similar to each other. On the other side the 

LSP specific transcripts are always characterized by very low coverage/FPKM 

distributions (Fig. 3). Thus, the low coverage for LSP transcripts in common with 

ts100 is only a peculiarity of NuGEN derived data. 

We further investigated this point analysing the raw count distribution for exons 

belonging both to the transcripts detected by NuGEN and for those transcripts in 

common with ts100 (Fig. 2D). From this analysis it is clear that exons, belonging to 

transcripts detected by NuGEN, are characterized by low exon coverage (Fig. 2D, 

black boxes). This is particularly true for the nu05 sample, where the mean of its 

exon-counts distribution is not shown since the majority of the exons have 0 counts 

(Fig. 2D, black boxes). Instead, a mean value less than 10 counts is observed in 

samples nu2 and nu100 (Fig. 2D, green/violet boxes). In the case of exons detected 

both by nu and ts100 the exon counts distribution is lower in nu05, nu2, and nu100 

(Fig. 2D, green boxes) with respect to ts100 (Fig. 2D violet boxes). The presence of 

lower coverage for transcripts/exons detected by NuGEN could represent a critical 

issue in isoform differential expression, since it might affect the bioinformatics 

quantification of the transcripts/exons. 
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Finally we also checked the presence of detectable differences in the numbers of 

exon-exon junction in transcripts specific for nu05, nu2 and nu100 with respect to 

those in common with ts100 (Fig. 4). The exon-exon junction counts distribution is 

narrow for transcripts identified using the NuGEN LSP with respect to TruSeq LSP 

(Fig. 4A). In case we consider the average detection ratio of exon-exon junctions this 

is lower in NuGEN LSP with respect to TruSeq LSP (Fig. 4B). Considering only 

isoform-specific exon-exon junctions, i.e. exon-exon junctions allowing 

discrimination between different isoforms, the differences in average detection ratio 

become negligible for nu05 and nu2 (Fig. 4B).  

Benchmark datasets 

The observations provided in the previous paragraph highlight that NuGEN v2 has 

different characteristics with respect to high input LSPs (TruSeq unstranded/stranded, 

ScriptSeq). NuGEN protocol using 0.5 ng of input total RNA (nu05) has a very 

limited ability (-23% with respect to ts100, Table 1) to detect isoforms with respect to 

TruSeq unstranded protocol using 100 ng input total RNA (ts100). The isoform 

detection with NuGEN protocol using 2 (nu2) or 100 (nu100) ng still remains a little 

less efficient of ts100 with respect to the other LSPs. Although nu100 looses, with 

respect to ts100, only 12% of the detected transcripts (Table 1) it will not be used in 

standard experiments because of the higher complexity/cost of the protocol compared 

to other LSPs requiring the same input quantity of RNA. Nu2 represents the best 

compromise between the need of a low input RNA quantity and the number of 

detected isoforms (-16% with respect to ts100, Table 1). Therefore, we decided to 

compare the effect of nu2 and ts100 on the detection of differential isoform 

expression by BA approaches. To address this question we created benchmark 

datasets where nu2 and ts100 reads were spiked-in, within a common background 

made of TruSeq unstranded data reads (C1-C5 ts1000, T1-T5 ts100; Fig. 5, 

Additional Table 1S). Specifically, we spiked-in reads derived from 20, 40 and 80 

million reads of both nu2 (NU20/40/80 datasets, Additional Table 2S) and ts100 

dataset (TS20/40/80, Additional Table 2S). With this design, we obtained an isoform-

level differential expression between C and T groups for 27 transcripts (Fig. 6). 

Furthermore, to investigate the dependency of the BA approaches on gene-specific 

isoforms complexity we constructed a synthetic dataset where complex expression 

composition of isoforms for the same gene was also present (Additional Table 3S). 
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Synthetic reads were characterized by having a uniform distribution over all 

transcripts and 58 differentially expressed transcripts between C and T groups were 

generated (Fig. 5, 6).  

Isoforms differential expression analysis 

The identification of differentially expressed isoforms was investigated on the above 

mentioned datasets using the following approaches: cuffdiff [11], as prototypic for 

isoforms-reconstruction approaches, and DEXSeq [12], as prototypic for exon-level 

analysis. The increase of the number of reads also increases the detection of 

differentially expressed isoforms independently by the dataset under analysis, i.e. NU 

or TS (Fig. 7A). In the case cuffdiff we used two available versions of the program, 

cuffdiff 1 and cuffdiff 2. Cuffdiff 2, with respect to cuffdiff 1, also embeds the 

estimation of the over-dispersion due to biological replications [11]. Cuffdiff 1 detects 

a fixed number of transcripts independently by the number of the reads used to 

generate the spike-in on the TS dataset (Fig. 7A, blue bar). Otherwise, on the NU 

dataset the differential expression detection increases on the basis of the number of 

reads used in the spike-in generation. It is notable that using 80 million reads cuffdiff 

1 detects the same number of alternative spliced transcripts discovered using 20 

million reads in the TS dataset. Thus, alternative splicing events detection efficacy of 

cuffdiff 1 seems to be quite inefficient if NU datasets are used. 

In case of cuffdiff 2, there is an increment in the detection of differentially expressed 

transcripts correlated to the number of reads used to generate the spike-in; this is 

observable in both TS and NU datasets (Fig. 7A, orange bar). Cuffdiff 2 detects a 

greater number of differentially expressed transcripts than cuffdiff 1 in both the 

datasets except in the case of 20 million reads TS (Fig. 7A, blue and orange bars).  

The exon-level analysis by DEXSeq is quite inefficient with respect to both versions 

of cuffdiff in the case of the NU dataset (Fig. 7A, green bar) and in general in the 

samples characterized by a low number of input reads. However, in case of TS80, 

where spike-ins are derived by 80 million reads, DEXSeq detects the highest number 

of alternative spliced isoforms (Fig. 7A green bar). The overall detection of 

differentially expressed spike-in data using DEXSeq on TS80 reaches approximately 

the 50% of the total true positive isoforms. It is notable that the overall false positive 

detection rate is particularly low in the case of DEXSeq (Fig. 7C). 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 26, 2014. ; https://doi.org/10.1101/005546doi: bioRxiv preprint 

https://doi.org/10.1101/005546
http://creativecommons.org/licenses/by-nd/4.0/


Carrara et al. Page 9 

Optimization of alternative splicing detection workflow 
 

We also evaluated the level of overlaps between results obtained with isoforms-

reconstruction approaches and exon-level analysis (Fig. 8). In the case of NU80 

dataset the overlap is minimal, probably because of the poor performances of 

DEXSeq on NuGEN spike-in data (Fig. 8A). On the other side DEXSeq has in 

common with both versions at least 66% of the detected true positive transcripts in the 

TS dataset (Fig. 8B). 

The experiments performed on the synthetic dataset reveal inferior detection 

efficiency (Fig. 7B). The best results are obtained by cuffdiff 1 detecting 

approximately 34% of the total true positive isoforms.  
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Discussion  

In this paper we present the first comparative evaluation of the combined effect of 

Library Sample Preparation and Bioinformatics Analysis on alternative splicing 

detection.  

Library Sample Preparations both stranded and non-stranded preparations (ss, tss, ts), 

working with at least 100 ng of total input RNA and undergoing polyA+ enrichment, 

show a similar behaviour for commonly detected transcripts. Considering the 

comparison between polyA+ selection versus ribosomal depletion the reads sampling 

is distributed between coding and non coding transcripts, hence, the transcripts 

detection is significantly impaired for the low expressed transcripts. 

Transcripts that are specifically detected only by a LSP show poor coverage and they 

are probably very little informative for isoform detection, because of the non-uniform 

count coverage at exon-level. In the case of NuGEN, low input protocol, the number 

of LSP-specific transcripts increases with the rise of the amount of total RNA input. 

However, those LSP-specific transcripts are characterized by low coverage and in 

general by very low exon-level counts. FPKM estimation for those transcripts can be 

misleading since it has a behaviour very similar to that observed for the transcripts in 

common with TruSeq protocol. Nu05, nu2 and nu100, even for the transcripts in 

common with ts100, show a lower coverage and exon counts distribution with respect 

to those obtained with TruSeq LSP (ts100). The experiments on benchmark datasets 

reveal that the lower exon counts generated from NU datasets (NU20/40/80) 

negatively affect the ability of exon-level based approach (DEXSeq) to detect 

alternative splicing events. On the other side, in case high number input reads are used 

and the preparation is done using TruSeq protocol, i.e TS80 dataset, exon-level based 

approach provides the best results. Its notable that the overlap in alternative spliced 

isoforms is only partial between isoforms-reconstruction approaches, and exon-level 

analysis. Exon-level analysis detects a higher number of true positive alternative 

splicing transcripts with a lower number of false positive with respect to isoforms-

reconstruction approach. 
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Conclusions  

Our results indicate that a low input protocol, as NuGEN v2, is not suitable for 

alternative splicing analysis due to the limited coverage at exon-level. Furthermore, 

the performances of both isoforms-reconstruction approaches, and exon-level analysis 

are in general comparable. However, it is notable that in case of high number of input 

reads the exon-level analysis provides a higher detection rate of alternative splicing 

events with a reduced level of noise. 
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Materials and Methods 

RNA isolation and purification 

Total RNA was extracted from D1 mouse cell line [13]. Total RNA was extracted 

with Trizol Reagent (Invitrogen) followed by RNeasy micro clean-up procedure 

(Qiagen) as per manufacturer’s instructions. Total RNA integrity was assessed by 

Agilent 2100 Bioanalyzer (Agilent) and the RNA Integrity Number (RIN) was 

calculated; RNA sample had a RIN = 9.5. 

Library Preparation  

Illumina TruSeq RNA 

D1 total RNA was mixed with ERCC RNA Spike in Control Mix 1 (Ambion) and 

subjected to library preparation using Illumina TruSeq RNA Sample Preparation kit 

version 1 (Low Sample Protocol) with slight modifications. Briefly, polyA containing 

RNA molecules were purified from the D1 RNA samples using polyT oligo-attached 

magnetic beads. Thermal fragmentation followed after two rounds of enrichment for 

polyA+ mRNA. cDNA was synthesized from the RNA fragments using reverse 

transcriptase (Superscript II) and random primers. This was followed by second strand 

cDNA synthesis and the resulting dsDNA went through an end repair process, the 

addition of a single A base, and ligation of the adapters. The products were then 

purified and enriched with 12 cycles of PCR to create the cDNA library. Two 

additional rounds of purification of the cDNA libraries were done using Agencourt 

Ampure XP SPRI beads (Beckman Courter) to remove >600 bp double stranded 

cDNA. The length distribution of cDNA libraries was monitored using DNA 1000 

kits on the Agilent Bioanalyzer. All libraries were subjected to an indexed PE 

sequencing run of 2x51 cycles on an Illumina HiSeq 2000. 

NuGEN Ovation RNA-Seq system version 2 – Dedicated Read Barcode   

Total RNA was processed for cDNA synthesis using Ovation RNA-Seq system 

version 2 (NuGEN Technologies) according to the manufacturer’s protocol. ERCC 

RNA spike in control Mix 1 were mixed with D1 RNA before cDNA synthesis. 

Briefly, first strand cDNA synthesis was performed using a unique first strand 

DNA/RNA chimeric primer mix and reverse transcriptase (RT). A DNA/RNA 

heteroduplex double-stranded cDNA was generated by fragmentation of the mRNA 
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within the cDNA/mRNA complex allowing the DNA polymerase to synthesize a 

second strand. The DNA then underwent SPIA amplification. SPIA is an isothermal 

linear amplification in which RNase H is used to degrade RNA in the DNA/RNA 

heteroduplex at the 5’ end of the first cDNA strand, after which the SPIA primer 

binds and DNA polymerase then initiates replication at the 3’ end of the primer, 

displacing the existing forward strand. The process of SPIA DNA/RNA primer 

binding, DNA replication, strand displacement and RNA cleavage is repeated, 

resulting in rapid accumulation of SPIA cDNA. SPIA cDNA from each replicate were 

sheared to get a size range of 25 bp to 400 bp with the bulk of the material at 150 bp. 

This was done by sonication (Covaris model S2) with duty cycle 10, intensity 5 and 

cycle/burst 100 for 300 s. 200 ng of the sheared DNA were then used for library 

preparation using the Encore NGS Multiplex System 1 (NuGEN Technologies) 

according to manufacturer’s protocol where the fragmented DNA underwent end 

repair to generate blunt ends, adaptor ligation (with 4 bases indexing tags) and 

amplification to enrich the fragments with ligated adapter sequences. The resultant 

libraries were then purified using the Agencourt RNAClean XP beads. Additional 

round of purification were done with Agencourt Ampure XP SPRI beads (Beckman 

Courter) and the libraries were eluted in 20 ul. 4 ul of each purified library underwent 

10 cycles of PCR amplification using Illumina TruSeq PCR reagents. All libraries 

were subjected to an indexed PE sequencing run of 2x51 cycles on an Illumina HiSeq 

2000.  

Epicentre ScriptSeq v1 

PolyA containing mRNA molecules were purified from 1.5 ug D1 total RNA using 

polyT oligo-attached magnetic beads. cDNA libraries were prepared from the 

resultant polyA+ RNA and ERCC RNA spike in control Mix 1 were added.  

The RNA samples were chemically fragmented using the StarScript Reverse 

Transcriptase Buffer and the cDNA Synthesis Primer was annealed to the RNA. 5′ 

end-tagged cDNA (equivalent to the 3′ end of the original RNA) was produced by 

random-primed cDNA synthesis. This was followed by 3′-Terminal Tagging of the 

cDNA using the Terminal-Tagging Oligo (TTO) which randomly annealed to the 

cDNA, including to the 3′ end of the cDNA and served as template for the extension 

of the cDNA by DNA polymerase. The resulting di-tagged cDNAs (at both their 5′ 

and 3′ ends) were tagged purified using Qiagen MinElute PCR Purification Kit 

(Qiagen).  Enrichment of the purified di-tagged cDNAs were done with 12 cycles of 
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PCR and libraries were purified with Agencourt  AMPure XP SPRI beads (Beckman 

Courter) according to the standard protocol. Two additional rounds of Agencourt 

Ampure XP beads were conducted to remove > 600 bp double stranded cDNA. 

ScripSeq dedicated read barcode design, which is analogous to TruSeq barcoded 

adapters, were used for the samples. All libraries were subjected to an indexed PE 

sequencing run of 2x51 cycles on an Illumina HiSeq 2000. 

Illumina TruSeq Stranded Total RNA 

D1 total RNA were mixed with ERCC RNA Spike in Control Mix 1 and subjected to 

library preparation using Illumina TruSeq Stranded Total RNA Sample Preparation 

kit (Low Sample Protocol) with slight modification. The removal of ribosomal RNA 

was done using Ribo-Zero Gold rRNA removal beads which deplete samples of both 

cytoplasmic and mitochondrial ribosomal RNA. After depletion, the RNA was 

purified and fragmented into small pieces using divalent cations using thermal 

fragmentation. First strand cDNA synthesis was performed using reverse transcriptase 

(Superscript II) and random primers from the cleaved RNA fragments. This was 

followed by second strand cDNA synthesis using DNA Polymerase I and RNase H 

where second strand was generated with dUTP in place of dTTP. These blunt end 

cDNA fragments had the addition of a single A base and subsequent ligation of the 

adapter. The products were purified and enriched with 12 cycles of PCR to create the 

final cDNA library.  Two additional rounds of purification of the cDNA libraries were 

done using Agencourt Ampure XP SPRI beads (Beckman Courter) to remove > 600 

bp double stranded cDNA. All libraries were subjected to an indexed PE sequencing 

run of 2x51 cycles on an Illumina HiSeq 2000. 

Illumina TruSeq Stranded mRNA 

D1 total RNA was mixed with ERCC RNA Spike in Control Mix 1 and subjected to 

library preparation using Illumina TruSeq Stranded mRNA Sample Preparation kit 

(Low Sample Protocol) with slight modification. Briefly, polyA containing mRNA 

molecules were purified from the D1 RNA samples using polyT oligo-attached 

magnetic beads. Thermal fragmentation followed after two rounds of enrichment for 

polyA+ mRNA. First strand cDNA synthesis was performed using reverse 

transcriptase and random primers from the cleaved RNA fragments. This was 

followed by second strand cDNA synthesis using DNA Polymerase I and RNase H 

where the second strand was generated with dUTP in place of dTTP. These blunt end 

cDNA fragments then had the addition of a single A base and subsequent ligation of 
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the adapter. The products were purified and enriched with 12 cycles of PCR to create 

the final cDNA library.  Two additional rounds of purification of the cDNA libraries 

were done using Agencourt Ampure XP SPRI beads (Beckman Courter) to remove > 

600bp double stranded cDNA. All libraries were subjected to an indexed PE 

sequencing run of 2x51 cycles on an Illumina HiSeq 2000. 

Spike-in dataset 

The common background of the spike-in dataset was made using paired-end reads 

generated preparing with the TruSeq unstranded protocol 5 libraries, starting with 

1000 ng of total RNA extracted from the D1 cell (C1-C5), and 5 libraries starting with 

100 ng of total RNA D1 cells (T1-T5) (Additional Table 1S). The true positive set 

(TP) of transcripts was defined in the following way: exon counts for samples C1-C5 

and T1-T5 were loaded in R using DEXseq package [12] and UCSC mm9 annotation 

(28232 genes). Genes characterized by at least three isoforms were selected (6582). 

Then, those genes having at least one transcript characterized by at least one exon 

discriminating it from the other isoforms were selected (6313). The genes were 

further filtered, removing all transcripts characterized by having, for the 

discriminating exons, less than 10 counts in total in C1-C5 and T1-T5 samples (2970). 

Out of the 2970 transcripts 27 were randomly selected and from them one of the 

isoform was used for spike-in experiment (Additional Table 2S). Sequences data, 

generated with NuGEN v2, using as input 2 ng input total RNA, and with TruSeq 

unstranded, using 100 ng input total RNA, were used to construct three datasets made 

respectively of 20, 40 and 80 million reads. Each dataset was mapped against the 

mm9 mouse genome and the reads mapping to the 27 transcripts were extracted and 

spike-in C1-C5, T1-T5 to simulate transcripts up and down-regulation within two 

experimental conditions (Additional Table 2S). 

Synthetic dataset 

Out of the 2970 transcripts described in the previous paragraph we randomly selected 

58 transcripts. For each transcript we decide to spike-in a specific number of reads 

(Additional Table 3S). Then, 10000 values from a normal distribution, having as 

mean the defined number or reads to be spiked-in (Additional Table 3S) and a 

standard deviation of 1/10th of the mean, were generated. A value was then randomly 

selected and used to define the number spike-in to be placed in C1-C5 and T1-T5. 

Then, within each transcript, a uniform distribution of sequence start points made of 

10000 elements was defined. From this uniform distribution we selected the number 
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of reads to be spiked-in. Synthetic pair-end reads 2x51 nts were constructed. Reads 

were associated with a quality score of 40 and used to generate fastq files, which were 

added to C1-C5 and T1-T5 background samples. 

Isoforms quantification and statistical detection of alternative spliced isoforms 

Nu05, nu2, nu100, ts100, ts1000, ss, tss, tss_total, C-1-C5 and T1-T5 fastq data were 

mapped with STAR [14]. For Nu05, nu2, nu100, ts100, ts1000, ss, tss and tss_total 

isoform quantification was done with cufflinks [15]. Exon-level quantification was 

done using DEXSeq [12] and exon-exon junction quantification was done with 

subjunc function of the Rsubread [16] Bioconductor package. Cuffdiff 1 and cuffdiff 

2 [11], prototypic BA based on isoform-reconstruction, were used for detection of 

alternative spliced isoforms between C-1-C5 and T1-T5 groups using mm9 UCSC 

annotation. Isoforms were considered differentially expressed if characterized by q-

value ≤ 0.05. For exon-level analysis was used DEXSeq [12]. Isoforms were 

considered differentially expressed if at least one isoform-specific exon was detected 

as differentially expressed between C-1-C5 and T1-T5 groups with a Benjamini & 

Hochberg adjusted p-value ≤ 0.05. 
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Figures 

Fig. 1: Coverage and FPKM of isoforms in tss_total. A) Coverage distributions. B) 

FPKM distributions. The majority of the lost isoforms in tss_total are characterized by 

low coverage and low FPKM. 

Fig. 2: Transcripts coverage and FPKM in low input LSP. A) The number of the 

LSP specific transcripts increases linearly with the increment of the transcripts in 

common with ts100 LSP, which depends on total RNA input. B) Coverage for 

transcripts detected only by low input LSP (yellow boxes) is much lower than the 

coverage of transcripts in common with ts100 (green boxes). The increment on total 

RNA input does not improve the coverage for transcripts in common with ts100 

(green boxes). Coverage in ts100 LSP has higher coverage than the one obtained by 

low input LSP. C) Unless for 0.5 ng in low input LSP (yellow), the FPKM of all 

conditions show a similar distribution. D) The counts of the exons associated with the 

transcripts in B/C indicate a very low exon counts distribution for the nu05, nu2 and 

nu100 specific-exons (yellow boxes) and a lower number of exon counts associated to 

transcripts in common with ts100 in nu05, nu2 and nu100 (green boxes) with respect 

to ts100 exon counts (violet boxes). 

Fig. 3: Transcript coverage and FPKM in LSPs with 100-1000 ngs input of total 

RNA. A, B, C) Coverage for transcripts detected only by tss, ss, ts1000 LSPs is much 

lower than the coverage of transcripts in common with ts100. Transcripts detected in 

common with respect to ts100 show nearly identical coverage. 

Fig. 4: Characteristics of exon-exon junctions in low input LSP. A) The number of 

counts associated with exon-exon junctions in nu05, nu2 and nu 100 both for LSP-

specific transcripts and for those transcripts in common with ts100 have a detection 

range, which is narrow with respect to those detectable with ts100. B) Log2 ratio 

between nu05, nu2, nu100 and ts100 exon-exon junction counts, for transcripts 

detected in common by the two LSPs (light blue boxes); log2 ratio between nu05, nu2, 

nu100 and ts100 transcripts-specific exon-exon junction counts (orange boxes). 

Fig. 5: Benchmark dataset. A) Three datasets (TS20, TS40, TS80), based on spike-

in of TruSeq (input: 100 ng total RNA) reads extracted respectively from 20, 40 and 
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80 million reads were generated using a common background made by 5 different 

TruSeq library preps having as input 100 ng total RNA (T) and 5 different TruSeq 

library preps having as input 1000 ngs total RNA (C). B) Three datasets (NU20, 

NU40, NU80), based on spike-in of NuGEN (input: 2 ngs total RNA) reads extracted 

respectively from 20, 40 and 80 million reads were generated using the common 

background described above. Synthetic spike-ins are present both in A and B. 

Fig. 6: Differential expression of the spike-in data. A) Synthetic spike-ins 

characterized by uniform coverage over the transcripts. B) TruSeq spike-ins. C) 

NuGEN spike-ins. 

Fig. 7: Statistical detection of spliced isoforms. A) True positive transcripts 

detected as differentially expressed between C1-C5 and T1-T5 groups as function of 

the spike-ins (20,40,80) and of the LSP (NU, TS). B) True positive synthetic 

transcripts detected as differentially expressed between C1-C5 and T1-T5. Only the 

80 millions spike-in is considered since the synthetic spike-ins are identical over all 

the datasets. C) False positive transcripts detected in the dataset NU80, depending on 

the BA used in the analysis. Only the 80 millions spike-in is considered since the false 

positive are nearly in the same amount for 20, 40 and 80 millions spike-ins. D) False 

positive transcripts detected in the dataset TS80 depending on the BA used in the 

analysis. Only the 80 millions spike-in is considered since the false positive are nearly 

in the same amount for 20, 40 and 80 millions spike-ins. 

Fig. 8: Overlap of results among different BA in isoforms detection. A) NU80 

data set. B) TS80 dataset. 

 

Tables 
Table 1: Number of isoforms detected using Cufflinks [10] starting from 80 million 

reads generated by different Library sample preparation. 

Names KIT selection input 
(ng) 

Isoforms 
(FPKM 
> 0.1, 

Coverage 
> 0) 

sample 
prep 

specific 
transcripts 

with 
respect to 

ts100 

common 
with 

respect 
to ts100 

% in 
common 

with 
ts100 

nu05 NuGEN polyA 0.5 21707 2597 19110 77.37 
nu2 NuGEN polyA 2 24410 3502 20908 84.64 

nu100 NuGEN polyA 100 25901 4012 21889 88.62 
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ss ScriptSeq polyA 1500 24135 2078 22057 89.30 

ts1000 TruSeq 
unstranded polyA 1000 24857 1165 23692 95.92 

ts100 TruSeq 
unstranded polyA 100 24701 0 24701 100.00 

tss TruSeq 
stranded polyA 100 24318 1766 22552 91.30 

tss_total TruSeq 
Total Ribo-Zero 100 11993 464 11529 46.67 
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Additional files 
 
Additional Table 1S: Background Pair-end reads datasets 

 C1 C2 C3 C4 C5 T1 T2 T3 T4 T5 
Background PE reads 13.4M 25.8M 10.9M 13.4M 10.0M 8.4M 7.4M 19.6M 16.1M 7.3M 

 
 
 
Additional Table 2S: Endogenous and spike-in counts 

 C1-C5 mean nu2 ts100 T1-T5 mean nu2 ts100 
isoform endogenous 20M 40M 80M 20M 40M 80M endogenous 20M 40M 80M 20M 40M 80M 

uc009txr.2 755       607 159 318 541 973 2047 4074 
uc009ghp.2 1378.4       1068.4 1419 2637 9710 1768 3641 7228 
uc009gho.2 2038 1368 2600 10043 2623 5301 10618 1566       
uc007jtu.1 5453.2       4618 2781 5523 10820 816 16015 31665 
uc007jtv.2 6860.4       5656.6 2940 5830 11437 10013 19594 38859 
uc007gin.1 2863.8 489 974 2082 4208 8428 16800 2476       
uc008mib.2 5186       4281.6 1263 2539 6094 7315 14629 29243 
uc009eup.1 5863 7945 15397 29280 7934 15681 31240 4609.6       
uc007wpv.1 659.6       521.8 202 367 756 951 1814 3585 
uc007wps.1 546.8 398 722 2001 752 1492 3024 449.8       
uc012baj.1 385 346 628 1088 482 1000 1915 280.6       
uc008egx.1 358.6       261.4 362 657 1135 457 944 1795 
uc012hbj.1 299.6       234.2 135 261 494 396 814 1578 
uc007dpl.2 104.4 106 219 416 134 261 530 78       
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uc009oda.1 117.2       93.8 15 33 259 166 329 638 
uc007mki.1 142.4       109.8 49 105 198 206 413 767 
uc007mkf.1 92.6       77.4 14 30 47 142 292 540 
uc009fyx.1 4.4 16 29 52 11 23 35 4       
uc007aui.1 100.4       75.6 55 109 267 134 256 515 
uc012ffj.1 107.6       81.4 41 76 180 135 261 546 

uc009gyv.2 65.4 56 108 192 101 212 370 50.6       
uc007hwe.1 70.2       64.6 31 58 83 118 214 436 
uc009rfh.2 244.4       178 339 653 1187 255 558 1150 
uc009rfi.1 20.4 19 29 77 21 55 115 17.6       
uc009nfj.1 399.2       306.2 75 150 267 582 1155 2178 

uc009mpg.1 61.2       51 9 14 117 85 185 350 
uc007ris.1 54.2       37.8 15 31 63 85 163 289 

 
Additional Table 3S: Synthetic spike-in data 

gene isoform C T avr expr log2FC 
kif18a uc008lly.1 500 1000 750 1.00 
kif18a uc008llz.1 500 500 500 0.00 
kif18a uc008lma.1 200 200 200 0.00 
kif18a uc008lmb.1 5000 5000 5000 0.00 
kif18a uc008lmc.1 5000 2500 3750 -1.00 
Dnaja1 uc008sht.2 100 200 150 1.00 
Dnaja1 uc012dby.1 100 100 100 0.00 
Dnaja1 uc012dbx.1 100 100 100 0.00 
Tmco6 uc008eog.1 1000 500 750 -1.00 
Tmco6 uc008eoh.1 500 100 300 -2.32 
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Tmco6 uc008eoi.1 100 100 100 0.00 
Trm1l uc007cys.1 5000 5000 5000 0.00 
Trm1l uc007cyw.2 500 1000 750 1.00 
Trm1l uc007cyr.1 100 100 100 0.00 
Trm1l uc007cyv.2 100 100 100 0.00 

Fam126b uc007bcj.2 500 1000 750 1.00 
Fam126b uc007bci.2 500 500 500 0.00 
Fam126b uc007bch.2 100 100 100 0.00 
Mmgt2 uc007jjq.1 2500 1500 2000 -0.74 
Mmgt2 uc007jjs.1 500 100 300 -2.32 
Mmgt2 uc007jjr.1 100 100 100 0.00 
Prmt10 uc009mhp.1 100 10 55 -3.32 
Prmt10 uc012ggg.1 100 100 100 0.00 
Prmt10 uc009mhq.1 100 100 100 0.00 
Thnsl1 uc008ind.1 100 10 55 -3.32 
Thnsl1 uc008inb.1 100 100 100 0.00 
Thnsl1 uc008inc.1 100 100 100 0.00 
Tmem8 uc009kkr.2 10 10 10 0.00 
Tmem8 uc009kks.2 10 10 10 0.00 
Tmem8 uc009kkq.2 10 50 30 2.32 
Cbx7 uc007wuw.1 500 1000 750 1.00 
Cbx7 uc007wuv.1 100 100 100 0.00 
Cbx7 uc007wux.1 500 500 500 0.00 
Msh2 uc008dvb.1 10000 7000 8500 -0.51 
Msh2 uc008dva.1 1000 1000 1000 0.00 
Msh2 uc008duz.1 100 5000 2550 5.64 
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Casp9 uc008vpi.1 5000 2500 3750 -1.00 
Casp9 uc012doe.1 1500 1500 1500 0.00 
Casp9 uc008vph.1 10000 10000 10000 0.00 
Rft1 uc007svm.1 500 500 500 0.00 
Rft1 uc007svn.1 100 100 100 0.00 
Rft1 uc011zhy.1 100 100 100 0.00 
Rft1 uc011zhz.1 1000 500 750 -1.00 

Atg16l1 uc007bxi.1 10 100 55 3.32 
Atg16l1 uc007bxk.1 300 300 300 0.00 
Atg16l1 uc007bxl.1 500 500 500 0.00 
Atg16l1 uc007bxm.1 1000 100 550 -3.32 
Atg16l1 uc007bxn.1 100 100 100 0.00 
Rnf130 uc007irk.1 100 1000 550 3.32 
Rnf130 uc007irl.1 3000 3000 3000 0.00 
Rnf130 uc007irm.1 10 10 10 0.00 
Rnf130 uc007irn.1 1500 200 850 -2.91 
Arpp19 uc009qro.1 10 10 10 0.00 
Arpp19 uc009qrn.2 10 10 10 0.00 
Arpp19 uc012gwx.1 20 5 12.5 -2.00 
Arpp19 uc009qrp.1 5 5 5 0.00 

Tgfbrap1 uc007avg.1 100 100 100 0.00 
Tgfbrap1 uc007ave.1 50 50 50 0.00 
Tgfbrap1 uc007avh.1 20 10 15 -1.00 
Tgfbrap1 uc007avf.1 10 10 10 0.00 
Bcl2l13 uc009dns.1 20 50 35 1.32 
Bcl2l13 uc009dnu.1 50 20 35 -1.32 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 26, 2014. ; https://doi.org/10.1101/005546doi: bioRxiv preprint 

https://doi.org/10.1101/005546
http://creativecommons.org/licenses/by-nd/4.0/


Carrara et al. Page 25 

Optimization of alternative splicing detection workflow 
 

Bcl2l13 uc009dnt.1 20 20 20 0.00 
Skil uc008ovt.1 40 80 60 1.00 
Skil uc008ovu.1 30 30 30 0.00 
Skil uc012coi.1 10 10 10 0.00 
Skil uc008ovv.1 30 60 45 1.00 

tubg1 uc007lnl.1 20 40 30 1.00 
Slc25a35 uc007jop.1 200 400 300 1.00 

Ccnt2 uc007cky.1 4000 3000 3500 -0.42 
Gas5 uc007det.1 10 30 20 1.58 
Hdh uc008xda.1 500 150 325 -1.74 

Tmem62 uc012ccj.1 5000 10000 7500 1.00 
Rcbtb2 uc007upl.2 20 90 55 2.17 
B3gat3 uc008gob.1 600 100 350 -2.58 
Rad51 uc012cbp.1 6000 15000 10500 1.32 
Bbs9 uc012gpo.1 600 400 500 -0.58 

Sh3pxd2b uc007ijo.1 7500 3000 5250 -1.32 
Sh3pxd2b uc007ijq.1 6000 15000 10500 1.32 
Sh3pxd2b uc007ijp.1 6000 15000 10500 1.32 

2810002N01Rik uc007pdt.2 6000 12000 9000 1.00 
2810002N01Rik uc011yuy.1 25000 6000 15500 -2.06 
2810002N01Rik uc007pdu.2 25000 6000 15500 -2.06 

Pla2g16 uc008glj.1 750 300 525 -1.32 
Pla2g16 uc008glh.1 600 1500 1050 1.32 
Pla2g16 uc008gli.1 600 1500 1050 1.32 

AK005305 uc007yrp.1 600 1200 900 1.00 
AK005305 uc007yro.1 2500 600 1550 -2.06 
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AK005305 uc007yrn.1 2500 600 1550 -2.06 
Evi5l uc009kta.1 75 30 52.5 -1.32 
Evi5l uc009ktc.1 120 250 185 1.06 
Dvl3 uc007ypv.1 60 120 90 1.00 
Dvl3 uc007ypx.1 250 60 155 -2.06 
Dvl3 uc007ypw.1 250 60 155 -2.06 
Sin3b uc012gfz.1 120 360 240 1.58 
Sin3b uc009mgq.3 120 120 120 0.00 
Sin3b uc009mgp.2 2000 2000 2000 0.00 
Sin3b uc009mgo.3 120 120 120 0.00 

Phospho2 uc008jyr.1 360 150 255 -1.26 
Phospho2 uc008jyp.1 150 150 150 0.00 
Phospho2 uc008jyq.1 500 500 500 0.00 

Zfp384 uc009dsw.1 1200 1200 1200 0.00 
Zfp384 uc009dsx.1 100 100 100 0.00 
Zfp384 uc009dsy.1 1500 2500 2000 0.74 
Zfp384 uc009dsz.1 2500 2500 2500 0.00 
Tom40 uc012fbi.1 60 10 35 -2.58 
Tom40 uc009fna.2 10 10 10 0.00 
Tom40 uc009fnb.2 20 20 20 0.00 
Tom40 uc009fnc.2 100 100 100 0.00 
Parg uc007syp.1 300 300 300 0.00 
Parg uc007syr.1 1200 400 800 -1.58 
Parg uc007syo.2 400 400 400 0.00 
Parg uc007syq.1 1200 1200 1200 0.00 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 

 
 

cuffdiff1_nu

cuffdiff2_nudexseq_nu

1 30

1

1 3

1

cuffdiff1_ts

cuffdiff2_tsdexseq_ts

5 24

2

1 0

4

A" B"


