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Abstract 

The prediction of future child’s sex is a question of keen public interest. The probability of having a 

child of either sex is close to 50%, although multiple factors may slightly change this value. Some 

demographic studies suggested that sex determination can be influenced by previous pregnancies, 

although this hypothesis was not commonly accepted. This paper explores the correlations between 

siblings’ sexes using data from the Demographic and Health Survey program. In the sample of about 

2,214,601 women (7,985,855 children), the frequencies of sibships with multiple siblings of the same 

sex were significantly higher than can be expected by chance. A formal modelling demonstrated that 

sexes of the children were dependent on three kinds of sex ratio variation: a variation between 

families (Lexian), a variation within a family (Poisson) and a variation contingent upon the sex of 

preceding sibling (Markovian). There was a positive correlation between the sexes of successive 

siblings (coefficient = 0.067, p < 0.001), i.e. a child was more likely to be of the same sex as its 

preceding sibling. This correlation could be caused by secondary sex ratio adjustment in utero since 

the effect was decreasing with the length of birth-to-birth interval, and the birth-to-birth interval was 

longer for siblings with unlike sex.  

Keywords: sex ratio, sex determination, Lexian variation, Markov dependency, sex composition 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 24, 2015. ; https://doi.org/10.1101/031344doi: bioRxiv preprint 

https://doi.org/10.1101/031344


Version 3. November 24, 2015 

2 
 

Introduction 

A family with multiple children of same sex, say, a family with ten boys and no girls, always draws 

attention, and speculations are made about possible reasons of such an incident. These may include a 

lack of either parent’s ability to conceive girls, an influence of witchcraft, astrology etc. 

Surely, large unisex families may emerge simply by chance, when sexes of siblings are 

completely independent from each other. However, some studies indicate that the sex of a child may 

depend statistically on sexes of other siblings (see references below). There are at least two possible 

sources of such dependence, that may increase the frequency of unisex families. First, some parents 

indeed may have a predisposition to have children of particular sex. This bias can be caused by 

chemical compounds, infectious diseases, psychological distress (James 2000) and other conditions 

specific for given parents. As a result, each couple can be characterized by a probability of male birth 

p that may differ from the frequency of boys in the population1. This variation of p among couples is 

dubbed “Lexian”. 

Second, the sex of a child could be affected somehow by the sex of immediately preceding 

sibling, or sexes of several preceding siblings. This effect could be positive (the birth of a child with 

either sex increases chances that next child will be of same sex) or negative. The variation of p within 

a sibship, dependent on previous birth, is called “Markovian”. The unisex families would be in excess 

in a population with positive Markovian correlation. 

Another source of variation in sex ratio is called “Poisson”. It refers to random or systematic 

variation of p within a family, for example a decrease of p with mother’s age. Markovian, Lexian and 

Poisson variations can be present simultaneously in the same sample. Additionally, statistical 

dependence between siblings’ sexes can be caused by parents’ sex preferences, e.g. boy preference 

documented in many Asian cultures, or a preference for mixed-sex sibship. 

                                                           

1 The probability of male birth should be distinguished from sex ratio, which is number of boys per 100 girls. 
But if the probability is calculated as a frequency of boys, then higher probability implies higher sex ratio and 
vice versa. 
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Since at least 18892 the problem was studied using demographic data. Geissler ((Geissler 

1889), reviewed in (Gini 1951)) analyzed about 5 million births in 19th century Germany and did not 

detect significant deviation from expected sibship frequencies. Nevertheless, he noted that in same-

sex sibships probability of birth of one more child of same sex was higher than in other families (a 

positive correlation). For mixed sex sibships the correlation was negative (for instance, probability of 

female birth increased after many male births). 

Gini (Gini 1951) re-analyzed Geissler’s data, together with additional datasets from Germany, 

Italy and Netherlands, and concluded that some couples had a predisposition to have children of 

particular sex, although this predisposition may reverse with time. For example, a family may start 

procreation with a tendency to produce one sex, and end with a tendency to produce the opposite sex. 

He noticed a positive association between sexes of successive siblings in a data from Italy, and 

interpreted it as an evidence for such predispositions.  

Turpin and Schutzenberger (Turpin and Schutzenberger 1949) (reviewed in (Gini 1951)) 

analyzed a sample from France (14,230 families) and observed positive correlation between sexes of 

successive siblings. Unlike Gini, they hypothesized that the correlation could be explained by an 

influence of one birth on the following birth. This idea was supported by the fact that the interval 

between births of same sex siblings was on average shorter than for opposite sex siblings (however, 

Gini interpreted this result in favor of his “reversal of predisposition” explanation). 

(Bernstein 1952) analyzed a sample from USA (7,616 families). She reported positive 

correlation between sexes of first two children in family, and an excess of unisexual three-child 

families. 

Malinvaud (Malinvaud 1955) (reviewed in (James 1975)) investigated nearly 4 million births 

in France. The probability of male birth correlated positively with number of preceding boys and 

negatively – with number of preceding girls. 

                                                           

2 Other aspects of sex ratio variation were studied as early as in 1710, see James, W. H. (2000). "The variation 
of the probability of a son within and across couples." Human Reproduction 15(5): 1184-1188. 
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Renkonen et al (Renkonen 1956, Renkonen, Makela et al. 1961) collected data from 31215 

families in Finland. Their dataset was analyzed by several researchers, who reached contradictory 

conclusions. Original authors confirmed associations reported earlier by Geissler (Renkonen, Makela 

et al. 1962). First, probability of male birth was higher when all previous siblings were boys, and 

lower when they were girls (positive correlation). Second, for mixed sibships the probability of male 

birth was decreasing when number of preceding boys increased (negative correlation). The negative 

correlation was explained by possible immunization of mother’s organism against male fetal antigens. 

Edwards (Edwards 1961, Edwards 1962, Edwards 1966) re-analyzed the data using different 

statistical methods and demonstrated that correlation between sexes of successive siblings was 

positive (presumably due to some kind of in utero adjustment of sex ratio), although it was negative 

when only two last siblings in a family were concerned (probably due to birth control). Beilharz 

(Beilharz 1963) analyzed same data and dismissed previous conjectures about biological factors. 

Instead, he concluded that there is no influence of sex of previous sibling, and apparent positive 

correlation is caused by heritable tendency of some parents to have same-sex sibships. 

No correlation was found between successive siblings’ sexes in 116,458 sibships from Utah, 

USA (Greenberg and White 1967). Also, interval between births in this sample did not depend on 

whether the siblings were of same or opposite sex. 

In the data from 1970 USA census, with more than 230,000 families, sex ratio increased with 

number of preceding boys, and decreased with number of preceding girls. The authors suggested that 

their data provide evidence for both Markovian and Lexian variation (Ben-Porath and Welch 1976). 

In another USA sample (649,366 births) the sex of last child in a family was negatively 

correlated with sexes of preceding siblings (probability of male birth decreased with number of 

preceding brothers) (Thomas Gualtieri, Hicks et al. 1984). 

Mitter et al reported an excess of unisexual sibships in small sample (451 families) from India 

(Mitter and Anand 1975). 
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(Maconochie and Roman 1997) reported that sex ratio was not associated with sexes of 

preceding siblings in 330,088 sibships from Scotland. (Jacobsen, Moller et al. 1999) used a sample of 

815,891 children from Denmark. According to their analysis, neither sex of immediately preceding 

sibling nor sexes of two or three preceding siblings had significant effect on sex ratio, when the 

regression model was adjusted for paternal age. (Rodgers and Doughty 2001) analyzed 6,089 families 

from USA and concluded that sexes of previous siblings had no effect on sex ratio. 

Garenne (Garenne 2009) analyzed over 2 million births in Sub-Saharan Africa. There was no 

correlation between sexes of successive siblings (although, only the correlation between two last 

births was tested). The sex ratio was dependent on number of preceding boys (positively) and number 

of preceding girls (negatively), as it was the case in Malinvaud’s sample. 

Overall the results of published studies are mixed. Many, but not all of them, report a 

correlation between sexes of siblings in a family. When the correlation is found, researchers disagree 

about it’s possible sources, since it can be attributed to both positive Markovian and to Lexian 

variation. The situation is complicated by a variety of statistical methods employed. Some authors 

tested pair-wise correlation between sexes of two successive siblings. Others used a regression of 

probability of male birth on numbers of preceding boys and girls. Methods that enable simultaneous 

testing of Markovian and Lexian variation were rarely employed. Few studies explicitly tested for an 

excess of families with particular composition, such as unisex families. Sample size is also an issue, 

with many studies conducted on only few thousands of families (while others used hundreds of 

thousands).  

Recently large scale demographic data, including birth sequences, became available for 

analysis from the Demographic and Health Survey (DHS) program. The DHS is an international 

organization that assists in conducting demographic surveys, mostly in developing countries. It 

collects and disseminates data on fertility, health, nutrition etc. I used DHS data from about 8 million 

births (to my knowledge, largest sample used in such studies so far) to test (1) if there are significant 

deviations from expected frequencies of sibships with various sex compositions, (2) if there is a 
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correlation between sexes of successive siblings, and (3) if this correlation can be attributed to Lexian 

or Markovian variation.  
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Methods 

Source data were downloaded from DHS website (dhsprogram.com) in August-September 2015. The 

demographic surveys were carried out in 1985-2014 mostly in developing countries of Africa, Asia 

and South America, using standardized questionnaires. Surveys of following types were selected for 

analysis: Standard DHS, Continuous DHS, Interim DHS, Special DHS. For each survey, the 

“individual response” dataset (with answers from Individual Woman’s Questionnaire) was 

downloaded, in Stata format (.dta). The questionnaire included questions about sexes of all children 

born to respondent woman.  

The sequences of siblings sexes were taken from variables b4_01-b4_20. Other variables used 

in analysis were b11_01-b11_20 (intervals between births), b3_01-b3_20 (child’s date of birth), v011 

(mother’s date of birth), b0_01-b0_20 (indicator of plural birth), v201 (total number of children ever 

born). 

Data handling and statistical analysis were done with Stata/MP 13. Logistic regression used 

sex of each child (except of first child in a sibship, who doesn’t have any preceding sibling) as 

dependent variable, and sex of previous child – as independent variable. Following observations were 

excluded from analyses: (1) pairs of successive siblings where at least one of them was from plural 

birth; (2) observations where recorded value of BTB interval was 9 months or less; (3) sibships with 

reported total number of children ever born (variable v201) did not match number of children 

recorded in variables b4_01-b4_20. 

Maximum likelihood estimation was performed using the model from (Astolfi and Tentoni 

1995). Only sibships with four or less children were analyzed. Briefly, Markovian dependency was 

modelled with parameters kim, kif (birth order i = 2, 3, 4). The probability of i’th child being boy 

equals kimp1 when i-1’th child was boy and kifp1 when i-1’th child was girl. The probability of i’th 

child being girl equals 1 - kimp1 when i-1’th child was boy and 1 - kifp1 when i-1’th child was girl. 

Other parameters reflected the shape of probability distribution of p1 and stopping rules. Markovian 

variation was excluded by constraining kim = kif = ki (i = 2, 3, 4); Poisson – by constraining kim = km, kif 
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= kf (i = 2, 3, 4); Lexian – by constraining 2nd, 3rd and 4th central moments of probability distribution 

to zero. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was used for likelihood maximization. 

The code for maximum likelihood estimation was written in Stata, and tested on Astolfi’s data to 

ensure that it generated same results as in the original publication.   
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Results 

Large same-sex sibships were more numerous than expected 

Total sample included 7,985,855 children in 2,214,601 sibships (Table 8). A sibship can be 

characterized, regardless of birth order, by total number of children n and number of boys k. If sex of 

each child is determined independently of siblings, then expected frequency of the sibship can be 

calculated according to binomial law: ��,� � ��
�
�����1 � ��	���, where rn is frequency of boys in all 

sibships with size n. Chi-squared test showed significant difference between expected and observed 

frequencies (Chi2 = 994, df = 178, p < 0.001). The deviations remained significant when sibships with 

at least one plural birth were excluded from the analysis (Chi2 = 1071, df = 176, p < 0.001), or when 

only one frequency of boys r for whole sample (instead of specific frequency for each sibship size) 

was used to calculate expected frequencies (Chi2 = 1700, df = 177, p < 0.001). 

Next, chi-squared test was applied to test deviation from expected frequency for each type of 

sibship (as characterized by n and k) (Table 1). 

Table 1 Odds ratios demonstrating relative abundance of sibships with size n and number of boys k. Odds ratio above 
1 indicates an excess of sibships with given composition, relative to expected frequency. *p-value < 0.05. For 20 out of 
63 chi-square tests listed in the table the p-value was below 0.05. Sibships with n > 10 are not shown. Sibships with at 
least one plural birth were excluded. 

 n  
k 2 3 4 5 6 7 8 9 10 

0 0.94* 0.94* 0.92* 0.95* 0.96 1.04 1.21* 1.17 1.36 
1 1.1* 1.01* 0.99 1.01 1.01 1.04 1.05 1.18* 1.14 
2 0.94* 1.05* 1.05* 1.01 1.01 1.01 1.02 1.04 1.07 
3 0.93* 0.98* 0.98* 0.99 0.98 0.99 0.99 1 
4 0.96* 1.01 0.98* 0.99 0.99 0.97 0.99 
5 1 1.02 0.99 0.97 0.99 0.99 
6 1.04 1.04 1.02 0.98 0.98 
7 1.13* 1.05 1.04 0.97 
8 1.29* 1.15* 1.06 
9 0.98 1.26* 
10 1.59 
 

The deviations were significant for many types of sibship. Notably, sibships with many boys 

were in excess among large families. For instance, among 24,999 sibships with exactly ten children 
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(and no plural births) 43 were all-boys, while expected number was only 27 (OR = 1.59, p = 0.07). 

Similarly, among large sibships number of those composed mostly with girls tended to be higher than 

expected. At the same time among small sibships (<5 children) mixed-sex types were more common. 

For example, among sibships with only 2 children those with one boy and one girl were 

overrepresented (OR = 1.10, p < 0.001). 

 

Sex ratio depended on the sex of preceding sibling 

The dependence between sexes of successive siblings was tested using logistic regression (boy coded 

as “0” and girl as “1”). The sex of preceding sibling had small but significant positive effect on sex of 

a child (coef = 0.016, p < 0.001, ~0.4%3 change of sex ratio). Assuming that this effect could depend 

on sibship size and birth order of a child, the regression was repeated for different sibship sizes n and 

birth orders i (Table 2). 

Table 2 Correlations between sexes of successive siblings, by sibship size n and birth order i. Regression coefficients 
from logit model are presented (sex of i’th child as dependent variable, sex of i-1’th child – independent variable). 
Sibships with more than ten children are not shown. *p-value < 0.05.  

 n 
i 2 3 4 5 6 7 8 9 10 

2 -0.186* 0.011 0.069* 0.103* 0.089* 0.074* 0.106* 0.089* 0.039 
3 -0.13* -0.004 0.077* 0.089* 0.091* 0.089* 0.1* 0.179* 
4 -0.088* 0.011 0.091* 0.086* 0.093* 0.105* 0.119* 
5 -0.039* 0 0.1* 0.089* 0.114* 0.101* 
6 -0.037* 0.034* 0.085* 0.08* 0.066* 
7 -0.018 0.07* 0.072* 0.068* 
8 0.005 0.068* 0.041 
9 -0.002 0.046 
10 0.064* 
 

When dependent variable was the sex of last child in a sibship (that is, i = n), the regression 

coefficients were mostly negative. Meanwhile, for most other combinations of n and i the coefficients 

were positive and significant. When the analysis (for all sibship sizes n combined) was performed 

excluding last child of each sibship (i.e. when i ≠ n, for all n), the regression coefficient was 0.067 (p 

                                                           

3 As a rule of thumb in these models, logistic regression coefficient of 0.1 corresponds to 2.5% increase of 
probability that the i’th child has same sex as preceding sibling. 
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< 0.001). Conversely, when only last children were included (i = n, for all n), the regression 

coefficient was -0.098 (p < 0.001). 

For confirmation of the results obtained in pooled sample the regression was performed in 

each dataset from DHS website (one dataset per survey), and then random effects meta-analysis was 

applied to pool estimates of regression coefficients. When all children were included (regardless of 

birth order) the result was not significant (coef = 0.017, p = < 0.001; I2 = 46%, p < 0.001). When last 

child of each sibship was excluded, the effect of preceding sibling’s sex was positive and significant 

(coef = 0.063, p < 0.001; I2 = 57.7%, p < 0.001). When only last children were included the effect of 

previous sibling’s sex was negative and significant (coef = -0.084, p < 0.001; I2 = 79.6%, p < 0.001). 

Why does the sign of this correlation depend on whether “dependent” child is last or not last 

in a family? Is it possible that sex of preceding sibling affects sex of a child via two different 

mechanisms, depending on whether the next sibling is a last child in the family or not? The negative 

correlation for last child may be explained by deliberate family planning, namely parents’ willingness 

to have a family with mixed sex composition (“balance preference”, discussed by (Gini 1951) and 

others). Such preference may dictate specific stopping behavior. For instance, if a couple have several 

daughters they may continue procreation until having a son, and then stop. A couple having a boy and 

a girl may decide to stop the procreation, while a family with two girls may wish to have one more 

child in a hope that it will be a boy. 

However, the last child recorded in DHS data is not necessary the last child in the family. The 

respondent woman may continue the procreation after interview date (i.e. the family could be 

incomplete). The proportion of children who are last in complete families should increase with the 

interval between date of last birth and date of interview. If the negative correlation between sexes of 

two last siblings is caused by parents’ stopping behavior, the correlation should be stronger when 

proportion of complete families is higher. Indeed, in the logit model including the time since last birth 

as a covariate, the effect of interaction term was negative and significant (Table 3, column 3). The 

negative sign suggests that coefficient’s absolute value is increasing when the time since last birth 

increases. For instance, when last birth was less than 6 months before interview (bottom 10% of 
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distribution of interval values) the effect of previous sibling’s sex was not significant (coef = -0.018, p 

= 0.088). When last birth was more than 167 months before interview (top 10%) the negative 

correlation was highly significant (coef = -0.25, p < 0.001), presumably because the proportion of 

complete families in this subsample was high. 

Table 3 Effects of preceding sibling's sex and time since last birth on sex of last sibling in a sibship. Logistic 
regression coefficients. p-values in italic. 

Independent variable 1 2 3 

Sex of preceding sibling -0.098 -0.099 -0.02 
 < 0.001 < 0.001 < 0.001 
    

Time since last birth, 
months  -0.0006 -0.00008 

  < 0.001 < 0.001 
    

Interaction   -0.0012 
   < 0.001 

 

Alternatively to deliberate family planning, some biological factors behind the correlation 

between sexes may change their direction from positive to negative, and such a change could be 

accompanied by the end of procreation. 

 

Was the correlation caused by Lexian or Markovian variation? 

If some parents have a tendency to produce children of particular sex, then a correlation should be 

observed between sexes of siblings regardless their birth order, not only between successive siblings 

(Edwards 1961). If the association between successive siblings has major role, then little or no 

correlation should be observed between sexes of siblings separated by other births. In DHS data the 

correlation was strong between successive siblings, less strong but still significant– between siblings 

separated by one birth, and negligible when siblings were separated by two or more births (Table 4, 

column 2). 
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Table 4 Correlations between sexes of siblings separated by various numbers of births. Logistic regression 
coefficients. Sibships with more than 10 children are not shown. 

Number 
of births 

separating 
the two 
siblings 

1 
All siblings 

2 
Excluding last children 

3 
Only last children 

 Coef P N coef p N coef p N 

0 0.016 <0.001 5497715 0.067 <0.001 3781932 -0.098 <0.001 1715783 

1 -0.011 <0.001 3766133 0.021 <0.001 2519460 -0.077 <0.001 1246673 

2 -0.019 <0.001 2524914 0.003 0.33 1648143 -0.059 <0.001 876771 

3 -0.015 <0.001 1653095 0.004 0.27 1046955 -0.049 <0.001 606140 

4 -0.013 <0.001 1051987 -0.008 0.13 638499 -0.022 <0.001 413488 

5 -0.014 0.004 643115 -0.006 0.37 370077 -0.026 <0.001 273038 

6 -0.003 0.70 373785 0.004 0.63 201077 -0.01 0.28 172708 

7 0.001 0.93 203653 -0.006 0.63 101588 0.008 0.54 102065 

8 -0.001 0.96 103270 0.004 0.83 46867 -0.004 0.80 56403 

9 0.004 0.82 47840 -0.015 0.59 20087 0.018 0.45 27753 

10 -0.018 0.52 20606 -0.037 0.42 7770 -0.007 0.85 12836 

 

When only last children were concerned (i.e., last sibling’s sex was dependent variable) the 

negative coefficient remained highly significant even when siblings were separated by up to five 

births (Table 4, column 3). This negative correlation with sexes of several preceding siblings is not 

surprising if the last child’s sex is influenced by parents’ balance preference (parents take into 

consideration the sexes of several existing children). 

When all children, regardless of birth order, were included in the model, the coefficient was 

positive and significant for successive births, but it was negative and significant when siblings were 

separated by 1-5 births (Table 4, column 1). Apparently, this result is caused by combination of two 

effects: positive correlations in most successive pairs, and negative correlation between sex of last 

child and sexes of several siblings preceding the last one. 

More formal way to test the presence of Markovian dependency is to use a statistical model 

where impacts of Markovian, Lexian and Poisson variations are represented simultaneously by 

different sets of parameters (see Methods). Likelihood ratios can be used to test significance of 
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particular parameters for model fit. Four models were fit to DHS data: a model with all parameters 

being estimated (full model), with Markovian variation excluded (Model 1), with Poisson variation 

excluded (Model 2) and with both Markovian and Lexian variation excluded (Model 3). Only sibships 

with four or less siblings were considered (71% of all sibships). The influences of all three sources of 

variation were significant: Markovian (LR = 82, df = 3, p < 0.001), Poisson (LR = 31, df = 4, p < 

0.001) and Lexian (LR = 910, df = 3, p < 0.001). If Lexian variation is mediated by beta-distribution 

of probability of male birth, then evaluated distribution parameters are a = 64.1 and b = 60.3. The  

variance of this distribution is 0.00196, which is close to Edwards’ estimate of 0.0025 (Edwards 

1958).  

 

Effects of birth-to-birth interval on the correlation between sexes 

If previous sibling’s sex exerts it’s effect by leaving some kind of temporary chemical mark in 

mother’s organism, then this effect could be stronger for shorter intervals between births (Edwards 

1961). The interaction between birth-to-birth (BTB) interval and sex of previous sibling was tested 

using logistic regression (Table 5). 

Table 5 Interaction of preceding sibling's sex and birth-to-birth (BTB) interval. Logistic regression coefficients are 
shown (p-values in italic). 

Independent 
variable 

Excluding last children Only last children 
1 2 3 4 5 6 

Sex of 
preceding 

sibling 
 

0.067 0.067 0.095 -0.098 -0.098 -0.096 
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

BTB 
interval, 
months 

 

 0.0004 0.0009  0.0007 0.0007 
 <0.001 <0.001  <0.001 <0.001 

Interaction 
term 

 

  -0.0009   0.00005 
  <0.001   0.6 

 
 

The effect of BTB interval alone was significant, regardless of whether last children were 

excluded or not: every additional month since last birth increased chances to have a girl by 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 24, 2015. ; https://doi.org/10.1101/031344doi: bioRxiv preprint 

https://doi.org/10.1101/031344


Version 3. November 24, 2015 

15 
 

approximately 0.01%. The interaction term was significant only in the model excluding last children 

(coef = -0.0009, p < 0.001). The negative sign of the coefficient suggests that the effect of preceding 

sibling’s sex is vanishing with time. This interaction can be seen on Figure 1 (the value of regression 

coefficient is decreasing from 9 to 40-45 months of BTB). 

s 

Figure 1 Logistic regression coefficients (effect of preceding sibling's sex) by BTB intervals, with last child of each 
sibship excluded from analysis. Distribution of sample sizes over BTB values is shown in the background. 
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When the analysis was limited to last children, the interaction was not significant (coef = -

0.00003, p = 0.8), Table 5, Figure 2. 

 

Figure 2 The effect of preceding sibling’s sex doesn’t change substantially with BTB interval, when only last children 
are considered. Logistic regression coefficients (effect of preceding sibling's sex) by BTB intervals. Distribution of 
sample sizes over interval values is shown in the background. 

 

Edwards (Edwards 1961) suggested also that the correlation between successive siblings’ 

sexes could be mediated by secondary adjustment of sex ratio, namely by lower chances of fetus 

survival when it’s sex is opposite to preceding sibling. In this case the BTB interval could be longer 

when successive siblings were of unlike sex. 

BTB interval between same sex births was significantly shorter than between opposite sex 

births when excluding last children (linear regression, pair of same sex births coded as “1”, opposite 

sex – “0”, coef = -0.135, p < 0.001). Results of nonparametric rank sum test were significant as well 

(p < 0.001). 

(Greenberg and White 1967) noted that such analysis of intervals should control for birth 

order or family size (because if their data the interval decreased with family size when birth order was 

constant). When sibship size and birth order were included into regression model as covariates, the 

interval still was significantly longer for opposite sex pairs (coef = -0.085, p < 0.001). Additionally, 

the analysis was repeated for each combination of sibship size n and birth order i (Table 6). 
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Table 6 Differences between BTB intervals for siblings of same and opposite sex. Linear regression coefficients are 
shown (the value corresponds to difference of BTB between pairs of opposite sex siblings and pairs of same sex 
siblings). * p < 0.05. Sibships with more than 10 children are not shown. 

i 
n 

3 4 5 6 7 8 9 10 

2 0.337* 0.03 -0.142 -0.008 -0.263* -0.124 -0.167 -0.047 
3  0.257* -0.055 -0.127 -0.309* -0.331* -0.071 -0.284* 
4   0.019 -0.072 -0.11 -0.339* -0.137 -0.108 
5    -0.108 -0.268* -0.333* -0.164 -0.24 
6     -0.308* -0.015 -0.278* -0.367* 
7      -0.167 -0.405* -0.115 
8       -0.176 -0.273 
9        -0.372* 

 

The difference of BTB intervals was significant for multiple, but not for all, combinations of 

n and i. Notably, all coefficients were negative for sibships with six or more children. 

 

Additional datasets 

Detailed information about siblings sexes and birth order was presented in several published papers 

((Renkonen, Makela et al. 1961, Greenberg and White 1967, Maconochie and Roman 1997, Jacobsen, 

Moller et al. 1999, Rodgers and Doughty 2001)). Logistic regression was applied to these datasets to 

investigate the reproducibility of results obtained in DHS data (Table 7). 
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Table 7 Logistic regressions of child's sex on preceding siblings’ sex in datasets from published papers. 

Publication All observations Excluding last 
child 

Limited to last 
child 

(Renkonen, Makela et al. 1961) (as 
presented in (Edwards 1962))1 
 

   

All data    
coef 0.053 0.104 -0.017 

p < 0.001 < 0.001 0.33 
N 123445 71577 51868 

< 5 siblings    
coef 0.037 0.159 -0.05 

p 0.021 < 0.001 0.018 
N 62797 26091 36706 

    
(Greenberg and White 1967)2 

 
   

All data    
coef -0.008 0.005 -0.044 

p 0.195 0.46 < 0.001 
N 438788 322399 116389 

< 7 siblings    
coef -0.024 0.004 -0.073 

p 0.005 0.72 < 0.001 
N 220154 140204 79950 

    
(Maconochie and Roman 1997)    

coef -0.004 0.512 -0.141 
p 0.7 < 0.001 < 0.001 
N 218028 46159 171869 

    
(Jacobsen, Moller et al. 1999)3    

coef  0.315  
p  < 0.001  
N  45757  

    
(Rodgers and Doughty 2001)4    
All data    

coef -0.065 0.076 -0.14 
p 0.196 0.372 0.023 
N 6435 2227 4208 

< 4 siblings    
coef -0.153 -0.036 -0.195 

p 0.007 0.74 0.003 
N 5046 1301 3745 

1 in original report families with five or more children were pooled together. Thus, the analysis limited to last children was 

informative only for sibships with four siblings or less. 2 in original report families with seven or more children were pooled. 

Thus, the analysis limited to last children was informative only for sibships with six siblings or less.3 the data were taken 
from Table V of original report, that doesn’t lists last children. Thus, only the analysis excluding last children (and only in 

sibships with three or more siblings) was possible. 4 in original report families with four or more children were pooled. Thus, 

the analysis limited to last children was informative only for sibships with three siblings or less. 
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In data from Renkonen et al (Renkonen, Makela et al. 1961) the effect of previous sibling’s 

sex was positive when last children were excluded (coef = 0.158, p< 0.001) and negative when only 

last children were included (coef = -0.049, p = 0.018), as in the DHS data. In Greenberg’s data 

(Greenberg and White 1967) positive correlation, after exclusion of last children, was not significant, 

while there was strong negative correlation between sexes of last two siblings in a family. Similar 

situation was observed in Rodgers data (Rodgers and Doughty 2001) (excluding last children – not 

significant effect; including only last children, coef = -0.19, p = 0.003). In Maconochie’s data 

(Maconochie and Roman 1997) both kinds of correlation were significant. In Jacobsen’s data 

(Jacobsen, Moller et al. 1999) the correlation was positive and significant in the model excluding last 

children (coef = 0.078, p < 0.001). 

Thus, positive correlation between sexes of successive siblings (excluding last children) was 

found in three out of five additional datasets. It should be noted, however, that Jacobsen and Rodgers 

do not report statistics of birth sequences after excluding plural births. Thus the positive values of 

coefficients could be overestimated. One should note also that unlike other datasets, Renkonen data 

don’t include children from a previous marriage of each woman.  
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Discussion 

Current results demonstrate an excess of large sibships with high (many boys) and with low (many 

girls) sex ratios, relative to binomial expectation. The overrepresentation of such sibships was 

accompanied by a correlation between the sexes of siblings. Notably, positive correlation was 

observed between the sexes of successive siblings and siblings separated by one birth, but not for 

those separated by two or more births. This effect is consistent with the hypothesis of Markovian 

variation, but not with Lexian one. However, formal modelling indicated that both Markovian and 

Lexian variation were present.  

Makela (Makela 1963) noted that in the presence of Lexian variation, a lack of correlation for 

siblings separated by several births could be observed due to other factors, for example an 

immunization against male fetal antigens. But in this case it is not clear why such factors do not make 

the correlation between successive siblings negative as well. 

Additional evidence for Markovian variation comes from the analysis of birth-to-birth 

intervals. Namely, the correlation between sexes was stronger when births were separated by shorter 

intervals. 

Several published studies reported an absence of Markovian variation, but a negative report 

doesn’t necessarily mean that the correlation is absent. Perhaps it is absent in a subsample selected for 

the testing, or can’t be detected using specific methods employed. For example, Garenne (Garenne 

2009) performed a test of association between the sexes of successive siblings and found it 

insignificant. However, this test was conducted not on all children in the sample. Instead, from each 

sibship only two siblings were selected: the last one and the second to last in birth sequence. 

Moreover, the analysis was restricted to women at least 35 years old. 

Jacobsen et al (Jacobsen, Moller et al. 1999) and Maconochie and Roman (Maconochie and 

Roman 1997) reported that the correlation between sexes was not significant, but no distinction was 

made between last birth in a sibship and all other births. When logistic regression was applied only to 

non-last births, significant positive association was seen between successive siblings (Table 7). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 24, 2015. ; https://doi.org/10.1101/031344doi: bioRxiv preprint 

https://doi.org/10.1101/031344


Version 3. November 24, 2015 

21 
 

Regarding the sample used in (Greenberg and White 1967) sample, there seems to be no 

positive Markovian correlation even when the non-last births were tested separately. The lack of 

correlation in this sample might be explained by peculiarities of the source data. The birth records 

were from archives of the Genealogical Society of the Church of Jesus Christ of Latter Day Saints 

(also known as Mormons) at Salt Lake City, Utah, USA. The fathers of these families were born on or 

after the year 1800. Some Mormons practiced polygamy during that period, at least until 1910 

(Wikipedia 2015). If a man had more than one wife, the progeny of each wife was recorded as a 

separate sibship. Also, if a woman had children with more than one man, the offspring of each man 

was recorded as a separate sibship. These peculiarities could potentially hinder Markovian correlation. 

Moreover, some of the children were born not in USA, but in Norway, Sweden, Denmark and 

Holland, i.e. before their parents moved to United States. These circumstances could reduce the 

quality of the data and further contribute to the discrepancy between the study findings and results 

from other studies. Notably, the authors re-analyzed Renkonen’s data (Renkonen, Makela et al. 1961)  

and confirmed that the correlation was present in that sample. 

It is unknown what biological mechanisms could underlie positive Markovian variation. Gini 

(Gini 1951) stated that “[the] hypothesis may be considered excluded by the mechanism of sex 

determination in a male heterogametic species like the humans”. Other researchers also noted that 

there is no plausible mechanism for the influence of one siblings’ sex on the next one (Ben-Porath and 

Welch 1976, James 2000). 

However, the casual Markovian dependence is not biologically impossible. At least two 

potential mechanisms can be proposed.  First is an influence of testosterone. Testosterone is produced 

by male fetuses (Conte and Grumbach 2011),  and the male fetuses have higher testosterone levels in 

cord blood (Maccoby, Doering et al. 1979, Nagamani, McDonough et al. 1979, Herruzo, Mozas et al. 

1993), compared to females. Maternal testosterone correlates positively with offspring sex ratio in 

cows (Grant and Irwin 2005) and field voles (Helle, Laaksonen et al. 2008), i.e. it increases the 

proportion of males. There is a lot of indirect evidence that testosterone can increase sex ratio in 

humans too (James 2011). The mechanism of these correlations is unknown, but the influence of 
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testosterone could be long lasting: an exposure of mother to fetal testosterone during a pregnancy may 

trigger physiological changes that will influence the sex ratio of the next offspring. 

Another potential mechanism of Markovian dependency could be based on fetal 

microchimerism. During pregnancy fetal cells penetrate into mother’s organism and remain there for 

years. These cells migrate into heart, skin, thyroid and adrenal glands, liver, kidney, lung, and spleen 

(Bayes-Genis, Roura et al.). Presumably, they may migrate into reproductive system too. They are 

able to differentiate into myocardial cells (Bayes-Genis, Roura et al.) and probably into other cell 

types (Khosrotehrani and Bianchi 2005). In principle, such cells, remaining in the reproductive system 

after previous pregnancy, may induce an adjustment of sex ratio by influencing viscosity of cervical 

mucus or embryo mortality. Alternatively, fetal cells may alter activity of adrenals (and levels of 

cortisol), pituitary (and levels of ACTH), ovaries (and levels of sex steroids) and other glands related 

to sex ratio adjustment.  

A study on Mongolian gerbils demonstrated that females, developed between male embryos 

while in utero, had higher sex ratio in their offspring later on (Clark and Galef 1995). This effect in 

gerbils could be related to an exposure of female fetus to testosterone from adjacent male fetuses, or 

an acquisition of cells from male fetuses. Perhaps this effect is based on same mechanism as the 

Markovian correlation in humans. 

One study reported that concentration of fat in human milk depends on child’s sex (Fujita, 

Roth et al. 2012). The authors noted also “near-significant negative influence of the number of sons 

living at home on milk fat concentrations”. Biological mechanism of these effects is unknown, but it 

is likely that sex of the child causes persistent alterations in mother’s physiology, that can be related 

to both milk production and adjustment of sex ratio. 

The positive markov correlation may have adaptive evolutionary value. There is a famous 

model of sex ratio adjustmet in the course of evolution, known as Fisher’s principle. According to that 

model, mutations, which enhance production of children of either sex, should be favored by natural 

selection if that sex is rare in the population. (It explains why the sex ratio should be close to 1:1 

under normal circumstances.) When a mutation alters sex ratio in an offspring, this alteration can be 
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intensified by positive markov dependency. If the change of sex ratio is adaptive (say, a mutation 

increases proportion of sons when there are too many women in the population) the markov 

dependency raises its value. Thus, a mechanism underlying Markov dependency would be under 

positive selection too. Surely, not every trait is under effective selection, and this dependency could 

be a kind of “spandrel” (Gould and Lewontin 1979), a by-product of unknown physiological 

mechanisms. 

Future directions. Among many published studies of sex ratios only few present raw data. 

Most papers contain only a summary of data, that isn’t sufficient for independent analysis. Presenting 

full data is essential for replication. In case of sex sequences the data can be made quite compact: it is 

enough to indicate birth sequence (e.g., Boy-Girl-Boy) and number of sibships of each type. The data 

used in current paper are available on DHS website (after an approval from DHS). 

Biological mechanisms of Markovian variation could be investigated using model organisms. 

To the best of my knowledge, among animals the Markovian dependence (controlling for Lexian 

variation) was explicitly tested only in dairy cattle (Astolfi and Tentoni 1995). The variation was not 

significant, although authors noted weak effect in expected direction: “after a male calf the probability 

of a male birth was slightly higher than the probability of a female birth”. It would be interesting to 

see if Markovian variation is present in mice, rats or other species amenable to experimentation. 
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Supplementary information 

Table 8 Summary statistics 

Sibship size (number of 
children) 

Number of sibships Percent Frequency of boys 
in the sibships with 

given size 
1 438,612 19.81 0.517 
2 467,637 21.12 0.524 
3 387,089 17.48 0.520 
4 283,323 12.79 0.512 
5 202,076 9.12 0.508 
6 147,510 6.66 0.506 
7 105,567 4.77 0.505 
8 74,526 3.37 0.507 
9 48,161 2.17 0.507 
10 30,393 1.37 0.505 
11 15,964 0.72 0.506 
12 8,477 0.38 0.510 
13 3,110 0.14 0.510 
14 1,266 0.06 0.516 
15 527 0.02 0.510 
16 239 0.01 0.502 
17 67 <0.01 0.519 
18 30 <0.01 0.509 
19 16 <0.01 0.493 
20 11 <0.01 0.527 
All  2,214,601  0.512 
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