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Abstract The Brachypodium genus contains the model grasses B. distachyon, B. stacei and 
B. hybridum, that are useful for molecular and physiological studies relevant to grain, 
pasture and bioenergy crops, as well as ecology. In this chapter we discuss the natural 
variation in climate/geography, genotypic and phenotypic diversity that exists within these 
species. We describe utilisation of this diversity via two methods, Genome Wide Association 
Studies and Landscape Genomics, to examine the interaction between specific genetic 
variants, phenotype, and environment. The aim is to identify adaptive loci that control 
specific traits in specific environments and understand the contribution of background 
polygenetic variation shaped by demographic processes. With recent developments in high 
throughput phenotyping, cheaper genotyping by sequencing and higher spatial/temporal 
resolution of climate data, these approaches can exploit the diversity of the Brachypodium. 
Experiments using this toolkit will reveal alleles, genes and pathways underlying 
agriculturally important and environmentally sensitive traits for use in grass breeding.  
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Introduction 

Brachypodium is part of the Poaceae plant family, one of the five largest. Poaceae are one 
of two plant families found on all seven continents and grow in most habitats from alpine, to 
freshwater, and marine environments (Groombridge and Jenkins 2002; Brummitt and Cheek 
2007). The Pooideae subfamily of the Poaceae are also widespread, especially in temperate 
zones, and many genera extend to cold climates in mountainous regions or high latitudes. 
Similarly to other Pooideae genera, the Brachypodium genus also has a wide distribution in 
temperate regions, but is less common in cold climates and more abundant in hot arid 
regions (Hartley 1973). Brachypodium native range is the Mediterranean region with 
accessions commonly found through southern Europe, North Africa and Eurasia. However, 
worldwide herbarium records show Brachypodium is now present on all six continents 
except Antarctica (Garvin et al. 2008). This wide geographic range and climate tolerance in 
both the native and introduced range, as well as a key evolutionary position, mean 
Brachypodium is a rich resource of allelic diversity. 

1 Diversity in Natural Populations of Brachypodium 

Climate and Geographic Diversity 
A large collection of thousands of Brachypodium accessions are now available. They come 
from a range of seasonal temperature profiles that span from alpine to hot arid deserts 
(Figure 1). The majority of accessions have been collected from temperate grasslands with 
hot dry summers and wet winters (Mediterranean). These include accessions from southern 
Europe and South-Western USA. Many accessions come from temperate regions that also 
get summer rainfall, such as France and South-Eastern Australia. A few accessions come 
from regions with colder climates, such as mountainous regions in Turkey and on the 
Spanish/French border. Lastly, several accessions come from arid regions in the Middle 
East. These different climate types favour the development of different life history strategies 
allowing optimization of reproductive success, as well as abiotic stress tolerance 
mechanisms to deal with heat, cold and drought. 
 
[Insert Figure 1 here] 
 
The geographic distribution of Brachypodium is dependent on climate and the history of its 
dispersal. Brachypodium species have had a long association with human civilisation. There 
is evidence of use of Brachypodium species as food in Paleolithic societies in the region of 
Italy as long as 30 000 years ago (Revedin et al. 2010). This association may have aided its 
dispersal through Europe and Eurasia. In more modern times, Brachypodium co-localisation 
with cereal crops may have aided its dispersal through joint harvest and planting, especially 
from its native range in the Mediterranean to the “New World” of the Americas and Australia.  
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Genomic Diversity 
There is a large amount of genomic diversity in the Brachypodium distachyon complex. 
Firstly there are three species now described. B. distachyon (2n=10) and B. stacei (2n=20) 
share common ancestry at large fractions of their genome and B. hybridum (2n=30) is an 
allopolyploid of B. stacei and B. distachyon. Secondly there is major population genomic 
structure within each species. Genotyping By Sequencing (GBS) is an efficient way to 
characterize population and phylogenomic variation within and between populations and 
species in a complex. It uses restriction digestion, barcoded adaptor ligation, pooling, 
second generation sequencing, and de-multiplexing to identify SNPs and call genotypes at 
>10,000s loci (Elshire et al. 2011). Multiplexing reduces the individual sample cost of 
sequencing allowing many more accessions to be sequenced, up to 384 in a single 
sequencing lane. 
 
Preliminary results are showing that B. distachyon can be divided into two subspecies, those 
accessions that are similar to the Bd21 accessions, denoted as subspecies A, and those 
that are similar to the Bd1-1 accession, denoted as subspecies B. While the two subspecies 
can be intercrossed in the laboratory, the barriers seem to be maintained in nature. Within 
each of these subspecies there is further geographic subdivision in genetic diversity 
between Eastern and Western Europe (Figure 2). 
  
[Insert Figure 2 here] 
 
This East-West division is most likely due to isolation by distance. Arabidopsis also shows a 
weak east west divide due to recolonisation of Europe, after the last ice age from refugia on 
the Iberian Peninsula and Western Asia (Sharbel et al. 2000). Brachypodium has a lot of 
parallels with Arabidopsis including its highly selfing nature, similar native range of Europe 
and Eurasia, similar habitats in disturbed sites and similar annual life strategy. The pattern of 
range retraction and subsequent recolonisation likely explains the genetic differentiation 
among Eastern and Western Europe genotypes seen in Brachypodium distachyon, 
Arabidopsis thaliana, and many other species. The presence of this pattern in both the A 
and B subspecies indicates parallel re-colonisations of subspecies that diverged before the 
last ice age. 
 
Though currently under represented in germplasm collections, the evolution that created B. 
stacei appears to have one prominent haplotype, and many rare haplotypes (Catalan et al. 
2012). A substantial portion of the B. distachyon genome is shared with B. stacei across 
many chromosome segments. B. hybridum are allotetraploids, resulting from a recent 
hybridization events fusing B. distachyon and B. stacei (Betekhtin et al. 2014). This 
polyploidisation with B. stacei may have occurred independently with both A and B 
subspecies of B. distachyon (further discussed in Catalan et al. 2012). All three 
Brachypodium species are morphologically similar to each other, but express different traits. 
B. stacei and B. hybridum have higher seed yield, more biomass and quicker growth rate 
than B. distachyon (Catalan et al. 2012; Vogel et al. 2009). They also have different ranges 
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with the majority of accessions found in North America and Australia being B. hybridum 
while B. stacei has been found throughout Mediterranean regions. These species provide 
ideal models for studies of allopolyploidy with parallels particular to wheat, Triticum 
aestivum. 
 

Adaptive Phenotypic Variation 
The genetic makeup, and resulting phenotypic expression, of a given accession is affected 
by the genotypic and climatic history of its ancestors as this determines the suite of alleles 
present in its genome. Past and present selective pressures, isolation by distance, and the 
prevalence of intercrossing all affect this genotypic diversity.  
 
Selective pressures can include biotic and abiotic stresses, the prevalence of which can vary 
at different times of year and from year to year. These pressure can select for favourable 
alleles in a mixed population or favour new advantageous mutations over the standing 
genetic variation. Grime (1977) defined classic strategies for plant survival in selective 
environments including competition (C), stress tolerant (S) and tolerant to ruderal/frequently-
disturbed environments (R) the CSR model. Plants that are competitive tend to have rapid 
growth with extensive lateral spread above and below ground and low seed yield. Stress 
tolerant plants tend to have slow growth with small leaves and low seed yields. Ruderal 
plants tend to have rapid growth, with small stature and large yield. Most Brachypodium 
accessions seem to favour a ruderal strategy, however the diversity of life strategies, growth 
rates, and plant architectural traits seen suggest that competition and stress tolerance are 
also important selective pressures.  
 
Isolation by distance can cause populations to diverge over time and has a major impact on 
Brachypodium diversity. This differentiation may occur via physical barriers, such as a 
mountain range, ice sheet or seas. This can be seen in the East West divide within each B. 
distachyon subspecies. However, isolation by distance may also occur from a difference in 
reproductive timing as different life strategies initiate flowering at different times of year, 
eliminating the chance of cross-pollination. This could be a factor in the division of the A and 
B subspecies in B. distachyon. Post reproductive barriers could also be involved, such as 
genetic incompatibilities and hybrid breakdown. 
 
The timing of germination and reproduction, also know as life strategy, are good examples of 
phenological variation that are strongly shaped by natural selection in local climates. 
Brachypodium accessions collected from high altitude and high latitude sites are generally 
strong 'vernalisation requiring' ecotypes (Schwartz et al. 2010). This allows extended 
vegetative growth and the synchronisation of flowering with the more favourable conditions 
of late spring rather than risking damage to cold-sensitive floral structures in winter. In 
Mediterranean regions, winter rainfall determines the growing season for 'rapid cycling' 
ecotypes to avoid the hot dry summers. Accessions from hot arid climates with intermittent 
rainfall as well as disturbed agricultural site also tend to harbour 'rapid cycling' ecotypes with 
fast generation times, low dormancy and low vernalisation requirements, e.g. Bd21-1 
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(Barrero et al. 2012). This fast generation time allows a full life cycle to occur when moisture 
is available, possibly two times a year, while enduring dry periods as seed. Though rare, 
Brachypodium accessions from warmer, wet summer regions are later flowering allowing 
more vegetative growth and increased summer seed set. Some natural accessions may also 
have the ability to produce different phenotypes in different environmental conditions 
because of phenotypic plasticity. For example, accessions from variable climates may have 
some vernalisation requirements, but also a strong photoperiod response such that if there 
is a cold winter, flowering can be promoted, but in a mild winter flowering is initiated by a 
strong photoperiod response. 

 

Case Study: Flowering Time  
An experiment to investigate the genotypic and environmental basis for the diversity of 
flowering time of B. distachyon was undertaken at ANU in 2014. Plants were grown in 
specially modified growth chambers to simulate a temperate region with a cold winter and 
hot summer. Chambers were set for either a Winter or Spring germination. The modified 
chamber controls allowed us to program down to one minute changes in light intensity, light 
spectrum, temperature and humidity; mimicking diurnal and seasonal changes in climate. In 
this experiment 256 accessions were grown in each chamber. Ear emergence was chosen 
as an indicator of transition to reproduction as many accessions flowered within the ear and 
hence were difficult to score for flowering. The Winter germination chamber had cold (5oC 
nights) resulted in the vernalisation requirements of all lines being met and the majority of 
lines reaching ear emergence between 100-160 days post emergence (Figure 3a). However, 
in the Spring germination treatment the transition to reproduction was more variable. The 
majority of lines in the Spring germination reached ear emergence fairly quickly between 60 
- 120 days post emergence. However, although there were still a few weeks with cold nights, 
the accessions requiring stronger vernalisation did not reach ear emergence by the end of 
the experiment at 180 days (e.g. Tek1, ABR4, UKR-99-137). Interestingly, while the life 
strategy of the majority of lines remained fairly unchanged between environments (early 
flowering), those accessions from Western Europe tended to show more phenotypic 
plasticity between environments with a wider range of delay in ear emergence with the 
Winter sowing than the Spring sowing.  
 
Fig. 3. Life strategy of B. distachyon accessions is associated with subspecies, region and climate type at the 
collection site. 256 Brachypodium accessions were grown in simulated growth conditions to mimic a Winter and Spring 
sowing date. Days from seedling emergence to ear emergence was monitored as an indicator of transition to the 
reproductive stage. a) Comparison of life strategy in the two environments; dashed lines indicate the cutoffs for 
classification of accessions as early, mid or late flowering based on their flowering time under the Spring germination. b) 
Subspecies and geographic classification of accession show varying distributions of early, mid and late flowering 
accessions; numbers in columns indicate number of accessions in each category and c) Early, middle and late flowering 
groups of accessions are sourced from different proportions of climate types. 
 
The accessions were then classified as early, mid or later flowering based on the days to ear 
emergence in the Spring sowing (Figure 3a). When these groupings are compared to the 
subspecies classifications we can see there is no firm trend for flowering time between the 
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subspecies, as the patterns differ significantly in the Eastern European and Western 
European subsets (Figure 3b). For example, while accessions from the A subspecies tend to 
be early flowering in Eastern Europe, a mix of life strategies are present in Western Europe. 
This mix would indicate that different flowering time alleles have evolved in the different 
subspecies. Making crosses between accessions from different geographic regions and also 
between subspecies within a region would be needed to genetically map divergent flowering 
time alleles. Fortunately multiple RIL sets are available spanning this natural divide. Just as 
flowering time is variable within subspecies and geographic regions, it also varies with 
climatic type at the site of collection. When we categorise our accessions by climatic region, 
the life strategy patterns are not fixed based one on selective pressures in these climates 
alone. Accessions from climates with dry summers can be early or late flowering (Figure 3c). 
A similar trend is seen for accessions from arid regions, where a wide range of flowering 
times are seen. Mid flowering accessions tend to be from climates with rainfall evenly 
distributed through the year, indicating that the accessions with long growing seasons and 
no vernalisation requirements have a fitness advantage in this climate type. An alpine 
accessions was late flowering, suggesting that vernalisation is needed for survival in this 
environments. We must keep in mind sampling bias in any collection. The observed trends 
can be influenced by when and where the collections are made. Netherless, there are trends 
with exceptions, illustrating the impact of the genotype and climate on the geographic 
distribution and phenotypic expression of accessions.  
 
Understanding fitness of an individual accession in a particular climate is complex, 
complicating studies aimed at elucidating the genetic architecture of adaptive traits. Luckily, 
new approaches have been developed that control for genetic and spatial structure, which 
can result in outcomes that have applications in crops species breeding programs, weed 
management and ecosystem restoration. Next we outline two of these approaches: Genome 
Wide Association Studies (GWAS) and Landscape Genomics.  

2 Using Local Adaptation to Identify Causative Alleles 

Genome Wide Association Studies 

Natural populations provide a valuable resource in the diversity of genotypic variation that 
has been found in extreme environments. Historically these populations have been studied 
for phenotypic diversity in small numbers of accessions using SSR and microsatellites. The 
development of comprehensive next generation sequencing has meant that thousands of 
accessions can now be screened and powerful subsets selected for Genome Wide 
Association Studies.  
 
Genome wide association studies (GWAS) were originally developed for studies of human 
disease to find causative mutations (Klein et al. 2005). The aim of GWAS is to identify the 
genetic architecture of phenotypic traits of interest in a certain population. This can include 
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the number of alleles associated with the trait, whether one allele affects multiple traits and 
the strength of individual alleles in accounting for the trait of interest. By comparing different 
environments we can also identify which alleles are important in each environment, which 
are robust across environments and which allow for plasticity of the trait between 
environments. GWAS have been performed in a number of plant species including 
Arabidopsis, maize, rice, barley, and sorghum (e.g. Atwell et al. 2010; Wen et al. 2014; 
Huang et al. 2010; Pasam et al. 2012; Morris et al. 2013). These studies have successfully 
identified causative QTLs for many traits including disease resistance, proline accumulation, 
flowering time, starch profile, plant height and grain weight.  
 

Genotype Data 
To perform GWAS you must have genotyped a large number of SNPs tagging the many 
haplotype blocks that are differentially assorted in the sample being studied. The density of 
SNPs needed depends on ancestral recombination in the genome and will affect the 
resolution of the QTLs identified. To get high density SNP genotyping whole genome re-
sequencing can be used by randomly shearing DNA and ligating barcoded adaptors. Like 
GBS, samples are then multiplexed and run on an Illumina HiSeq platform. Low pass 
sequencing (~1-2X) is sufficient as missing genotypes at common SNPs can be imputed 
based on linkage disequilibrium (Halperin and Stephan, 2009). GWAS must also be 
performed on a sizable number of accessions, at least 100 but optimally ~300, to maximise 
statistical power. SNPs are usually filtered at 5% minor allele frequency. A genome scan is 
then performed testing each SNP for association with the quantitative trait while controlling 
for ancestral relatedness among samples. Once a QTL are identified to perhaps 100kb 
resolution, candidate genes can be selected. Ultimately the causative alleles can be 
confirmed by transgenic complementation of knockout lines with different functional alleles.  
 
GWAS has some advantages over traditional bi-parental mapping (e.g. RILs), nested 
association mapping (NAM) or multi-parent advanced generation intercrossed (MAGIC) 
populations in that the source of genetic variation is much greater as its not just limited up to 
a couple dozen founder accessions, but comes from hundreds. Furthermore, the resolution 
of mapping of the causative allele can be much greater due to the higher frequency of 
recombination events in a large ancestral population evolved over centuries compared to a 
hand-crossed population with only a handful of generations of crossing. However, rare 
alleles of large effect contribution noise for GWAS. In addition, population structure from 
non-random mating can cause false-positives at loci associated with the causative one. 
Even when appropriately controlled for statistically, population structure can cause false-
negative results by downplaying the effect at the truly causative locus.  
 
There are a couple approaches to mitigate the effects of population structure. The first is to 
balance the structure. GBS can be performed on a very large number of diverse lines from 
across the world. Once the structure of the global population is known, a core GWAS set 
can be selected balancing membership roughly equally from across different lineages 
(Figure 4a). Whole genome sequencing is performed on this GWAS set, to increase 
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resolution of mapping causative alleles. A kinship matrix is also made from the SNP data to 
include in the statistical analysis to reduce the rate of false positives. The second approach 
is to perform the same initial GBS screen of a wide range of accessions, but then to select a 
region within a population structure group or a hybrid zone where the groups have become 
well mixed. The resulting population sample be less confounded such that segregation at the 
causative alleles will be largely uncoupled from the background genetic variation. These 
approaches are further described in Brachi et al (2011) and an example of its success in 
Arabidopsis is given by (Li et al. 2010: Baxter et al. 2010; Horton et al. 2012). 
 
In consideration to the first approach outlined above, GWAS cannot be performed across the 
A and B subspecies due to a high level of genome level differentiation. Hence we suggest 
that GWAS sets are developed for each subspecies separately. Furthermore, the current B. 
distachyon public collections contain a lot of groups of very closely related accessions, e.g. 
BdTR1_ lines. Selection of a GWAS set must also limit family structure. Including closely 
related accessions limits recombination and introduces bias towards the common alleles in 
that family. The second approach of finding a well-admixed population may be challenging 
due to the selfing nature of Brachypodium. However, it is our experience that several field 
sites and even some maternal lines are segregating both genotypes and phenotypes, 
indicating that this strategy is a possibility.  
 
[Insert Figure 4 here] 

 

Phenotyping Data 
There are a number of GWAS requirements for phenotype data. The traits must be due to 
common genetic variation rather than multiple rare variants. It is helpful to measure 
heritability, or the proportion of total phenotypic variation (Vp) due to genetic variation (Vg) 
among lines. A simple way to estimate heritability (H2) is to subtract environmental variation 
(Ve) within replicate inbred lines, H2 = Vg/Vp = (Vp-Ve)/Vp. If the variability within a 
genotype is low then more of the variability seen in the phenotype will be due to genetic 
factors (Figure 4b). Alternatively the pseudo-heritability is the amount of phenotypic variation 
explained by the kinship or pairwise genetic diversity among lines and can be calculated 
prior to GWAS. 
 
Due to the large number of accessions to be phenotyped for GWAS, the phenotypes must 
also be quantifiable in a high throughput manner. For some measures, such as plant height 
or ear emergence this can be done manually with relative ease. However, for traits that 
require continuous measurement, such as growth rates, or those where measurements and 
analysis are very time consuming, such as photosynthetic measures, high throughput 
phenotyping systems can be very beneficial. One such system is the PlantScreen 
phenotyping platform (Brown et al, 2014). This platform allows up to 300 plants to be 
screened at a time; including individual pot weighing and watering, thermal imaging, RGB 
stereo imaging and chlorophyll fluorescence. This system allows us to monitor abiotic stress 
tolerance of accessions by measuring photosynthetic efficiency and photoinhibition; water 
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use; stomatal conductance/transpiration cooling; and photo-protective mechanisms such as 
pigment accumulation and non-photochemical quenching (NPQ).  
 

Genotype by Environment Interactions 
An important extension of GWAS is to understand how the growth environment affects the 
genetic architecture of traits. Certain loci may be more important in the expression of a trait 
of interest in particular environments. A simple example is where a vernalisation-sensitive 
allele may be important in controlling flowering time in an alpine climate, but a photoperiod-
sensitive allele may be more important in a lowland climate. The interaction between genetic 
loci may also vary between environments. Understanding the genetic architecture of 
phenotypic plasticity is also of great interest, especially in a world where climate variability 
and change is accelerating. Hence it is important to consider how the growth environment 
will influence the phenotypes seen in GWAS experiments and how this will relate to 
extrapolation of results to applications of plant breeding or ecological work.  
 
Using dynamic growth chambers, such as the SpectralPhenoClimatron (Brown et al, 2014; 
Li et al, 2006), in combination with climate modelling software such as SolarCalc, we can 
undertake GWAS to simultaneously compare contrasts such as life strategies at different 
times of year (Figure 3, Li et al, 2010); growth and yield in current and future climates (e.g. Li 
et al, 2014); and the effect of fluctuating light, as would be seen under a forest canopy, on 
growth and initiation of photoprotective mechanisms. 
 

Applications 
GWAS allows us to understand the genetic architecture of interesting phenotypic traits, 
whether it is flowering time, biomass production, components crop yield or abiotic stress 
tolerance. With this approach we can identify segregating alleles in natural populations 
causing advantageous phenotypes (Figure 4c). This understanding can then be applied to 
breeding better crops by selecting genotypes with predicted to have optimal phenotypes, 
aka crop design (Huang and Han, 2014). Understanding how the genetic architecture of 
traits is affected by environment allows us to select accessions with the appropriate genetic 
makeup to thrive in specific environments, current or future. This can apply to both 
agriculture and foundation species of natural systems as climate change is occurring more 
rapidly than traditional breeding by phenotypic selection keep up with (Hoffmann et al, 
2015). 
 
In summary, GWAS is a powerful method to dissect the genetic basis of complex traits and 
the dependence on the growth environment. It is of interest to know if these are adaptive 
traits and contribute to yield and fitness in particular environments as this can help predict 
invasive potential and resilience under environmental change. Genes controlling adaptive 
traits may show a signature of selection on the landscape if one allele provided an 
advantage in a particular environment and/or the other allele was detrimental in an opposing 
environment. Indeed direct associations between environmental variables at geographic 
locations and alleles at quantitative trait loci have been found, confirming their role in 
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adaptation (Li et al, 2010 and others). This opens the door to a genome scan to naively 
identify adaptive loci associated with environmental variables. This could work without 
knowledge of what traits are under selection. Though promising, this so called Landscape 
Genomics approach, has caveats including needing to control for background variation due 
to population structure. Geographic location is confounded with many environmental 
variables limiting our ability to separate selection at adaptive loci from isolation by distance 
that shapes the entire genome. 
 

Landscape Genomics 

Landscape Genomics is a growing field in plant biology integrating the sciences of 
geographic and climate mapping with population genomics and association studies. Teams 
of researchers in this field must have a diverse set of skills ranging from the lab to field 
studies uniting theory and computational biology. They must collect and analyse large data 
sets to correlate spatial and environmental variables with perhaps millions of genetic loci 
while accounting for genetic relatedness and demographic processes affecting the whole 
genome. Landscape genomics combines high resolution spatial/temporal climate data from 
the sites of collection with second generation sequencing technology to 1) explore the 
differences in climatic niche breadth among genotypes; to 2) select locations with variable 
microclimates and well mixed genetic variation; and 3) to associate particular climatic 
variables (e.g. winter temperature or precipitation levels) with specific adaptive alleles. 
Landscape genomics can be applied to almost any species in the natural environment, 
including animals, fungi, and plants. Some of the most successful studies are often of model 
species and their close relatives, which usually have annotated reference genomes and 
large developed collections that are already sequenced (Hancock et al, 2011, Fournier-Level 
et al, 2011).  
 
Landscapes are longstanding experiments of natural and, increasingly, artificial selection. 
Landscape genomics dissects and describes the underlying adaptive genetic loci through 
association with a suite of environmental variables describing the microclimate within a 
species range. Initially, populations are founded with limited genetic diversity. New mutations 
are initially rare and most disappear due to genetic drift. When new genetic variation arrives 
via migration, it brings a genome's worth of standing genetic variation. Even in largely selfing 
species, outcrossing will eventually happen and new allelic-combinations will be released for 
selection across the environment. As in synthetic crosses, the recombinant chromosomes 
initially have extended haplotypes from the founders that are ultimately broken down through 
subsequent generations and further outcrossing. There may now be opportunity for local 
range expansion as the diverse population spreads into new microclimate, soil and/or habitat 
types. As the ecological space fills, competition will favour plants with adaptive alleles in 
their most suitable habitat. Neutral genetic variation will have a largely random pattern 
across the landscape. Across the genome, a trend of isolation by distance may develop if 
gene flow is limited. Ideally this would be in a direction orthogonal to the environmental 
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gradient. At this stage a genome scan for SNP alleles in association with local environment 
can identify adaptive loci. The allele effect at a locus multiplied by the strength of selection 
determines the ability to identify and adaptive QTL. The size of the adaptive locus is 
determined by the amount of recombination, which should narrow as the population ages. 
Control of false positives due to population structure can be performed by statistically 
accounting for overall relatedness across the genome in a manner analogous to GWAS. 
Across large geographic regions multiple rare variants explain adaptation limiting Landscape 
Genomics in much the same way as GWAS. 
 
One advantage of annual plants is selection acts quickly at each generation. It can be 
observed at a locus when a few ancestral haplotypes are competing and gene flow mixes 
the background genetic variation. By understanding the genetic basis of local adaptation, we 
may finding allelic variants that allow some groups to be specialists, while other alleles may 
be important for generalists (Storz, 2005). Brachypodium has a large geographic range, 
mostly spanning Mediterranean-like climates in Europe, North Africa and Eurasia. It is 
similar to Arabidopsis thaliana, which has genetic diversity associated with geographic and 
climatic space (Platt et al. 2010; Horton et al. 2012; Banta et al. 2012). Each subspecies of 
Brachypodium distachyon would be expected to show similar associations with adaptive 
alleles across geographic and climatic space. 
 
So the next step is identifying which populations and climate regions are suitable for 
Landscape Genomics. Different genetic lineages may occupy different geographic ranges 
and corresponding climate envelopes. These can highlight potential adaptive differences 
however alleles providing the advantage may be fixed within each lineage. Hybrid zones 
between groups or long range dispersal followed by admixture could provide the opportunity 
to uncouple adaptive alleles from their genomic background. Digital herbarium records are a 
great place to start describing the climate range of a species utilizing existing collections. 
Records often have meta data about microclimate, some phenotype data including whether 
the plant was flowering, in addition to when and where the plant was collected. This can aid 
a researcher’s decision about when to travel for collecting, what traits to look for and what 
locations they occupy. With collection points, researchers can also travel back to the same 
location or similar locations based on model predictions like those created in computer 
programs to predict niche breadth using climate envelopes (Phillips, 2006; Joost, 2007; 
Banta, 2012).  
 

Determining the geographic range and climatic niche breadth of divergent genetic lineages 
While the geographic range and environmental tolerance of a species can be wide, the 
breadth of environmental conditions a subspecies, or major genetic lineage, can inhabit may 
be relatively small. Understanding climatic breadth within species can inform growers about 
what crop varieties are suitable for their locations and can also aid seed collectors about 
new locations for future collections. Maximum Entropy (MaxEnt) software is a common 
research tool for inferring and predicting species distributions and tolerances of 
environmental factors (Phillips, 2006; Phillips, 2008). The inputs are flexible and can be 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 23, 2015. ; https://doi.org/10.1101/015495doi: bioRxiv preprint 

https://doi.org/10.1101/015495
http://creativecommons.org/licenses/by-nc/4.0/


12 

manipulated by the user. Data is often sourced from WorldClim, a global grid of climate 
layers (WorldClim, 2015). A subset of biologically relevant variables, BioClim, are often used 
in ecological studies including species range modeling programs (BioClim, 2015). These 
variables represent growth limiting factors such as temperature and precipitation and their 
seasonality. MaxEnt couples environmental data from training locations as inputs and 
compares these realised niche variables with all locations outputting geographical heat 
maps indicating where similar ecological niche exist. The results describe a species 
fundamental niche, which is the climate limited range where a species might be able to 
persist. MaxEnt outputs response curves of climate variables and uses permutations to rank 
the relative contribution of each variable when determining the niche. The program uses the 
model to predict sites left out of the training data. This cross validation also allows 
comparisons between models. Different models can be made and compared which 
incorporate population genetic information. This is done by defining different sets of training 
locations based on the occurrence of particular genetic lineages. Figure 5a shows the 
geographic range of the Australian Brachypodium fundamental niche generated by MaxEnt 
trained with the Bioclim climate variables at 80 locations that comprise our current 
collections. Mean Temperature of Wettest Quarter (WorldClim 8) was the strongest factor 
determining the distribution (BioClim, 2015). 
 

How do neutral forces affect the genetic signal of climate adaptation? 
The climatic niche breadth of a genetic lineage is the result of both adaptive and neutral 
forces. With limited migration, founder effects and isolation by distance, prevent our ability to 
separate the chance historical demographic effects on the entire genome from the adaptive 
genes. We must consider the genetic divergence and populations structure when selecting 
locations for intensive sampling. Recently founded populations may not have enough 
diversity to identify haplotype blocks associated with climate variables while diverged and 
structured populations may not allow adaptive loci to be partitioned from background 
variation. Geographic distance can often explain genomic isolation (eg Mantel test) within a 
species and can be the major factor at large, intercontinental scales leaving little ability to 
identify adaptive loci. Mantel tests can be performed at regional scales across clusters of 
sites to identify groups where isolation by distance is not a dominant factor. Partial mantel 
tests can be used to further account for genomic isolation by environment in addition to 
geographic distance. These background effects are essential to control for when looking to 
associate particular adaptive genetic loci with specific environmental variables.  
 
A more advanced approach than Mantel tests takes advantage of the software package 
Popgraph in R. It is a valuable tool for describing genetic relatedness between populations 
and environmental layers. The software works similarly to the PCoA algorithm, only it keeps 
the collection locations static on a map and uses visual tools to show genomic relatedness 
across geographic locations (Garrick et al, 2013). MaxEnt, Mantel tests, Popgraph, and 
other methods can provide comparisons of environments, geographic space, and genomic 
variation. 
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Identifying which climate variables 
When overall climate is found to be associated with genomic variation, it is of interest to 
investigate which particular environmental variables are the drivers of natural selection. This 
can be done by clustering environmental variables across geographic locations. Figure 5b 
shows an ordered heat-map of 80 collections locations by 19 WorldClim environmental 
variables. The climate data is provided via Atlas of Living Australia (ALA) for points at 
sample locations. In this heatmap there are two large clades of environment types with 5 
sub-groups. While there is similarity among environments at a local scale extending East 
and West, there is large split North to South. Three geographic regions are highlighted which 
represent three major climate types. The Mediterranean regions (green) cluster in climate 
space near desert regions (grey) while temperate regions (red) are separated. This is 
despite the fact that Mediterranean regions are geographically separated from desert 
regions. 
 

Testing adaptation to climatic range 
Typically common gardens and reciprocal transplant studies are used to test for local 
adaptation where the home genotype performs superior to the genotype from farther away 
(e.g. Clausen et al. 1940). Provenance trials do this on a larger scale, evaluating phenotypes 
from a broader range of genotypes across many locations. These studies are massive and 
are certainly hampered by starting conditions and weather variation. As described above, 
one solution is to use growth chambers that can mimic natural climatic conditions, without 
weather noise. The SpectralPhenoClimatron, allow fitness traits to be measured in multiple 
target environments and using high-throughput phenotyping techniques.  
 

Scanning for Adaptive Genetic loci controlling survival or fitness 
Measuring fitness directly is difficult. It is the result of selection at many different life stages 
and often differs across environments and variation at many loci can contribute. An indirect 
way is to use the presence of a plant in a location as an observation that a particular 
combination of alleles can survive there. When a large collection of plants spanning a 
suitable range of climate variables are sequenced, one can use environment data as a 
fitness phenotype to and test if certain alleles associated. A genome wide association study 
scan can then be performed with climate data to identify adaptive loci. Figure 5c shows a 
cartoon example of specific loci associating with Precipitation in the Warmest Quarter.  
 
[Insert Figure 4 here] 

Future Collections 

Extensive public collections exist, however many geographic regions and climate niche 
remain unrepresented or undersampled. Having those spaces filled would be beneficial for 
the whole Brachypodium community. As mentioned above there is a strong division in the 
current public collection between Eastern and Western European accessions. Hence, it 
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would be advantageous to have collections across the Middle East and North Africa as it is 
highly possible that B. distachyon complex species were pushed south during the last ice 
age and extant lineages could be sources of new maternal lines for research. Central 
Southern Europe might provide a source of admixture populations between the Eastern and 
Western genotypes or completely new genotype groups. With genotype data, we can focus 
further collections on hybrid zones and polymorphic sites to increase the number of 
recombinant genotypes. These genotypes provide unique opportunities to study natural 
selection on adaptive traits. They provide natural genetic mapping resources to dissect 
complex adaptive traits. Admixed populations also inform the evolutionary history of 
Brachypodium and provide an opportunity to test natural selection on segregating variation.  
 
To study the natural variation of stress tolerance in B. distachyon, it would be good to have 
further collections from more extreme environments. This would include higher 
altitude/latitude environments such as Northern Europe and more arid environments in the 
Middle East and North Africa. Areas with multiple, recent introductions are also of interest as 
they may provide examples of strong selection on standing variation.  
 
 
 

Conclusion: 

Brachypodium has a large genetic diversity with its distribution spanning a wide range of 
climatic regions. Through Landscape Genomics we can use this diversity to predict the niche 
breadth and potential range size of a particular ecotype. We can also start to understand the 
genetic basis of fitness/adaptation to this niche. Genome Wide Association Studies utilises 
Brachypodium genetic diversity in combination with its broad phenotypic diversity to 
elucidate the genetic architecture of traits of interest and how this architecture varies in 
different climate types. Both techniques rely on a thorough understanding of the population 
structure of available collections with particular attention to sub-genomic divisions. Future 
developments in these techniques will rely heavily on the expansion of the collection of 
publicly available accessions and development of bioinformatic and statistical methods to 
increase the power and accuracy of both the Landscape Genomics and GWAS approaches. 
However, via recently developed techniques, the use of these approaches in Brachypodium 
has much potential for applications in crop design and ecological restoration projects for 
future climates. 
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Glossary: 
 
Accession: A collection of seeds from one location. This includes bulk collections and maternal 
descent lines. 
 
Ecotype: An individual or group whose genetic distinction is strongly associated to an environment or 
type.  
 
Genotype: This general term is used either to describe the genotype at a locus such as a SNP (AA, 
Aa, aa) or a background whole genome genotype which can have levels of species, subspecies, 
population genetic structure group, family, individual maternal line). 
 
Phenotype (qualitative and quantitative): Measurable traits expressed by plants 
 
Population: Non-random mating between groups within a specified geographic space 
 
Subspecies: In this paper, subspecies is a major hierarchical cluster of genotype groups and their 
respective families and/or genotypes. Subspecies could interbreed but don’t in natural environment 
due to some sort of natural barrier. 
 
 
 
More details can be found here: 
http://borevitzlab.anu.edu.au/resources/populations/ 
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Figure Legends 
 
Fig. 1. Geographic and climatic distribution of Brachypodium accessions. Distribution of the 350 populations, 
>1,400 accessions, of Brachypodium overlaid on the Kӧppen-Geiger climatic regions (Peel et al. 2007). Many other 
private collections exist. 
 
Fig. 2. Subspecies and population genomic subdivision with Brachypodium. The first division in B. distachyon is 
that between the A and the B subspecies. Second is the geographic split between Eastern and Western Europe. This 
implies independent re-colonization of Europe, for each subspecies via both the east and west routes after glacial 
retreat.  
 
Fig. 3. Life strategy of B. distachyon accessions is associated with subspecies, region and climate type at the 
collection site. 256 Brachypodium accessions were grown in simulated growth conditions to mimic a Winter and Spring 
sowing date. Days from seedling emergence to ear emergence was monitored as an indicator of transition to the 
reproductive stage. a) Comparison of life strategy in the two environments; dashed lines indicate the cutoffs for 
classification of accessions as early, mid or late flowering based on their flowering time under the Spring germination. b) 
Subspecies and geographic classification of accession show varying distributions of early, mid and late flowering 
accessions; numbers in columns indicate number of accessions in each category and c) Early, middle and late flowering 
groups of accessions are sourced from different proportions of climate types. 
 
Fig. 4. Considerations when performing GWAS in Brachypodium. a) Selection of a balanced set of accessions is 
key for successful GWAS. Initial GBS of all available accessions facilitates selection of a subset of lines for intense 
phenotyping and whole genome sequencing b) Replication of a few key lines allow for the heritability of a phenotypic 
trait to be estimated. Traits with large environmental variance will return poor GWAS results. Points are the average 
time to ear emergence of 3-6 biological replicates + S.D.; * did not flower in the Spring germination c) A genome wide 
screen of SNPs identifies those associated with a quantitative trait. Manhattan plot with arrows showing SNPs 
associated with days to ear emergence with a Spring germination. A balanced set of 95 accessions from the A 
subspecies was used in analysis. The dotted line indicates the 5% empirical genome-wide significance threshold. 
 
 
Fig. 5. Predicting species distribution and detecting segregating SNPs by climate input. a) MaxEnt produced 
probable distribution of Brachypodium in Australia using 80 geographic locations as presence only data correlated with 
WorldClim/BioClim variables. b) 80 Australian populations collected by the Borevitz lab of B. distachyon complex to 
show the environmental relatedness of each population (no genetic data used). The vertical dendrogram describes 
environmental variable correlation across all populations. The horizontal dendrogram describes individual population 
clustering by their environmental relatedness to inform researchers about where certain genotypes/haplotypes might 
grow. If specific haplotypes are found in multiple locations one can dissect which strains are more likely to be pervasive. 
Likewise the variation and possible selection pressure one or more environmental variable(s) may have across many 
populations. Using a custom R script, we normalize 19 WorldClim environmental variables point sampled across 
locations. Variables with the smallest normalised distribution from the mean are likely to be a strong selection pressure 
species-wide. Variables with larger distribution could be random, but also could be associated with specific alleles. c) A 
cartoon representation of SNPs associated with environmental variables, calculated much the same way as a LOD with 
phenotype data. 
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