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Abstract 

Reflectance confocal microscopy (RCM) is a powerful tool for in-vivo examination of a 
variety of skin diseases. However, current use of RCM depends on qualitative examination 
by a human expert to look for specific features in the different strata of the skin. Developing 
approaches to quantify features in RCM imagery requires an automated understanding of 
what anatomical strata is present in a given en-face section. This work presents an automated 
approach using a bag of features approach to represent en-face sections and a logistic 
regression classifier to classify sections into one of four classes (stratum corneum, viable 
epidermis, dermal-epidermal junction and papillary dermis). This approach was developed 
and tested using a dataset of 308 depth stacks from 54 volunteers in two age groups (20-30 
and 50-70 years of age). The classification accuracy on the test set was 85.6%. The mean 
absolute error in determining the interface depth for each of the stratum corneum/viable 
epidermis, viable epidermis/dermal-epidermal junction and dermal-epidermal 
junction/papillary dermis interfaces were 3.1 μm, 6.0 μm and 5.5 μm respectively. The 
probabilities predicted by the classifier in the test set showed that the classifier learned an 
effective model of the anatomy of human skin. 
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Introduction 

Reflectance confocal microscopy (RCM) is capable of imaging human skin in-vivo at high 
resolution, with available machines capable of lateral resolutions of 0.5-1 μm [1]. RCM has 
been established as an effective tool for many applications in the assessment of human skin, 
such as the diagnosis of melanoma and keratinocyte skin cancers [2,3] and the assessment of 
inflammatory skin diseases [4]. However, appropriate training and experience are required to 
interpret RCM imagery: unlike the transverse sections of histopathology RCM images are 
acquired en-face and instead of the contrast provided by hematoxylin and eosin staining only 
a monochrome image showing variation in reflectance at one wavelength is available. While 
the non-invasive character of RCM imaging allows for the collection of large numbers of 
images, extracting quantitative information requires the time and expense of evaluation by a 
human expert. Fully exploiting the potential of RCM as a non-invasive imaging source 
requires new tools for standardised and streamlined assessment of large datasets. 

While several approaches to standardised assessment using image analysis have been 
proposed none are currently in clinical use. These assessment approaches have focused on 
one of three main categories: 1) Quantifying and detecting specific features such as counting 
keratinocytes [5], detecting pagetoid cells [6] and evaluating photoageing [7], 2) Computer 
aided diagnosis of malignant melanocytic lesions [8] and 3) Identifying the anatomical 
structures of human skin [9,10]. Although both Somoza et al. and Kurugol et al. considered 
the problem of understanding human skin their work is limited: Kurugol et al. consider only 
the location of the dermal-epidermal junction and showed good performance only in darker 
skin types. While Somoza et al. showed an approach for complete segmentation of human 
skin their results were only a pilot study on 3 stacks. To date there is no robust automated 
method for understanding the complete anatomical structure of human skin in RCM depth 
stacks. 

Understanding the anatomical structure of the skin is one of the fundamental tasks for 
assessment of RCM and conventional histopathology. It is necessary firstly for examining 
gross changes, such as thickening of the viable epidermis or stratum corneum. Secondly, an 
understanding of the distinct strata is also needed to guide the search for specific features. For 
example examining the honeycomb pattern of keratinocytes in the viable epidermis as a 
feature of photoageing [11] requires knowing at what depth the viable epidermis occurs in a 
stack. Therefore automated segmentation of the anatomical strata of the skin is a valuable 
starting point for standardised and automated analysis of RCM depth stacks. 

The aim of this study was to develop a tool for automatically segmenting the distinct 
anatomical strata of human skin. This paper will outline an approach for achieving this aim 
using a bag of features approach to representing en-face optical sections that uses a dictionary 
of visual features learned by clustering image patches extracted from en-face RCM sections. 
This approach was trained and validated by comparison with an expert human observer. A 
bag of features approach was selected because these models are capable of modelling textural 
features and make minimal assumptions about the nature of the problem in addition the 
representative features are learned directly from the image data and do not require manual 
selection of relevant features. Bag of features also have demonstrated success in a number of 
medical imaging applications including, for example, colorectal tumor classification in 
endoscopic images [12], X-ray categorization [13] and histopathology image classification 
[14]. 
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Methods 

Participants and data acquisition 

This study was conducted according to the Declaration of Helsinki with approval from the 
Metro South Human Research Ethics Committee and written informed consent obtained from 
participants. Participants were recruited in two age groups to represent a spectrum of normal 
skin. A total of 57 participants were recruited: 25 aged 20-29 (14 female) and 32 aged 50-59 
(18 female). For the 20-29 year old group there were 7 phototype I, 9 phototype II, 7 
phototype III, 1 phototype IV and 1 with no data available. For the 50-59 year old group there 
were 9 phototype I, 9 phototype II, 12 phototype III, 1 phototype IV and 1 with no data 
available. Recruitment focused on phototypes I-III to study photoageing in the context of 
light skin types. This dataset thus forms an ideal testbed for algorithm development in the 
context of the most challenging phototypes to examine with RCM. This dataset forms a 
superset of the data from Australian participants examined for the signs of photoageing in 
[11] and also used in [7]. 

Dorsal and volar skin of the forearm was imaged using a Vivascope 1500 (Caliber I.D, 
Rochester, NY, USA). A depth stack of en-face optical sections with vertical spacing of 2 μm 
was acquired to a depth of at least 50 sections (100 μm). Each en-face section had a field of 
500 μm by 500 μm and 1000 by 1000 pixels. At least 2 stacks were acquired for each 
participant and body site, leading to a dataset of 335 stacks. 

Strata definition and labelling 

For the purposes of segmentation four distinct anatomical strata were identified in the skin: 
the stratum corneum, viable epidermis, dermal-epidermal junction and the papillary dermis. 
To simplify the problem of establishing a ground truth in a large number of stacks it was 
assumed that a single anatomical strata was present in each en-face section and the extent of 
each strata was determined by identifying where three distinct features first occured within 
the stack, as illustrated in Fig. 1. This approach was inspired by work on weakly supervised 
video classification [15]. The specific features were based on [16]: visible honeycomb 
patterns corresponding to viable keratinocytes, visible bright bands corresponding to basal 
cells/dermal papillae and finally the absence of features of the basal layer -or- clearly visible 
fibrillar structures in the dermis. The en-face section with the first visible honeycomb pattern 
was considered the first layer of the viable epidermis - all sections above this layer were 
labelled as stratum corneum. En-face sections from the first honeycomb pattern to the first 
dermal papillae were labelled as viable epidermis. Sections from the first dermal papillae and 
up to, but not including, the en-face section where the features of the basal layer were no 
longer visible were labelled as dermal-epidermal junction. All sections below these were 
labelled as papillary dermis. 

Figure 1. RCM features used in identification of the start and end of each anatomical strata. 
A) The start of the viable epidermis is marked by the first visible honeycomb pattern (Blue 
outline). B) The start of the dermal-epidermal junction is marked by the first clearly defined 
papillae with bright ring of basal cells surrounding a dark center (Blue arrows). C) The start 
of the papillary dermis is marked by the absence of features corresponding to the basal layer. 
D) Alternative definition of the start of the dermal-epidermal junction for light skin types, a 
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dark featureless patch surrounded by keratinocytes with the absence of a bright basal layer 
(Blue arrow). 

The dataset was labelled by a dermatologist with significant clinical experience with RCM 
(MA). Labelling was performed twice with four weeks in between to assess the intra-observer 
variability of the selected features. This second labelling was taken to be the ground truth for 
evaluation purposes due to the improved familiarity with the specific features and confidence 
in the results by the assessor. Stacks were organised by participant and bodysite and were 
labelled sequentially as would be performed in a clinical setting. 

Some stacks showed motion or other artifacts making accurate labelling impossible - these 
stacks were excluded from the analysis. In addition if fewer than two examples for each body 
site were considered acceptable a participant was excluded from the analysis. A total of 
16,144 images in 308 stacks from 54 participants could be successfully labelled and were 
included for further analysis. 

Representation of en-face sections using bags of features 

A dictionary of representative visual features was learned using a process adapted from [17] 
using normalisation, whitening and spherical k-means to cluster small image patches drawn 
from the set of stacks. Initially the original high resolution optical sections were 
downsampled by a factor of 4 in each direction to 250 by 250 pixels (2 μm per pixel). This 
was necessary to match the scale of the extracted patches to the expected features in the 
image, and also to limit the dimensionality of features used in clustering. Following resizing a 
fixed number of patches were extracted from random locations in each en-face section. These 
patches were normalised to zero mean and unit variance (regularised by a constant to avoid 
singularities for low variance patches). These normalised patches were then whitened using a 
whitening matrix learned from the all extracted patches using the zero component analysis 
(ZCA) transform. Following [17] a regularisation factor, ε, was used, and additionally, only 
the top eigenvectors such that 95% of the energy was preserved in the transform were 
retained [18]. This last step was necessary to avoid numerical instability due to a number of 
low energy principle axes. After whitening the dictionary was learned by clustering using 
spherical k-means [19]. For encoding and clustering speed a hierarchical approach was 
applied to clustering, after [20,21]. A small fixed number of iterations (10) were used at each 
layer in the hierarchy, both for simplicity, and because of previous observations that few 
iterations are necessary for convergence [17]. 

Having learned a dictionary, each en-face section was then represented by the histogram of 
counts of visual features found in the image. Initially all raw patches in an en-face section 
were extracted in a dense sliding window fashion. After discarding zero variance patches, the 
extracted patches were normalised and whitened using the whitening matrix found while 
learning the dictionary. A whitened patch was quantized to the most similar (in a cosine 
sense) element in the dictionary. The final histogram was term-frequency normalised to be of 
unit length (L2 norm). The dataset was augmented (similar to [22]) by considering the 
original en-face section plus three rotations (at 90, 180 and 270 degrees). In the training 
phase these rotated examples plus the original section were considered as separate en-face 
sections while at testing phase the histograms from each rotation were pooled by averaging. 

The histograms of visual feature counts for each en-face section were finally classified using 
L1 regularised logistic regression from the scikit-learn package [23]. The multiple classes 
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were handled using a one-vs-rest scheme. Logistic regression was selected as a classifier 
because it can output meaningful probability estimates. L1 regularisation was selected for its 
demonstrated performance in handling cases with large number of irrelevant features [24], as 
might be expected to occur when learning a large number of features using a simple 
clustering methodology. 

Parameter estimation and performance assessment 

A stratified random sample of participants from the two age groups (18 of the 54 participants, 
8 from the 20-29 age group, 10 from the 50-59 age group) was held out as a final test set. The 
remainder were used for training and parameter estimation. Ten fold cross validation 
partitioned on the participants was then used on the training set with a coarse grid search to 
determine the parameters for maximum mean classifier accuracy over all of the folds. The 
grid search investigated the number of layers (1-3) and the number of splits at each layer (4-
18) in the hierarchical dictionary as well as the logistic regression regularisation constant C 
(100,�101,�.�.�.�105). The total number of patches extracted for the dictionary learning process 
was constrained so that it could be performed within an 8GB memory limit. Other parameters 
were held constant: the size of extracted patches (7x7 pixels), the regularisation parameters 
for the patch normalisation (1) and the whitening transform (0.1), the energy retained in the 
ZCA transform (95%) and the number of iterations of the spherical k-means algorithm (10). 

The classification performance of the algorithm was measured by applying the dictionary 
learning, encoding and classifier training process to the complete training set (with the 
optimal parameters selected by the grid search), then applying the learned feature encoding 
and classifier to the test set. The test set was not used at any point for training, validation or 
tuning. The output of the multi-class classifier was assessed by calculating the accuracy over 
all classes and the confusion matrix between the dermatologist labelling and the automatic 
classifications. The accuracy was also calculated for combinations of age and bodysite with 
strata type or phototype. To ensure that the classification was reliable for all stacks and not 
just on average the accuracy of the classifier was also calculated per stack in the test set. 

Clinical utility was further assessed by using the classification output on independent sections 
to estimate the interface locations between each strata. Each interface location was 
determined by counting the number of sections of an anatomical strata and all strata that 
would occur above this. This number of layers is converted to a depth by multiplying by the 
depth between en-face sections. For example, the interface between the viable epidermis and 
the dermal-epidermal junction would be estimated as the sum of the number of sections 
classified as stratum corneum and viable epidermis multiplied by μm. Agreement between the 
dermatologist and automatically identified interfaces was measured by calculating the mean 
absolute error in interface position, as well as the Pearson correlation coefficient between the 
interface depths. 

Results 

The classification accuracy over the entire test set was 85.6%. The parameters that optimised 
classification accuracy were a three layer encoding with 18 splits at each level (5832 total 
visual features) and C of 100. In comparison the intra-observer agreement of the 
dermatologist was 97.4%. The confusion matrices showing how images of each anatomical 
strata were classified by both the dermatologist and the automated method, are shown in 
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Table 1. Table 2 shows the classification accuracies broken down by combinations of age, 
bodysite, strata and phototype. The complete classification results for the 5319 en-face 
sections in the test set are given in S1 Table. 

Table 1. Comparison of human intraobserver agreement with automated approach on the 
5319 sections in the test set. 

  
Dermatologist (1st Label) Automatic  

  SC  VE  DEJ  PD  SC  VE  DEJ PD 
Dermatologist (2nd Label) SC  1292  1  0  0  1209 58  3  23  

VE  23  1285  9  0  71  1085 154  7  

DEJ 0  56  1523  22  0  143  1298 160 

PD  0  0  26  1082  3  0  143  962 

Key: SC = Stratum Corneum, VE = Viable Epidermis, DEJ = Dermal-epidermal Junction, PD 
= Papillary Dermis. 

Table 2. Percentage of correctly classified sections by the automated approach in each 
subgroup. 

  Strata  Phototype  

  SC VE DEJ PD I  II  III  Other 
20-30 years Dorsal 95.7 82.8 88.7 91.2 90.9 84.4 90.0 -  

Volar 91.2 79.7 85.1 62.9 80.2 84.0 80.0 -  

50-70 years Dorsal 91.9 82.2 76.8 92.5 80.3 94.0 84.6 86.0  

Volar 95.6 84.2 77.0 92.6 85.9 88.7 89.3 87.6  

Phototype  I  88.8 85.2 79.2 88.4
    

II  95.2 80.6 85.9 87.4     
III  95.7 83.0 80.6 82.3     

Other 95.5 77.4 81.0 92.9
    

Key: SC = Stratum Corneum, VE = Viable Epidermis, DEJ = Dermal-epidermal Junction, PD 
= Papillary Dermis. 

The classification accuracy for each stack, and the agreement between the automatic and 
dermatologist identified interfaces between strata are shown in Fig. 2. The average absolute 
error and standard deviation in locating all interfaces was 4.8  ±  4.8 μm The average absolute 
error and standard deviation of the error in locating each interface was 3.1  ±  3.3 μm, 6.0  ±  
5.3 μm and 5.5  ±  5.0 μm for the interfaces between the stratum corneum/viable epidermis, 
viable epidermis/dermal-epidermal junction and dermal-epidermal junction/papillary dermis 
respectively. The complete classification results for each stack in the test set are given in S2 
Table. 

Figure 2. Accuracy and agreement of the automated approach with the dermatologist for 
individual stacks. A) Classification accuracy across all test stacks, organised by participant. 
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The annotated examples are the best, median and worst accuracy stacks shown in Fig. 3. B-
D) The correlation between the dermatologist identified interface and the automatically 
identified interface for each of the stratum corneum/viable epidermis, viable 
epidermis/dermal-epidermal junction and dermal-epidermal junction/papillary dermis 
interfaces. 

Examples of automated and dermatologist identified interfaces are shown in Fig. 3. Also 
shown are the estimated strata probabilities through the depth of the stack, as estimated using 
the logistic regression classifier. 

Figure 3. Example interfaces and probability output from the classifier. A-C) Comparison of 
the dermatologist identified interfaces with the automatically identified interfaces on the 
stacks with the highest, median and lowest accuracy respectively. D-F) The corresponding 
probability of each anatomical strata occurring in a section through the depth of the stack. 

Discussion 

The visual features used to localize the anatomical strata within a stack were highly 
repeatable for the dermatologist observer (97.4% agreement between the first and second 
labelling sessions). In comparison the automated approach achieves a classification accuracy 
of 85.6% - a promising result for further automated analysis techniques. In particular the 
classification accuracy of the stratum corneum was excellent and did not strongly depend on 
the bodysite or age of the participant (Table 1.). In other strata performance was lower, but 
there did not appear to be a clear pattern in terms of bodysite or age. Similarly there did not 
appear to be a pattern for the classification accuracy of different phototypes. Since for all 
participants there is at least one stack classified with at least 90% accuracy (Fig. 2A), it is 
likely that the performance depends on some other characteristic of an individual stack. This 
other characteristic affecting performance could be the implicit assumption that a single strata 
is present in each en-face section: in the least accurately classified stack (Fig. 3C) there are 
furrows extending deep into the stack, causing a mixture of multiple anatomical strata present 
in each en-face section, whereas the most accurately classified example (Fig. 3A) exhibited 
only superficial furrows and approximately one anatomical strata per section. The stack with 
median accuracy (Fig. 3B) also exhibited deep furrows, but without bright reflectance and 
without strong mixing of strata. 

Interpreting the results of the classification algorithm to identify the depths of different 
anatomical strata shows good agreement between the dermatologist and automated approach 
(Figure 2B-D). The mean absolute error in interface location was less than 6 μm for all three 
interfaces considered. In other words, on average less than three vertical en-face sections 
separated the dermatologist identified interface from the automatically identified interface. In 
the stratum corneum/viable epidermis in particular the average error was only 3.1 μm or just 
over 1.5 times the vertical depth spacing of en-face sections. Coupling this low absolute error 
with the high correlation between the dermatologist and automatically identified interface 
depth (R2 0.74) suggests a possible use of this method to objectively quantify the thickness of 
the stratum corneum in-vivo. 

Beyond the high classification accuracy the utility of this classification approach for further 
automated analyses is supported by examining the probabilistic output of the logistic 
regression classifier used (Fig. 3D-F). Despite being trained on individual sections the 
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classifier effectively describes the order and transitions between different strata, with 
interface regions showing mixing of probabilities between different strata. Even in the least 
accurately classified stack, the estimated strata probabilities provide a useful approximate 
guideline as to where each anatomical strata is located within the stack. 

Other work has analysed the structure of RCM depth stacks in different ways. Kurugol et al. 
[9] attempt to segment the full three dimensional shape of the dermal-epidermal junction 
based on low-level image features computed on image tiles. Unlike the approach presented 
here, where each en-face section is classified independently, they use smoothing in both the 
horizontal and vertical directions to ensure locally consistent results. Their algorithm was 
tested on 30 stacks from 30 participants, 15 light skin (phototype I-II) and 15 dark skin 
(phototype III-VI) - variations in skin appearance with aging and sun exposure were not 
considered. To analyse light phototypes they attempted to estimate a 'transition' region that 
approximately contained the dermal-epidermal junction - similar to the volume containing the 
dermal-epidermal junction reported here. Although the performance measures are not directly 
comparable because of the different classification methodologies, the average error in 
determining the location of the dermal-epidermal junction reported here (4.8 μm) is similar to 
their average error across all stacks in determining the location of the dermal-epidermal 
junction (8.5 μm). 

Similar to this work Somoza et al. [10] show a method for classifying en-face sections as a 
single distinct strata. They define five strata from the stratum corneum to the papillary 
dermis. To classify en-face sections they use vector quantisation of histograms of visual 
features. The visual features were derived from a small set of hand selected filters, including 
oriented derivative of gaussians and laplacian of gaussians. In comparison, this work learns 
the features from the RCM sections themselves using unsupervised clustering. Although they 
show promising correlations between human and automated assessment (correlation 
coefficients 0.84-0.95), they examine only three RCM depth stacks and it is not clear if their 
work will generalise to other stacks. By comparison this work reports results on a much 
larger series of stacks and uses a robust validation approach with an independent test set used 
for final performance evaluation. 

The method presented here is limited by two factors. Firstly, only dorsal and volar skin of the 
forearm is considered. This limitation is mitigated by the inclusion of multiple age-groups 
and a selection of phototypes, both factors that lead to observable changes in the skin. 
Secondly the focus is limited to phototypes I-III. However, this limitation is necessary to 
focus on the most challenging examples for human observers to examine, and it has already 
been shown that the improved reflectance of darker skin types are easier to examine 
automatically [9]. Since the method presented here incorporates brightness and contrast 
normalisation and focuses on learned features it is reasonable to expect that it will also work 
with phototypes IV and above. 

In conclusion, it has been shown that a bag of features model is an effective tool for 
automatically segmenting and analysing reflectance confocal microscopy depth stacks. The 
classifier accuracy appears sufficient for approximate segmentation of RCM depth stacks 
across all four identified strata. Furthermore, in the stratum corneum it may be sufficiently 
accurate to allow automatic measurement of stratum corneum thickness with accuracy similar 
to a dermatologist. Future studies will focus on improving classification accuracy in strata 
other than the stratum corneum as well as assessment of skin pathologies including neoplastic 
and inflammatory skin diseases such as actinic keratosis and psoriasis. 
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