bioRxiv preprint doi: https://doi.org/10.1101/005686; this version posted September 12, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Cancer-associated recurrent mutations in RNase 111
domains of DICER1

Biilent Arman Aksoy'2, Anders Jacobsen'#, Robert J. Fieldhouse!, William
Lee!, Emek Demir!, Giovanni Ciriello!, Nikolaus Schultz!, Debora S. Marks® and
Chris Sander!

I Computational Biology Center, Memorial Sloan-Kettering Cancer Center, NY, NY,
10065
2Institutional Training Program in Computational Biology & Medicine, NY, NY, 10065
3Department of Systems Biology, Harvard Medical School, Boston, MA, 02115
4Current address: Section for Computational and RNA Biology, Department of Biology,
University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark

Abstract

Mutations in the RNase IIIb domain of DICERI are known
to disrupt processing of 5p-strand pre-miRNAs and these muta-
tions have previously been associated with cancer. Using data
from the Cancer Genome Atlas project, we show that these muta-
tions are recurrent across four cancer types and that a previously
uncharacterized recurrent mutation in the adjacent RNase Illa
domain also disrupts 5p-strand miRNA processing. Analysis of
the downstream effects of the resulting imbalance 5p/3p shows
a statistically significant effect on the expression of mRNAs tar-
geted by major conserved miRNA families. In summary, these
mutations in DICERI lead to an imbalance in miRNA strands,
which has an effect on mRNA transcript levels that appear to
contribute to the oncogenesis.
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Brief Communication

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate
expression of their transcript targets [I] DICERLI is a key enzyme that is
responsible for cutting the 5p and 3p strands of the pre-miRNA in the early
stages of the miRNA biogenesis. Processing of the 5p and 3p strands, which
is carried out by the RNase III domains of DICER1, is necessary for loading
the functional miRNA strand into the RISC complex. Previous studies have
identified recurrent mutations in the RNase IIIb domain in different cancer
types [2, B, [4, B 6], [7, 8, 9]. These mutations (at residiues , ,

) and ) were shown to be in the active site of the enzyme
and were proven to disrupt the processing of the 5p stand of the miRNA [I0].
Others have shown that hotspot mutations in the RNase IIIb domain cause
depletion of 5p strands relative to their corresponding 3p strands, leading
to an asymmetry in the abundance of the two [I1], [7].

Although the asymmetry in the miRNA processing due to hotspot muta-
tions has been characterized using model organisms; the effect of this miRNA
depletion on the mRNA levels have not been studied extensively in the con-
text of the human tumors. It is, for example, unknown whether it is the
5p-strand depletion or increased 3p-strand accessibility that promotes the
cancer. In either of the cases, it is also unknown whether there is any partic-
ular miRNA or miRNA family of which depletion or over-expression drives
this phenotype. In this study, using human tumor data from the Cancer
Genome Atlas (TCGA) project, we wanted to better characterize the effects
of DICER1 mutations on miRNA and mRNA profiles of the patients.

We first asked whether we could observe the asymmetry in the miRNA
processing using the miRNA-Seq data. For this, we looked whether any of
the previously identified hotspot mutations were present in the TCGA data
set (14 cancer types, 5535 sequenced samples). We found that 15 out of
123 DICER1 mutants carried a mutation in the RNase I1Ib domain of the
protein at a previously identified hotspot (Figure [lp). After filtering out
cases that were hyper-mutated and samples that did not have miRNA-Seq
data available, we were left with 8 DICERI hotspot mutants. We then
compared the miRNA levels in these hotspot mutants to the miRNA levels
in 3171 DICER1 wildtype tumors across multiple cancers. Confirming the
results of the previous studies, we saw 5p strand miRNAs were relatively
down-regulated in mutants and the changes in the expression of 5p strands
were significantly different than the 3p strands (Wilcoxon rank sum test;
p < 107%%; Figure —c).

Having observed a phenotype characterized by relative 5p strand deple-
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tion in hotspot RNase IIIb mutants, we asked whether any of the other
DICER1 mutants had a similar phenotype. To investigate this, we first es-
timated the abundance of 5p strands relative to 3p strands for each patient:
mg73 = logy(mi/mb), where m! is the median expression of the z-strand
miRNAs in patient i. As expected, the majority of the hotspot mutants
had exceptionally low 5p-strand abundance compared to DICER1 wildtypes
(Figure [1{).

In addition to the known hotspots mutants, we identified three more
DICERI mutant cases that had relatively low 5p abundance (mg3 < 0).
One of these three DICERI mutants had a hotspot mutation in its RNase
IIIb domain, but was excluded from the initial analysis because it was a in
hyper-mutated sample (Table . Surprisingly, the other two cases with
low 5p abundance had an 513441, mutation in the RNase IIla domain that
is responsible for processing the 3p strand of the miRNA.

As the observation of recurrent mutations in cancer samples is consistent
with a selective functional impact of the mutation, the question arises as to
the effect of the 513441, mutations on the catalytic function of the RNase do-
mains. Inspection of the 3D structure (or model) of the individual domain
reveals that residue S13441 (in domain IIla) and its homologous residue
T1733 (in domain IIIb) are far from the active site residues (19.60+£2.62A
distance) in their respective domains (Figure [lg). However, evolutionary
couplings [12] between S13441./T1733 and the active site residues, as de-
duced from co-evolution patterns in the multiple sequence alignment of
RNase Ill-like domains, are fairly strong. The contradiction is resolved
by inspection of the model of the RNase IIIa - ITIb heterodimer (as inferred
from the crystal structure of the RNase IIIb homodimer) [I0]. In the het-
erodimer, 513441, in domain IITa is close (11.7241.98A distance) to active
site of domain IIIb (residues , , ) and ) and
T1733 in domain IIIb is close to the active site residues of domain IIla.
These residue arrangements and functional couplings are beautifully consis-
tent with the observation that mutations in S1344L in domain IIla affect
5p processing, as observed in our analysis of the effect of these mutations
on the balance of 3p/5p miRNA expression profiles in cancer samples. This
is consistent with the earlier observations that mutations in the active site
residues of domain IlTa affect 3p processing, while mutations in the active
site residues of domain I1Ib affect 5p processing. The subtly of the difference
between the earlier and current observation lies in the residue interactions
across the heterodimer interface [13] and in fact the earlier observation of
3p/5p asymmetry are confirmed here by completely independent observation
in human cancer samples.
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Other studies have shown that DICER1 hotspot mutations are biallelic
in cancer, where a disabling mutation acts as the second hit to the enzyme
[0, 6, 8] Based on this observation, the relative 5p depletion phenotype of
RNase III mutants in our analysis suggested that these patients also had a
second event disabling the other DICERI allele. To address this question,
we re-analyzed the sequencing data available for DICER1 mutant cases,
this time using a different pipeline that can better identify insertions or
deletions. In a majority of the DICER1 RNase III hotspot mutant samples,
we were able to identify a secondary disabling genomic event affecting the
other DICER1 allele (Table[S3)). Furthermore, we found that these biallelic
mutated cases had lower 5p abundance than the other DICER mutants in
our earlier analysis.

Having identified possibly functional mutations in DICER1 and their
effect on the miRNA profiles, we tested whether these mutations lead to
functional changes in the mRNA profiles. Others have previously char-
acterized DICER1 hotspot mutations using mouse-derived cell lines as in
vitro models [7, [8, [I1] These studies have shown that the mRNA profiles of
cell lines with different DICER1 RNase IIIb hotspot mutations had differ-
ent mRNA signatures compared to the DICER1-wildtype cell lines. They
further found an association between the down-regulated miRNAs and their
differentially-expressed target transcripts, which suggests a differential regu-
lation of the mRNA levels due to asymmetric miRNA processing in DICER1
hotspot mutants.

Although there is in vitro evidence that the asymmetry in the miRNA
processing lead to significant changes in the mRNA profiles; there are no
previous reports that describe the differential mRNA expression in accor-
dance with the miRNA expression data from human tumors. To this end,
we identified 12 cases across four cancer types that both had RNA-Seq data
available and carried a hotspot RNase III mutation either in the IIla or
ITIIb domains of the DICER1 protein. We then wanted to check whether
we could identify a common mRNA expression signature for these DICER1
RNase III hotspot mutants in comparison to 1212 DICER1 wildtype cases in
those four cancer studies. For this, we decided to restrict our analysis to the
Uterine Corpus Endometrial Carcinoma (UCEC) study where the RNA-Seq
data set contained 8 DICERI RNase III mutants and 222 DICERI1 wild-
types. We found 10 genes to be significantly up-regulated and none to be
down-regulated in the hotspot mutated cases when compared to wildtypes
(p < 0.05 after Bonferroni correction; Table [S4)). Notably, we found higher
expression of HMGAZ2, a well-known oncogene and target of let-7 miRNA
family, in mutants [14], [15] [1J.
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Following up on this, we asked whether the up-regulated genes in mu-
tants were targets of particular miRNA families. To answer this question,
we conducted a gene set enrichment analysis (GSEA) using well-known bi-
ological pathways and well-conserved miRNA family target genes as our
query gene sets [I6]. Our analysis showed strong enrichment of both let-
7/98/4458/4500 and miR-17/17-5p/20ab/20b-5p/93/106ab/427/518a-3p/519d
target genes in RNase III mutants (Table [1; FDR < %10). For both fam-
ilies, 5p strand of the miRNA is the predominant strand and as expected,
in RNase III mutant cases, bp-strand miRNAs that belong to these fami-
lies were relatively down-regulated. Results from the GSEA also suggested
that there was relatively weaker enrichment for other miRNA families and
NOTCH-related pathways (Table |1 FDR < %15). A majority of the en-
riched gene sets (5 out of 7) represented miRNA family targets, which sug-
gests the gene expression signature associated with these RNase I1I hotspot
mutants is more likely to be mediated by depleted miRNA families rather
than a common biological pathway. In accordance with the 5p strand de-
pletion phenotype, a majority of these miRNA families (3 out of 5) were
5p-strand dominated. For the other two families, miR-29abcd and miR-
101/101ab, although 3p is the pre-dominant miRNA strand, we saw that
members of these families were down-regulated as a family in DICERI mu-
tants compared to wildtype, which might be due to an indirect regulatory
effect of 5p miRNA depletion.

In summary, we showed that biallelic DICERI RNase III hotspot mu-
tations, although infrequent across cancers, lead to relative depletion of 5p
stand of miRNAs. In addition to known hotspot mutations, we were able
to identify a previously unknown recurrent DICER1 mutation, S1344, that
also leads to the 5p depletion phenotype. In accordance with the miRNA
depletion phenotype, we saw up-regulation of genes that are well-known tar-
gets of the bp-dominant miRNA families in mutant samples. It still remains
unclear whether up-regulation of a particular gene, such as HMGA2, or ac-
tivation of a particular pathway, such as NOTCH, is contributing to the
oncogenesis as a result of the 5p miRNA depletion in these cells.
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Figure 1: Disabling mutations in RNase III domains of DICER1
lead to 5p miRNA depletion in cancer. a) A majority of the hotspot
mutations in the RNase III domains of the DICER1 are present in the Can-
cer Genome Atlas project across multiple cancer types. b-c) Hotspot muta-
tions in the RNase IIIb domain cause relative down-regulation of Hp-stand
and up-regulation of 3p strand miRNAs in mutants compared to DICER1
wild-types. d) Hotspot mutated samples tend to have relatively lower 5p
miRNA abundance compared to DICER1 wild-type cases. Using sample-
specific relative 5p abundances, we identified three more DICER1 mutated
cases that also show 5p-depletion phenotype (ms3 < 0). € Two out of three
cases, who has relatively low 5p abundance, had a 51344 mutation in the
RNase IlTa domain that is responsible for processing the 3p strand of the
miRNA. The mutated amino acid, S1344 in RNase IIla domain, is homolo-
gous to T1733 in RNase IIIb domain, which in turn is evolutionary coupled
to the hotspot mutations. This indicates that S1344, although it is in RNase
IITa domain, is important for proper functioning of the RNase I1Ib domain.
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S1 Online Methods

The code for analyses conducted in this study and supplemental results for
each of the analyses are available at http://bit.ly /dicer5p. In this study, we
used miRNA, RNA-Seq and sequencing data from 14 TCGA cancer studies

(Table [ST).

Table S1: We analyzed a total of 2855 samples with miRNA and
sequencing data across 14 cancer studies from the Cancer Genome

Atlas.
Abbreviation Cancer study name # of samples

BLCA Bladder urothelial carcinoma 137

BRCA Breast invasive carcinoma 190
COADREAD Colorectal adenocarcinoma 241
GBM Glioblastoma multiforme 248

HNSC Head and Neck squamous cell carcinoma 267

KICH Kidney chromophobe 64

KIRC Kidney renal clear cell carcinoma 184

LGG Brain lower grade glioma 286

LUAD Lung adenocarcinoma 180

LUSC Lung squamous cell carcinoma 51

PRAD Prostate adenocarcinoma 248

STAD Stomach adenocarcinoma 244

THCA Thyroid carcinoma 399

UCEC Uterine corpus endometrial carcinoma 116
Total 2855

S1.1 Identification of DICER1 hotspot mutations

We first asked whether previously identified DICER1 hotspot mutations
at residues , , , and are present in TCGA
data sets. For this, we conducted a cross-cancer query on cBioPortal [I7] and
found 123 out of 5535 sequenced samples to be DICER1 mutated (Figure
and File all_tcga-dicer1-2014__03_20.maf). Of these 123, 12 tumor samples
had at least one DICER1 mutation in the RNase IIIb domain.

S1.2 Analysis of the miRNA-Seq data

We next wanted to see if hotpost mutant tumors had a distinct miRNA ex-
pression profile compared to other samples. To address this question, we first
obtained normalized miRNA-Seq data sets (Level 4) from the most recent

S1
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TCGA analysis runs (January 15, 2014) as generated with the Firehose anal-
ysis pipeline. miRNA-Seq data for Glioblastoma Multiforme cancer study
was not available from this resource, therefore, for GBM, TCGA Level 1
microarray expression data were processed and normalized using the AgiMi-
croRna R package and using settings further explained in a previous study
[18, [19].

We then wanted to see whether particular miRNAs were differentially
expressed in DICER1 RNase IIIb mutants compared to DICER1 wild-type
cases. We initially excluded hotspot mutants from the analysis if they were
either categorized as hyper- or ultra-mutated, or if the predicted effect of
the mutation was not high as assigned by the Mutation Assesor (Table
[20]. To check for differential expression, we compared distribution of each
miRNA expression in mutants versus wildtypes by using a Wilcoxon rank
sum test. We adjusted the p-values using a Bonferroni correction for multiple
hypothesis testing. To estimate the change in expression, we calculated
the difference in median log2-based expression values between mutant and
wildtype samples (Figure [Ib-c).

Table S2: To identify the miRNA expression signature associated
with hotspot DICER1 mutations, we excluded hyper-mutated
cases from the initial analysis. Ultra- or hyper-mutated cases tend
to have higher number of somatic mutations compared to other samples. To
identify miRNA profiles associated with the hotspot DICER1 mutants in a
restrict way, we first conducted the differential miRNA expression analysis
only on samples with relatively low number of somatic mutations (n < 1000).

Sample identification Reason for exclusion
TCGA-A6-6141 Hyper-mutated sample
TCGA-AP-AOLM Low allele frequency and ultra-mutated sample
TCGA-BS-A0UV  Low FIS and ultra-mutated sample
TCGA-CG-5733 Low FIS and hyper-mutated sample
TCGA-D1-A17Q Ultra-mutated sample

To check whether the distribution of differential miRNA expression was
different for different strands of the miRNA, we conducted pairwise com-
parisons of the differential expression values for different strands of miRNA:

, 3p and where means no strand information was available for
that miRNA. For this comparison, we utilized Wilcoxon rank sum test and
adjusted the p-values using a Bonferroni correction.
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S1.3 Additional mutation calling for DICER1 hotspot mu-
tants

Having observed different levels of respective 5p strand depletion in hotspot
DICER1 mutants, we wanted to see if patients with extreme phenotypes had
any additional germline or somatic mutations affecting the other DICER1
allele. We, therefore, downloaded whole-exome binary sequence alignment
and mapping (BAM) files for normal and tumor samples corresponding to
the hotspot DICER1 mutated cases from |(CGHub. We then used Haplo-
typeCaller utility from the Genome Analysis Toolkit to do the joint variant
calling on these BAM files [21]. To annotate the variants, we used Mutation
Assesor and Oncotator tools [20].

We next used the annotated mutation file to look for new mutations that
were not called by the TCGA pipeline (File: muts_tcga-dicer1-secondcall-
201404 09.maf). In addition to the previously called hotspot mutations,
we were able to identify other disabling DICER1 alterations in samples that
showed relatively low 5p strand abundance (Table [S3).

S1.4 Identification of evolutionary couplings in RNase III
domain

In our miRNA expression analysis, in which we estimated the relative 5p
strand abundance for each patient, we saw that two samples that have the
biallelic S13441, mutation had considerably low 5p abundance. Based on
the fact that RNase III dimerization is necessary for proper DICER1 func-
tioning, we wanted to see how S1344L could affect 5p miRNA processing
[13]. For this we ran evolutionary couplings (ECs) analysis with default
settings on the EVFold server (v1.11) [I2]. We provided DICER_HUMAN
(UniProt:Q9UPY3) as the input protein, residues 1423-1922 of DICERI1 as
the sequence of interest to center the RNase I1Ib domain and PDB:2ebl| as
the reference structure [I0]. We set the e-value for jackhmmer as 107'% and
the inference method for determining the evolutionary couplings as Pseudo
Likehood Maximization (PLM).

The analysis showed that the most strongly constrained residues (with
strong couplings to other residues) were 1708, , , and 1704.
The contact maps were fairly structured, indicating they were of reasonable
quality (File: EvCouplings DICER1 _RNaselllb__with_2ebl.zip). Well-known
active site residues with relatively high EC strength included , and

. We found that residues , and were coupled to 1733.
These ECs, however, were not consistent with the known structural con-
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Table S3: Hotspot DICER1 mutations that lead to 5p depletion
phenotype are biallelic in TCGA samples. For the majority of the
hotspot DICER1 mutants, we were able to identify a second genomic event
that affect the other DICER1 allele. These biallelic mutated samples were
enriched for stronger 5p depletion phenotype (i.e. lower ms3) compared
to monoallelic alterations. THCA: Thyroid carcinoma; UCEC": Uterine cor-
pus endometrial carcinoma; GBM: Glioblastoma multiforme; COADREAD:
Colorectal adenocarcinoma; CNA: Copy number alteration; HetLoss: Het-
erozygous loss; N/A: Not available.

Sample identifier Cancer study Mutation CNA msg3
TCGA-EL-A3GO THCA , K376fs - -1.43
TCGA-D1-A15Z UCEC , L539fs - -1.08
TCGA-EL-A3D5 THCA , L81fs - -1.05
, M18211,
TCGA-DI-AOWH UCEC K1486fs - -1.02
TCGA-06-2569 GBM CLPSIL1053dcl Gain -0.93
TCGA-A5-AOGN UCEC S13441. HetLoss -0.92
TCGA-14-0871 GBM Homozygous - -0.83
TCGA-A6-6652 COADREAD HetLoss -0.71
TCGA-B5-A11U UCEC S1344L, P1377fs - -0.63
TCGA-D1-A17Q UCEC , H341P - -0.36
. R490H,
TCGA-AP-AOLM UCEC F1650C - 0.36
TCGA-DM-A28C COADREAD - 0.48
TCGA-A5-A0GH UCEC , V1731fs - N/A
TCGA-BG-A0OM6 UCEC - N/A
TCGA-D1-A0ZP UCEC - N/A
straints as , and were not in close proximity to 1733 in the

3D structure (19.60+2.62A distance).

A multi-alignment involving both RNase I1Ia and IIIb domains indicated
that 51344 in RNase IIla domain was homologous to 1733 in RNase IIIb
domain. We then inspected the corresponding locations of these residues in
the 3D protein structure and found that ECs from residues , and

to 1733 were better explained in the RNase IIIb dimer context, where
active site residues in one domain were closer (11.7241.98A distance) to the
1733 (i.e. S1344) in the other domain. Based on these observations, we
concluded that these couplings might indicate an important role for 51344,
together with other active site residues ( , , ) in RNase IIIb
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domain, in 5p strand processing.

S1.5 Analysis of the RNA-Seq data

We next asked whether DICER1 hotspot mutants had distinct gene expres-
sion profiles compared to other samples. To answer this question, similar
to miRNA data, we obtained processed and normalized RNA-Seq data sets
(Level 4) from the most recent TCGA analysis runs (January 15, 2014)
as generated with the [Firehose analysis pipeline. We found that THCA,
GBM, COADREAD studies had RNA-Seq data for less three hotspot mu-
tants, hindering a statistically robust comparison. We, therefore, decided
to restrict our analysis to only UCEC study, where there were 8 DICER1
hotspot mutant and 222 DICER1 wildtype samples.

We then conducted a differential gene expression analysis using the
limma voom R package on the gene-level RSEM counts for UCEC study
and contrasted the hotspot mutant to wildtype samples [22]. We found
9 genes to be significantly up-regulated—and none down-regulated—in mu-
tants (p < 0.05 after Bonferroni correction; Table File: DGE-UCEC-
muts_vs_wts-allGenes.tsv).

Table S4: A differential gene expression analysis comparing
DICER1 hotspot mutants to wildtypes showed 9 significantly up-
regulated genes in mutants. We compared the gene expression levels in
8 DICER1 mutants to the levels in 222 DICER1 wildtypes using the limma
voom toolkit. We used Bonferroni correction to adjust our p-values for mul-
tiple hypothesis testing and found 9 genes to be differentially up-regulated
in mutants (peq; < 0.05). logF'C: change in gene expression (log based)

Gene Gene ID  logFC p-value adjusted p-value
HMGA2 8091 3.708 0.0000000001 0.0000016619
IGDCC3 9543 3.648  0.0000000025 0.0000409144
ACVR2B 93 1.211  0.0000000083 0.0001365400
MMP16 4325 2.333  0.0000002521 0.0041232946
C170rf63 55731 0.782  0.0000002798 0.0045772958

ADAMTS7 11173 1.993  0.0000007622 0.0124675442
IGF2BP2 10644 3.294  0.0000015289 0.0250102395
FAM171B 165215 1.801 0.0000021387 0.0349852741
MGAT5B 146664  2.875 0.0000023541 0.0385090592
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S1.6 Gene set enrichment analysis (GSEA)

Having observed up-regulated genes in DICER1 hotspot cases compared to
wildtypes, we wanted to see whether these genes were targets of particular
miRNAs or members of canonical pathways. To answer this question, we
utilized a gene set enrichment analysis (GSEA) using the UCEC data set.

To create gene sets for targets of the well-conserved miRNA families,
we first downloaded predicted miRNA targets from TargetScan (Release
6.2) and then aggregated these predictions using miRNA family-member
associations to obtain a list of targets for each miRNA family [23]. We next
filtered out predictions with conservation score lower than 90% and then
collected targets that were in the upper 5 percentile considering their context
score (i.e. scores lower than —0.3555). Using these filtered predictions, we
created gene sets that were compatible with the conventional GSEA analysis
[16].

We combined these miRNA target gene sets with gene sets represent-
ing well-known and curated Reactome pathways from MSigDB [24] 25].
This gave us a total of 719 gene sets, consisting of 674 gene sets for path-
ways and 45 for targets of miRNA families (File: GSEA-GeneSymbols-
mirFamilies_and_ Pathways.gmt). For the GSEA, we utilized the romer
utility from the limma toolkit and used the contrast model that we used in
the RNA-Seq data analysis [26]. We set the number of rotations to 10,000
and for each gene set, tested whether the genes in the set were enriched for
any direction (up- or down-regulation).

We found genes in 7 different sets to be significantly enriched towards
up-regulation and none in the reverse direction (FDR < 0.15; Table [1} File:
GSEA-UCEC-muts_vs_wts.tsv). 5 out of 7 gene sets were representing
target genes for miRNA families and 3 of these were miRNA families for
which 5p strand was the predominant strand according to miRBase [27].
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