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Abstract In vitro cell biology assays play a crucial role in informing our understanding of the

migratory, proliferative and invasive properties of many cell types in different biological contexts.

While mono-culture assays involve the study of a population of cells composed of a single cell

type, co-culture assays study a population of cells composed of multiple cell types (or subpopu-

lations of cells). Such co-culture assays can provide more realistic insights into many biological

processes including tissue repair, tissue regeneration and malignant spreading. Typically, system

parameters, such as motility and proliferation rates, are estimated by calibrating a mathematical

or computational model to the observed experimental data. However, parameter estimates can

be highly sensitive to the choice of model and modelling framework. This observation motivates

us to consider the fundamental question of how we can best choose a model to facilitate accurate

parameter estimation for a particular assay. In this work we describe three mathematical models of

mono-culture and co-culture assays that include different levels of spatial detail. We study various

spatial summary statistics to explore if they can be used to distinguish between the suitability of

each model over a range of parameter space. Our results for mono-culture experiments are promis-
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ing, in that we suggest two spatial statistics that can be used to direct model choice. However,

co-culture experiments are far more challenging: we show that these same spatial statistics which

provide useful insight into mono-culture systems are insufficient for co-culture systems. Therefore,

we conclude that great care ought to be exercised when estimating the parameters of co-culture

assays.

Keywords cell migration · cell proliferation · monolayer development · multispecies · co-culture

assay

1 Introduction

In vitro cell biology assays are an essential element in the study of the migratory, proliferative

and invasive properties of different types of cells [Kramer et al. 2013], and they provide insight

into various phenomena including malignant spreading [Van Kilsdonk et al. 2010] and wound heal-

ing [Xie et al. 2010]. While many types of such in vitro assays involve a mono-culture system of a

single cell type, many other applications require the analysis of a co-culture system that investi-

gates the migration and proliferation of multiple cell types or subpopulations. For example, wound

healing requires the controlled proliferation and migration of both keratinocytes and fibroblasts as

well as a number of complex interactions between these two cell types [Wang et al. 2012].

An example of an in vitro mono-culture assay is shown in Figure 1(a)–(c). This is a growth-

to-confluence assay involving 3T3 fibroblast cells [Todaro et al. 1963]. In this kind of assay, an

initially uniform population of cells is placed on a tissue culture plate and monitored in real time

as the individual cells within the population move and proliferate to eventually form a confluent

monolayer [Simpson et al. 2013]. Analyzing the rate at which the density of cells increases with

time allows us to make inferences about the rate at which the cells proliferate [Simpson et al. 2013],

which is an essential component of collective cell spreading. Alternatively, an example of an in vitro

co-culture assay is shown in Figure 1(d)–(f). This is a growth-to-confluence assay involving two

cell types: melanocytes and keratinocytes. In this assay, the two cell types are placed on a tissue

culture plate and monitored in real time as cells from both subpopulations move and proliferate,

eventually leading to a confluent monolayer of cells containing a mixture of both cell types.
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Fig. 1 Snapshots showing two growth-to-confluence assays. Images in (a)–(c) show a mono-culture experiment

using a population of 3T3 fibroblast cells whereas the images in (d)–(f) show a co-culture experiment containing a

subpopulation of melanocyte cells (red arrows) amongst a population of keratinocytes (no arrows). The scale bar in

all subfigures corresponds to 100 µm.

Our previous work has focused on developing and applying mathematical models to inter-

pret mono-culture growth-to-confluence experiments [Markham et al. 2013a,Simpson et al. 2013].

In particular, we showed that mono-culture growth-to-confluence experiments can be described

using three different mathematical modelling frameworks. Firstly, we considered a stochastic de-

scription of individual cell motility, proliferation and death events which has the advantage of

directly incorporating individual cell-level behaviours and naturally gives rise to spatial correla-

tions in cell locations, but is analytically intractable [Codling et al. 2008,Deroulers et al. 2009].

Secondly, we considered the traditional corresponding mean-field description of the average cell

population density which has the advantage of being analytically tractable but suffers from the

disadvantage of neglecting spatial correlations in the distribution of individual cells [Hughes 1995,

Liggett 1999]. Thirdly, we considered the more sophisticated corresponding moment dynamics de-

scription of the average cell density which has the advantage of being computationally tractable

and approximately incorporating the effects of spatial correlations in the distribution of individual

cells in the population [Markham et al. 2013b].

Each of these frameworks has been widely employed in the ecology literature to explore the

ability of species to invade territories and the potential for disease spread. In particular, the rela-

tionship between mean-field approximations and those that incorporate pair-wise interactions have
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been studied in detail for models of populations undergoing births and death [Dieckmann and Law,

Law et al. 2003,Murrell et al. 2004,Raghib et al. 2011], disease spread [Filipe 1999,Filipe and Maule, 2003,

Sharkey et al. 2006] and plant dispersal [Bolker and Pacala 1997,Bolker and Pacala 1999]. How-

ever, only mean-field models have traditionally been employed to study the evolution of populations

of biological cells.

Previous comparisons of these three modelling frameworks in the context of modelling cell

biology processes showed that all three produce identical results when the rates of cell proliferation

and cell death are sufficiently small relative to the rate of cell motility. Under these conditions the

growth-to-confluence process takes place without the population developing any significant spatial

correlations. Alternatively, under conditions where the proliferation and death rates are sufficiently

large relative to the rate of cell motility, the growth-to-confluence process involves significant spatial

correlations and the three models can make very different predictions owing to the extent to which

each model includes a description of the effects of spatial correlations [Baker et al. 2010]. The

key difficulty identified in our previous work was that each of the three models can always be

calibrated to averaged experimental density data to produce an estimate of the underlying rates

of proliferation and death [Baker et al. 2010,Simpson et al. 2013]. This can be problematic since

the calibration process always leads to a model prediction that matches the observed data, yet if

the mean-field or moment-dynamics models are applied under inappropriate circumstances it is

possible that the parameter estimates derived from them are meaningless. To address this issue we

suggested that some measurement of the degree of spatial correlation ought to be considered to help

make an informed decision about when different models ought to be applied [Simpson et al. 2014a,

Treloar et al. 2014].

Motivated by the importance of co-culture experiments, such as those shown in Figure 1(d)–(f),

the present work seeks to extend and generalize our previous study, which focused exclusively on

mono-culture growth-to-confluence experiments, to now investigate appropriate modelling frame-

works for analyzing co-culture growth-to-confluence experiments. We achieve this generalization

by focusing on situations where we consider co-culture experiments with two cell types, which we

refer to as cell type A and cell type B. This means that we always consider a total population
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composed of two subpopulations, subpopulation A and subpopulation B, and we anticipate that

the general results and conclusions outlined here will also hold for more general cases involving

three or more interacting subpopulations. In Section 2 we outline three mathematical descriptions

of a growth-to-confluence experiment with two cell types [Markham et al. 2013b], and we show, in

Section 3, that all three descriptions produce similar results when the rates of proliferation and

death are sufficiently small whereas the three models produce very different results when the rates

of proliferation and death are sufficiently large. These comparisons confirm that a simple model

calibration procedure could lead to misleading results and in this light we suggest how additional

measurements can be made to provide insight into how the most appropriate modelling framework

could be chosen for a particular condition. We conclude with a brief discussion of our results in

Section 4.

2 Modelling methods

In this work we will use three distinct mathematical models to describe the co-culture experi-

ments: (i) a discrete model that explicitly incorporates individual cell behaviour; (ii) a traditional

mean-field model that neglects spatial correlations; and (iii) a moment-dynamics model that ap-

proximately incorporates the effects of spatial correlations. Each of these models has been described

in detail previously [Markham et al. 2013b,Simpson et al. 2009] and so we only provide a brief de-

scription of the key features of each of these models here.

2.1 Discrete stochastic description

We consider a population composed of two, possibly distinct, subpopulations on a two-dimensional

square lattice, with lattice spacing ∆, and we invoke an exclusion mechanism whereby each lattice

site can be occupied by, at most, a single agent [Simpson et al. 2014b]. Individual agents in each

subpopulation undergo unbiased nearest neighbour motility, proliferation and death events. The

ith species has a movement rate per unit time of P i
m, a proliferation rate per unit time of P i

p and a

death rate of P i
d per unit time. To be consistent with a typical experimental scenario, the lattice is

initially uniformly populated, at random, meaning that site occupancies are initially uncorrelated
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and the density is, on average, spatially uniform. When an agent moves or proliferates, the target

site is chosen at random from the relevant von Neumann neighbourhood, and the event is aborted

if the target site is occupied. We invoke the simplest possible proliferation mechanism whereby

agents proliferate to form an identical daughter agent [Simpson et al. 2014b]. Periodic boundary

conditions are imposed on all boundaries of the domain. Simulations are propagated in time using

a modified form of the Gillespie algorithm [Gillespie 1977] as outlined in [Markham et al. 2013b].

We report results from the stochastic model in two ways. First, we present visual snapshots

showing the locations of agents in the population at different points in time. Second, we compute

the average agent density across the lattice in the following way: if we are working on an Lx × Ly

lattice, then we compute

〈ci(t)〉 =
1

MLxLy

M∑
j=1

Qj
i (t), (1)

where Qj
i (t) is the number of agents present from subpopulation i during the jth identically pre-

pared realization of the same stochastic process, and we consider an ensemble of M realizations.

In this way, 〈ci(t)〉 describes the average density of the ith subpopulation at time t. Since we focus

on co-culture experiments with two different cell types, here i ∈ [A,B]. Sample results from the

stochastic model are shown in Figure 2 for a single-species model and in Figure 5 for a two-species

model. Throughout this work we take Lx = Ly = 100 and M = 100.

2.2 Mean-field description

The mean-field description of how the density of each population evolves over time can be written

as

dcmf
i

dt
= P i

pc
mf
i

1−
2∑

j=1

cmf
j

− P i
dc

mf
i , (2)

where cmf
i is the density of the ith subpopulation and i ∈ [A,B]. The superscript “mf” explicitly

refers to the fact that this model is based on making the traditional mean-field assumption whereby

spatial correlations are completely neglected. This model is often referred to as the Lotka-Volterra

competition or generalised Verhulst model. The numerical solution of this system of two coupled

ordinary differential equations is found using a fourth-order Runge-Kutta method with a constant

time step [Chapra et al. 1998].
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2.3 Moment-dynamics description

The complete details of the derivation of the moment-dynamics description of this system was

given previously by us [Markham et al. 2013b] and so here we simply state the main results. The

moment-dynamics model describing how the population evolves over time can be written

dcmd
i

dt
= P i

pc
md
i

1−
2∑

j=1

cmd
j Fij(∆)

− P i
dc

md
i , (3)

where cmd
i is the density of the ith subpopulation and i ∈ [A,B]. The superscript “md” explic-

itly refers to the fact that this model is based on an approximate moment-dynamics assump-

tion whereby spatial correlations are approximately incorporated using a moment closure assump-

tion [Markham et al. 2013b]. The Fij(∆) term is a correlation function describing the correlation

in occupancy of lattice sites at a distance of ∆ between agents of subpopulation i and agents of

subpopulation j. We note that if Fij(∆) ≡ 1 then the moment-dynamics description is equivalent

to the mean-field description. For a two-species system with the total population being composed

of subpopulation A and subpopulation B, this framework allow us to describe both the autocor-

relation for each species, FAA(∆) and FAB(∆), as well as the cross-correlation function, FAB(∆),

which by symmetry, is equivalent to FBA(∆).

To solve the moment-dynamics model we require equations governing the evolution of Fij(∆),

and these are generated by considering conservation equations describing the evolution of finding

pairs of agents separated by different lattice distances. In turn, these equations require descrip-

tion of the evolution of finding triplets of agents separated by different lattice distances and so

on. This means that we have an infinitely large system of conservation equations which we must

truncate to obtain an approximate solution. To this end, we close the system at second order using

the power-3 Kirkwood superposition approximation (KSA) [Singer 2004]. We choose this closure

approximation because, for the models explored here, it performs well over a wide region of param-

eter space [Baker et al. 2010,Markham et al. 2013b,Simpson and Baker 2011] and, in addition, it

ensures positivity. A detailed investigation of the performance of a range of closure approximations

was carried out in [Murrell et al. 2004] for an off-lattice, point process logistic-like model. However,
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a similarly detailed analysis of potential closures for lattice-based exclusion process models such

as that explored here lies outside the scope of this work.

On an infinite lattice, the partial differential equations describing evolution of the correlation

functions are valid on the domain ∆ ≤ s <∞ and are given by

∂Fii(s)

∂t
=

P i
m

2
(

1−
∑2

k=1 c
md
k

)λi(∆)

[
∇2Fiiλi(s) + Fii(s)

2∑
k=1

cmd
k ∇2Fik(s)

]

+
2P i

p

1−
∑2

k=1 c
md
k

λi(∆)λi(s)Fii(s)− 2P i
pλi(∆)Fii(s), (4)

and, for i 6= j,

∂Fij(s)

∂t
=

P i
m

4
(

1−
∑2

k=1 c
md
k

)λi(∆)

[
∇2Fijλj(s) + Fij(s)

2∑
k=1

cmd
k ∇2Fjk(s)

]

+
P j
m

4
(

1−
∑2

k=1 c
md
k

)λj(∆)

[
∇2Fijλi(s) + Fij(s)

2∑
k=1

cmd
k ∇2Fik(s)

]

+
P i
p

1−
∑2

k=1 c
md
k

λi(∆)λj(s)Fij(s) +
P j
p

1−
∑2

k=1 c
md
k

λj(∆)λi(s)Fij(s)

−P i
pλi(∆)Fij(s)− P j

pλj(∆)Fij(s), (5)

where

∇2(·) =
1

s

∂

∂s

(
s
∂(·)
∂s

)
. (6)

The far-field boundary condition is

Fij(s→∞) = 1, (7)

whereas the nearest-neighbour boundary conditions are given by

dFii(∆)

dt
=

P i
m

2
(

1−
∑2

j=1 c
md
j

)λi(∆)

− 3Fii(∆)

+
{

2Fii(
√

2∆) + Fii(2∆)
}
λi(∆)

+Fii(∆)
2∑

j=1

cmd
j

{
2Fij(

√
2∆) + Fij(2∆)

}
+

P i
p

2
(

1−
∑2

j=1 c
md
j

)λi(∆)2
[
2Fii(

√
2∆) + Fii(2∆)

]

+
P i
p

2cmd
i

λi(∆)− 2P i
pλi(∆)Fii(∆), (8)

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 2, 2014. ; https://doi.org/10.1101/008318doi: bioRxiv preprint 

https://doi.org/10.1101/008318


Modelling multispecies co-culture experiments 9

and, for i 6= j,

dFij(∆)

dt
=

P i
m

4
(

1−
∑2

k=1 c
md
k

)λi(∆)

−3Fij(∆)

+
[
2Fij(

√
2∆) + Fij(2∆)

]
λj(∆)

+Fij(∆)
2∑

k=1

cmd
k

[
2Fjk(

√
2∆) + Fjk(2∆)

]}

+
P j
m

4
(

1−
∑2

k=1 c
md
k

)λj(∆)

{
−3Fij(∆)

+
[
2Fij(

√
2∆) + Fij(2∆)

]
λi(∆)

+Fij(∆)
2∑

k=1

cmd
k

[
2Fik(

√
2∆) + Fik(2∆)

]}

+
P i
p + P j

p

4
(

1−
∑2

k=1 c
md
k

)λi(∆)λk(∆)
[
2Fij(

√
2∆) + Fij(∆)

]
−P i

pλi(∆)Fij(∆)− P j
pλj(∆)Fij(∆), (9)

with λi(s) = 1−
∑2

k=1 c
md
k Fik(s).

The numerical solution of this coupled system of nonlinear ordinary and partial differential

equations is found by replacing the spatial derivative terms with a central difference approxima-

tion on a uniformly discretized domain with mesh size δs. The resulting system of coupled nonlinear

ordinary differential equations is integrated through time by discretising using the backwards Euler

approximation, with time step δt, and solving the resulting system of nonlinear algebraic equa-

tions using the Thomas algorithm [Press et al. 2007] with Picard linearization and an absolute

convergence tolerance of ε [Zheng et al. 2002].

3 Results

We will present the results of our study in two sections: first, in Section 3.1, we present results for

a single species problem which is relevant when considering a mono-culture growth-to-confluence

experiment (Figure 1(a)–(c)). Second, in Section 3.2, we present results for a two species problem

which is relevant when considering a co-culture growth-to-confluence experiment (Figure 1(d)–(f)).
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3.1 Single species results

Results in Figure 2(a)–(c) compare the evolution of the average density profiles predicted by per-

forming repeated stochastic simulations, and averaging the results, compared to the predictions

of the mean-field and moment-dynamics models for a single species problem where the initial

density of agents on the lattice is 10%. Results in Figure 2(a), corresponding to a high motility

rate relative to the proliferation and death rates, show that both the mean-field and moment-

dynamics models provide an excellent description of the averaged stochastic data. However, the

results in Figure 2(b), corresponding to slightly lower motility rate, show that the mean-field model

fails to accurately describe the evolution of the averaged stochastic data, whereas the moment-

dynamics model produces results that are visually indistinguishable from the averaged stochastic

data at this scale. These results indicate that the additional detail incorporated into the moment-

dynamics model lead to an improved prediction under these circumstances. In contrast, the results

in Figure 2(c), corresponding to zero motility, indicate that both the mean-field model and the

more sophisticated moment-dynamics model can fail to predict the evolution of the average den-

sity information. The reason why the mean-field and moment-dynamics models provide different

results is because these two model frameworks make different assumptions about the underlying

stochastic process. For example, the mean-field description completely neglects spatial correlations

whereas the moment-dynamics model approximately neglects spatial correlations, and the accuracy

of both descriptions decreases as the rate of proliferation and death increases relative to the rate

of migration [Baker et al. 2010,Simpson and Baker 2011].

A key issue that arises when applying a mathematical model to interpret growth-to-confluence

experiments, such as the images in Figure 1(a)–(c), is that these images are often converted into

a measure of average cell density as a function of time so that data is of the form presented in

Figure 2(a)–(c) [Cai et al. 2007,Tremel et al. 2009]. To estimate the proliferation and death rates

of the cell population it then seems reasonable to calibrate these parameters using a relevant

mathematical model so that the model predictions match the observed data. This kind of cali-

bration approach has been taken by many previous researchers in different contexts including the

study of wound healing and malignant spreading [Sengers et al. 2007,Sherratt and Murray 1990,
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Fig. 2 Results for the single species problem as the movement rate, Pm, is varied. Pm decreases from left to

right: in the left-hand column Pm = 500; in the centre column Pm = 5; and in the right-hand column Pm = 0.

(a)–(c) Comparison of the averaged stochastic results (black) with predictions of the mean-field model (red) and

the moment-dynamics model (blue) over time. (d)–(f) Snapshots from a single realisation of the stochastic model

at t = 4. (g)–(i) Comparison of the averaged agent coordination number (black bars) with the predicted agent

coordination number for a spatial uniform system (red asterisks). Parameters are as follows: Pp = 1.0, Pd = 0.1 and

initially 10% of lattice sites were occupied.

Swanson et al. 2003]. One problem, highlighted by us previously [Baker et al. 2010,Simpson et al. 2013],

is that if we take average density information such as that in Figure 2(a)–(c), we can always cal-

ibrate either the mean-field or the moment-dynamics model to this data to produce estimates of

Pp and Pd. However, this commonly-invoked calibration process does not guarantee that the cali-

brated parameter estimates represent the actual birth and death rates since it is unclear, simply by

inspecting density data alone, whether the mean-field and/or the moment-dynamics descriptions

are valid. To provide insight into this question of model suitability we need to consider some addi-

tional information. For example, the snapshots of the discrete process, shown in Figure 2(d)–(f),

illustrate how the agents are arranged on the domain at t = 4 for the parameter combinations

associated with the density information in Figure 2(a)–(c), respectively. Visual inspection of these
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images suggests that the agents are arranged relatively uniformly in Figure 2(d), but that there

is an increasing degree of spatial clustering and spatial correlation as the birth and death rates

increase relative to the motility rate (Figure 2(e)–(f)). To help quantify these differences in spatial

clustering and correlation we will now investigate two different quantities.

3.1.1 Agent coordination number

To provide a relatively straightforward measure of the degree of clustering and correlation in the

distribution of agents at a particular time we will consider how the agent coordination number

distribution, K, varies under different conditions. We define the agent coordination number, K,

for a given site to be the total number of the eight closest sites in the Moore neighbourhood that

are occupied, giving K ∈ [0, 8]. For a randomly distributed, spatially uniform population at density

C(t) ∈ [0, 1], without any clustering or spatial correlations, the average agent coordination number

at time t will be binomially distributed,

P(K = k, t) =

(
8

k

)
C(t)k(1− C(t))8−k, (10)

with a mean of 8C(t) and a variance of 8C(t)(1−C(t)) [Simpson et al. 2014a]. This very straight-

forward expression for the expected distribution of K could be compared with experimental or

simulation data. In order to obtain an estimate of the agent coordination number from an exper-

imental image, one can impose a lattice on the image, assign each cell to a lattice site, and then

count the number of neighbours of each cell.

The results in Figure 2(g)–(i) show, as a series of histograms, the agent coordination number

distribution for the systems at t = 4 shown in Figure 2(d)–(f). Superimposed on these histograms

is the average observed agent coordination number. Comparing the results in Figure 2(g)–(i) we

see that: (i) the observed agent coordination number compares well with the binomial distribu-

tion, equation (10), when motility is sufficiently high that the mean-field model accurately predicts

evolution of the density (Figure 2(a)); (ii) we observe a relatively small discrepancy between the

observed agent coordination number and the binomial distribution when the motility is such that

the moment-dynamics model captures the observed behaviour but the mean-field model fails (Fig-

ure 2(b)); and (iii) we observe a relatively large discrepancy between the observed agent coordina-

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 2, 2014. ; https://doi.org/10.1101/008318doi: bioRxiv preprint 

https://doi.org/10.1101/008318


Modelling multispecies co-culture experiments 13

tion number and the binomial distribution when motility is such that both the moment-dynamics

model and the mean-field model fail to capture the observed behaviour (Figure 2(c)).

The qualitative trends indicated in Figure 2 motivate us to consider quantifying these dif-

ferences. First we define a measure of the difference between the uniform distribution of agent

coordination number and the observed distribution of agent coordination number

Ek(t) =
8∑

k=0

∣∣∣P(K = k, t)− P̂(K = k, t)
∣∣∣ , (11)

where P̂(K = k, t) is the averaged observed coordination number distribution at time t. To gain

an understanding of how the difference in agent coordination number is related to the difference

in agent density, we also define

Ej(t) =
∣∣〈c(t)〉 − cj(t)∣∣ , (12)

where j = mf when we are comparing the performance of the mean-field model, j = md when we

are comparing the performance of the moment-dynamics model and 〈c(t)〉 is the averaged observed

density at time t.

One of the limitations of the results we presented in Figure 2(g)–(i) is that we compare co-

ordination number data at one time point only. For completeness we present additional data, in

Figure 3(a)–(b), where we consider single species growth-to-confluence experiments, with the same

parameters used in Figure 2(b)–(c), respectively, except now we provide data describing how Ek(t)

and Ej(t) evolve with time for both the mean-field and moment-dynamics models. Results in Fig-

ure 3(a)–(b) illustrate some key features. Most notably, Ek(t) and Ej(t) vary dramatically with

time, and reach some maximum value during the growth-to-confluence process. This means that

we ought to be careful as to the particular time we choose to measure Ek(t) and Ej(t), or that we

measure both at multiple time points, and we note that the maximum value of Ek(t) appears to

occur earlier than the maximum value of Ej(t) in these cases (and all others we investigated).

A summary of results in Figure 3(c) confirms that there is a clear trend between the maximum

value of Ek(t), Ekmax, and the maximum value of Ej(t), Ejmax, for both the mean-field and the

moment-dynamics models. The deviation between the averaged discrete results and both the mean-

field and moment-dynamics models increases as Ekmax increases. Therefore, it is feasible to use a

measure of Ekmax to discriminate between the applicability of the mean-field, moment-dynamics
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Fig. 3 A comparison of the errors between model and data for the single-species system. (a),(b) Evolution of Ej(t)

for the mean-field model and the averaged stochastic data (j = mf, red), and for the moment-dynamics model

and the averaged stochastic data (j = md, blue) together with evolution of Ek(t) (black). Parameters are as in

the middle and left-hand columns of Figure 2, respectively. (c) The maximum value of Ej(t), Ejmax, plotted as

a function of the maximum value of Ek(t), Ekmax, for j = mf (red) and j = md (blue). The parameter ranges

analysed are Pm ∈ [0, 500], Pp ∈ [0, 10], Pd ∈ [0, Pp] and the results from simulations using 140 different parameter

combinations are displayed. The dashed horizontal lines represent maximum discrepancies (Ejmax) of 0.01 and 0.05

in the density data.

and stochastic descriptions. The discrepancy for the mean-field model increases much more rapidly

than the discrepancy for the moment-dynamics model. To illustrate how this kind of information

might be used to distinguish between the suitability of the mean-field and moment-dynamics

descriptions of this kind of process we have also included dashed horizontal lines in Figure 3(c) to

show 1% and 5% thresholds in the discrepancy of the density data. For example, if we were content

to use a model that provided no more than a 5% deviation between the averaged stochastic density

data and the predictions of the model, then if the observed Ekmax was less than approximately 0.25

a mean-field model would be suitable, whereas if the observed Ekmax was between approximately

0.25 and 0.7, a moment-dynamics description would be suitable. If we observed Ekmax > 0.7, then
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we could conclude that neither the mean-field or moment-dynamics descriptions were relevant and

we ought to focus on using repeated stochastic simulation to interrogate our experimental data.

3.1.2 Spatial correlation index

As a second measure of the degree of clustering, we explore how the average correlations in lattice

site occupancy for various lattice site distances vary with time. To obtain FAA(x, t) we count the

number of pairs of agents separated by a distance x, and then divide this number by the square of

the total number of agents on the lattice [Markham et al. 2013a,Treloar et al. 2014]:

FAA(x, t) =
number of pairs of agents separated by distance x at time t

(number of agents at time t)2
. (13)

Figure 4(a) compares evolution of the correlation functions at distances ∆, 2∆ and 3∆ as a function

of time against evolution of the error, Ej(t), between both the mean-field and moment-dynamics

models and the averaged stochastic data. As with the agent coordination number, there is a delay

between the maxima of the correlation function and the maximum error for both models. This

indicates that we cannot rely on snapshots of the correlation functions to determine the suitability

of a particular model. As for the agent coordination number, we then explored how Ejmax depends

on the maximum of FAA(x, t), FAAmax, over a wide range of parameter values. Our results suggest

that the values of FAAmax and Ejmax are closely related for both models, over distances ∆, 2∆ and

3∆, with the relationship becoming less well-defined as the distance increases (Figure 4(b)–(d)).

The strongest trend corresponds to max{FAA(2∆)−FAA(∆)} and Ejmax (Figure 4(e)). Therefore,

as an alternative to the agent coordination number data, described in Section 3.2.1, we suggest

that estimates of max{FAA(2∆)−FAA(∆)} could be used as a measure to distinguish between the

suitability of the mean-field and moment-dynamics models in recapitulating the averaged discrete

data for mono-culture growth-to-confluence experiments.

3.2 Two species results

We now focus on two species systems, which are relevant to co-culture growth-to-confluence ex-

periments, like that shown in Figure 1(d)–(f). Figure 5(a)–(c) shows results corresponding to

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 2, 2014. ; https://doi.org/10.1101/008318doi: bioRxiv preprint 

https://doi.org/10.1101/008318


16 D C Markham et al.

0.25 0.25

1.0 1.5 2.0 2.5
0.00

0.05

0.10

0.15

0.20

0.25

AAmax
F         (Δ)

E
jm

a
x

1.0 1.2 1.4 1.6
0.00

0.05

0.10

0.15

0.20

0.25

E
jm

a
x

(b) (c)

1.0 1.1 1.2 1.3
0.00

0.05

0.10

0.15

0.20

E
jm

a
x

0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

E
jm

a
x

(d) (e)

0 5 10 15
1.0

1.2

1.4

1.6

1.8

2.0

F
A

A
0.0

0.1

0.2

E
j

time

 

 

(a)
20

0.0

AAmax
F         (3Δ)

AAmax
F         (2Δ)

AA
max(F    (2Δ) - F    (Δ))  

AA

Fig. 4 Evolution of the correlation functions. (a) Evolution of the correlation functions at distances x = ∆, x = 2∆

and x = 3∆ as a function of time (black lines), with the direction of increasing x indicated by the arrow. These results

are superimposed on profiles showing Ej(t) for the mean-field model (red) and Ej(t) for the moment-dynamics model

(blue). Parameters are as in the middle column of Figure 2. (b)–(e) Plots of Ejmax as a function of the maximum of

FAA(t), Fmax, with results from the mean-field model shown in red and from the moment dynamics model in blue.

The parameter ranges analysed are Pm ∈ [0, 500], Pp ∈ [0, 10], Pd ∈ [0, Pp] and the results from simulations using

90 different parameter combinations are displayed. As in Figure 3, the dashed horizontal lines represent maximum

discrepancies (Ejmax) of 0.01 and 0.05 in the density data.

simulations of a two species system, where the initial density of each species is 5%, so that the

total population initially occupies 10% of the lattice, just like in Section 3.1 for the single species

problem. Although both species A and B have the same proliferation rates, the evolution of the

two subpopulations is very different with subpopulation A, which has a higher movement rate
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Fig. 5 Results for a two species problem. (a) The mean-field model (red) predicts both species evolve to occupy,

on average, 50% of lattice sites, whilst the moment-dynamics model (blue) correctly predicts the density of species

A (solid line) to be greater than that of species B (dashed line). In each case the averaged discrete results (black)

are obscured by the predictions of the moment-dynamics model. (b),(c) snapshots of the populations at t = 3

and t = 10, respectively, indicate that each of the species displays significant clustering. (d),(e) Comparison of the

averaged agent coordination number (black bars) with the predicted agent coordination number for a spatial uniform

system (red asterisks) at t = 3. (f) The averaged auto- and cross-correlation functions at t = 3. The solid curves

correspond to the solution of the moment-dynamics model whereas the dots correspond to averaged simulation data

from the stochastic description. Parameters are as follows: PA
m = 20, PB

m = 5, PA
p = 1, PB

p = 1, PA
d = 0, PB

d = 0

and each species initially occupies 5% of lattice sites uniformly at random.

compared to subpopulation B, occupying a greater percentage of lattice sites at later times. In

Figure 5(a) we plot evolution of the averaged discrete density profiles alongside the results from the

mean-field and moment-dynamics models. We see that the mean-field model incorrectly predicts

that the two subpopulations will co-exist with each subpopulation eventually occupying 50% of the

lattice sites. The moment-dynamics model correctly predicts both the transient and steady state

behaviour of the system: the species coexist but subpopulation A dominates, occupying around

55% of lattice sites. The snapshots shown in Figure 5(b)–(c) of a single realisation at t = 3 and

t = 10 indicates that the failure of the mean-field model may be due to the emergence of spatial

correlations in lattice site occupancy, as was the case for the single-species model, since the build

up of clustering in both subpopulations is visually distinct. Further investigation into the failures

of the mean-field and moment-dynamics models in various regions of parameter space indicate,
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as for the single-species model, that the validity of the model assumptions (the independency of

lattice site occupancies and the validity of the KSA, respectively) are key to the success of the

models in replicating the behaviour of the discrete system [Markham et al. 2013b].

As with the single species system, it is possible to calibrate either the mean-field or the moment-

dynamics descriptions to a given set of averaged stochastic density data to provide an estimate

of the model parameters governing the birth and death rates of both subpopulations in this con-

text. However, as before, merely fitting different models may give rise to different parameter es-

timates, and it is unclear, a priori, which modelling framework is the most appropriate when we

are dealing only with averaged density information, as is often the case in experimental cell biol-

ogy [Cai et al. 2007,Tremel et al. 2009]. To provide further guidance, we now investigate whether

it is possible to use multi-species equivalents of the agent coordination number and spatial correla-

tion index summary statistics to distinguish between different regions of parameter space in which

the mean-field and moment-dynamics models are able to reliably replicate the averaged stochastic

data.

3.2.1 Agent coordination number

P(Ki = ki,Kj = kj , t) =
8!

ki!kj !(8− ki − kj)!
Ci(t)

kiCj(t)
kj

×(1− Ci(t)− Cj(t))
8−ki−kj . (14)

This means that the agent coordination number of each individual subpopulation is binomially

distributed,

P(Ki = ki, t) =

(
8

ki

)
Ci(t)

ki(1− Ci(t))
8−ki , (15)

as in the single species case. Results in Figure 5(d)–(e) show the observed averaged agent coordi-

nation numbers for the system shown in Figure 5(a)–(c) compared with the theoretical results for

the case where the subpopulations are randomly distributed. Note that, had the mean-field model

predicted the observed average agent density data in Figure 5(a) correctly, then we would expect to

see the actual distribution of agent coordination number match with the expected binomial result,

similar to what we saw in Figure 2(g). In contrast, results in Figure 5(d)–(e) indicate that the
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Fig. 6 Comparison of the averaged agent coordination number (black bars) with the predicted agent coordination

number for a spatial uniform system (red asterisks) for two co-culture experiments. (a)–(c) In isolation, the agent

coordination number of species A is close to that theoretically predicted for a uniform population, but this is not

the case in co-culture. Parameters are as follows: PA
m = 500, PB

m = 5, PA
p = 1, PB

p = 1, PA
d = 0.1, PB

d = 0.1, t = 5

and both species initially occupy 5% of lattice sites uniformly at random. (d)–(f) Each individual species displays

an agent coordination number that deviates significantly from that predicted for a uniform population, but this is

not the case when they are considered as a single species. Parameters are as follows: PA
m = 20, PB

m = 5, PA
p = 1,

PB
p = 1, PA

d = 0.1, PB
d = 0.1, t = 5 and both species initially occupy 5% of lattice sites uniformly at random.

observed distribution of agent coordination number deviates significantly from the binomial dis-

tribution, which is consistent with the fact that the assumptions underlying the mean-field model

are not met.

At first glance, the results in Figure 5 indicate that the agent coordination number may be able

to provide a guide as to the suitability of the mean-field and moment-dynamics models in predict-

ing results from the stochastic model in the two-species co-culture model. As a potential means to

simplify our calculations, we first ask whether understanding the dynamics of each subpopulation

under equivalent mono-culture conditions is sufficient to determine the ability of each modelling

framework to replicate averaged stochastic data. Results in Figure 6 compare the observed and

predicted distributions in agent coordination number using two different parameter combinations.

In Figure 6(a)–(c), subpopulations A and B have the same parameter values as in the left-hand

and centre columns of Figure 2, respectively. This means that, in isolation, we expect the evo-

lution of population A to be well approximated by both the mean-field and moment-dynamics

models, and that subpopulation B will be well-approximated by the moment-dynamics model and
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Fig. 7 A plot of Ejmax as a function of Ekmax over a wide range of parameter space reveals that the agent

coordination number is not a suitable metric for distinguishing between the suitability of mean-field (red) and

moment-dynamics (blue) models in a co-culture experiment. The parameter ranges analysed are Pm ∈ [0, 1000],

Pp ∈ [0, 10], Pd = 0 and the results from simulations using 55 different parameter combinations are displayed. As

in Figure 3, the dashed horizontal lines represent maximum discrepancies (Ejmax) of 0.01 and 0.05 in the density

data.

poorly approximated by the mean-field model. However, when these two subpopulations are grown

together in co-culture, both subpopulations display agent coordination numbers that differ from

that expected of a spatially uniform population even though the total agent coordination number

indicates that, when considered as a single population, the system does not display significant

clustering. This result implies that we cannot draw reliable conclusions regarding the suitability

of a particular model for a co-culture experiment simply by considering the isolated behaviour of

each of the individual species alone as in a mono-culture experiment.

To provide further insight into modelling multi-species co-culture experiments we now explore

whether it is necessary to be able to distinguish between the various subpopulations in order to

determine the suitability of one modelling framework over another. Results in Figure 6(d)–(e)

demonstrate that there are cases in which the distribution of agent coordination number for each

subpopulation differ significantly from that expected from spatially uniform populations. However,

in Figure 6(f) we see that if we were unable to distinguish between the subpopulations, and

instead we could only determine the total cell density, then calculating the agent coordination

number for the total population would erroneously imply that the mean-field modelling framework

could be appropriate. Together, these results suggest that, in order to use information about agent
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coordination number to distinguish between the suitability of the mean-field and moment-dynamics

models, it is necessary to measure the agent coordination number of each subpopulation in a co-

culture experiment. To deal with this complication, we would aim to produce a plot similar to that

shown in Figure 3(c) where we showed that a strong correlation exists between differences in the

predicted and observed densities and agent coordination numbers, Ejmax and Ekmax, respectively, in

the co-culture simulations. If this were possible, we could then reliably assume that measurements

of Ekmax for a particular co-culture system would be sufficient to guide our choice of model.

Unfortunately, results shown in Figure 7 indicate that the results are more subtle for the co-

culture system: we see a much less pronounced relationship between Ejmax and Ekmax in the

co-culture system compared to the mono-culture system. Therefore, it does not seem reasonable to

use the observed average agent coordination number as a means to distinguish the suitability of the

mean-field and moment-dynamics models in the context of modelling a co-culture experiment. We

now turn to study the spatial correlation index as an alternative summary statistic for co-culture

experiments.

3.2.2 Spatial correlation index

Finally, we now explore whether the averaged observed correlation functions can improve our

ability to make a distinction between the performance of the three modelling frameworks. To

estimate Fij(x, t) we count the number of (i, j) agent pairs separated by a distance x, and normalise

by the products of the total numbers of i and j agents on the lattice [Markham et al. 2013a,

Treloar et al. 2014]:

Fij(x, t) =
number of (i, j) agent pairs separated by a distance x at time t

(number of i agents at time t)(number of j agents at time t)
. (16)

In Figure 5(f) we demonstrate the ability of our moment-dynamics model to approximate both

auto- and cross-correlations. As expected, the system shows significant positive local spatial cor-

relations in the distributions of each individual species, and negative local cross-correlations. In

Figure 8 we plot Ejmax as a function of the maxima of the auto- and cross-correlation functions,

for a wide range of parameter values. As with the agent coordination number, the results are dis-
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Fig. 8 A plot of Ejmax as a function of the maxima of the auto- and cross-correlation functions over a wide range of

parameter space reveals that the agent coordination number is not a suitable metric for distinguishing between the

suitability of mean-field (r) and moment-dynamics (blue) models in a co-culture experiment. The parameter ranges

analysed are Pm ∈ [0, 1000], Pp ∈ [0, 10], Pd = 0 and the results from simulations using 45 different parameter

combinations are displayed. As in Figure 3, the dashed horizontal lines represent maximum discrepancies (Ejmax)

of 0.01 and 0.05 in the density data.

appointing in that it does not seem sensible to base our model choice upon this measure of the

system correlations in a co-culture experiment.

4 Discussion and conclusion

In this work we explore the performance of three different mathematical modelling frameworks for

quantitatively evaluating the results of in vitro mono- and co-culture growth-to-confluence assays.

In particular, we focus on: (i) a stochastic description of a birth, death, movement process which is

analytically intractable but directly incorporates spatial correlation effects, (ii) a traditional mean-

field description of a birth-death-movement process which is analytically tractable but completely

neglects to incorporate any spatial correlation effects; and (iii) a more sophisticated moment-

dynamics description of a birth-death-movement process which is computationally tractable and

approximately incorporates the effects of spatial correlations. Since it is relatively common to cali-

brate such models to experimental data in order to estimate model parameters [Sengers et al. 2007,

Sherratt and Murray 1990,Swanson et al. 2003], our aim is to provide a quantitative method which
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can be employed to distinguish between the validity of each type of model over a wide range of

parameter space.

In this work we have used two particular spatial statistical tools, namely agent coordination

number and a spatial correlation index, in an attempt to distinguish between the validity of the

stochastic, traditional mean-field and moment-dynamics descriptions of a birth-death-movement

process. Although we have focused on these two measures, we are aware that there are other

types of tests for spatial randomness, such as indices that measure a departure from the com-

plete spatial randomness state [Binder and Landman 2011,Diggle 1983,Phelps and Tucker 2006,

Simpson et al. 2013]. Although we did not include any results using this kind of complete spatial

randomness index, we did perform a preliminary study using the complete spatial randomness

index on the same data presented in this work and found that this method provided no additional

insight than the agent coordination number and spatial correlation index method. Furthermore,

the complete spatial randomness index is limited in the sense that it depends on partitioning the

domain into equally-sized bins and calculating the variance of numbers of objects per bin. Since

the results can be quite sensitive to the bin size, and there is little guidance in the literature with

regard to selecting the optimal bin size, we found it was computationally expensive to implement

this kind of approach since we always had to test whether our results were independent of the bin

size.

The results of our study can be summarised in the following way. For mono-culture assays in

which we consider just one type of cell, we show that both the averaged agent coordination number

and spatial correlation index provide a suitable means of distinguishing between the ability of each

model to replicate the observed averaged density data over a wide range of parameter space. While

our results for the mono-culture case suggest that we exercise caution against using just one time

point during the experiment to measure the agent coordination number or spatial correlation index,

we show that either of these spatial summary statistics can be used to reliably distinguish between

the application of a mean-field, moment-dynamics or stochastic representation of the growth-to-

confluence process when we consider examining the entire time course of the experiment and focus
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on the maximum deviation between the observed coordination number of spatial correlation index

for the experiment compared to the expected result for a system without any spatial correlations.

In contrast, our results for co-culture assays suggest that great caution is warranted when cali-

brating mathematical models to replicate co-culture growth-to-confluence assays. We demonstrate

that the spatial summary statistics for two species, applied in isolation, does not reliably indicate

the suitability of a particular modelling framework when the two species are present in co-culture.

Furthermore, we also show that extensions of the averaged agent coordination number data and spa-

tial correlation index fail to provide a clear quantitative measure of the suitability of one model over

another for a wide range of parameter space. In this regard, our results suggest that extreme care

ought be exercised when interpreting co-culture experiments using mathematical models. Indeed,

the results of this study suggest that further investigation of additional summary statistics that

can reliably distinguish between the application of stochastic, mean-field and moment-dynamics

modelling frameworks, is warranted.

In summary, our analysis indicates that it is possible to make a sensible distinction between the

suitability of mean-field, moment-dynamics and stochastic descriptions of a growth-to-confluence

assay for a mono-culture growth-to-confluence experiment by analyzing either the distribution of

agent coordination number or the spatial correlation index. Conversely, for a co-culture growth-to-

confluence experiment more care is needed, and neither of these summary statistics can reliably

distinguish between the suitability of the three candidate modelling frameworks. To this end, we

suggest that the most pragmatic approach to make an initial assessment of the parameters gov-

erning a co-culture experiment is to use the discrete model as a screening tool to obtain parameter

estimates. Depending on these initial estimates, it may then be possible to implement either a

mean-field or a moment-dynamics description of the system for further analysis, if required.
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