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All experimental assaydata contains error, but themagnitude, type, andprimaryoriginof this error is o�en
not obvious. Here, we describe a simple set of assay modeling techniques based on the bootstrap principle
that allow sources of error and bias to be simulated and propagated into assay results. We demonstrate how
deceptively simple operations—such as the creation of a dilution series with a robotic liquid handler—can
significantly amplify imprecision and even contribute substantially to bias. To illustrate these techniques,
we review an example of how the choice of dispensing technology can impact assay measurements, and
show how large contributions to discrepancies between assays can be easily understood and potentially
corrected for. These simplemodeling techniques—illustratedwithanaccompanying IPythonnotebook—can
allow modelers to understand the expected error and bias in experimental datasets, and even help experi-
mentalists design assays to more e�ectively reach accuracy and imprecision goals.
Keywords: error modeling; assay modeling; Bootstrap principle; dispensing technologies; liquid handling;

direct dispensing; acoustic droplet ejection

I. INTRODUCTION8

Measuring the activity and potency of compounds—9

whether in biophysical or cell-based assays—is an impor-10

tant tool in the understanding of biological processes. How-11

ever, understanding assay data for the purpose of optimiz-12

ing small molecules for use as chemical probes or potential13

therapeutics is complicated by the fact that all assay data14

are contaminated with error from numerous sources.15

O�en, the dominant contributions to assay error are sim-16

ply not known. This is unsurprising, given the number17

and variety of potential contributing factors. Even for what18

might be considered a straightforward assay involving fluo-19

rescent measurements of a ligand binding to a protein tar-20

get, this might include (but is by nomeans limited to): com-21

pound impurities and degradation [1–4], imprecise com-22

pound dispensing [5, 6], unmonitored water absorption by23

DMSO stocks [4], the e�ect of DMSO on protein stability [7],24

intrinsic compound fluorescence [8, 9], compound insolu-25

bility [10] or aggregation [9, 11–14], variability in protein con-26

centration or quality, pipetting errors, and inherent noise in27

any fluorescence measurement—not to mention stray lab28

coat fibers as fluorescent contaminants [15]. Under ideal29

circumstances, control experiments would be performed to30

measure the magnitude of these e�ects, and data quality31

tests would either reject flawed data or ensure that all con-32

tributions to error have been carefully accounted for in pro-33

ducing an assessment of error and confidence for each as-34

sayed value. Multiple independent replicates of the exper-35

iment would ideally be performed to verify the true uncer-36

tainty and replicability of the assay data1.37

∗ Corresponding author; john.chodera@choderalab.org
† sonya.hanson@choderalab.org
‡ https://about.me/Sean_Ekins
1 Care must be taken to distinguish between fully independent replicates

Unfortunately, by the time the data reach the hands of38

a computational chemist (or other data consumer), the op-39

portunity to perform these careful control experiments has40

usually long passed. In the worst case, the communicated41

assay data may not contain any estimate of error at all.42

Even when error has been estimated, it is o�en not based43

on a holistic picture of the assay, but may instead reflect44

historical estimates of error or statistics for a limited panel45

of control measurements. As a last resort, one can turn to46

large-scale analyses that examine the general reliability of47

datasets across many assay types [17, 18], but this is to be48

avoided unless absolutely necessary.49

Whenmultiple independentmeasurements are not avail-50

able, but knowledge of how a particular assay was con-51

ducted is available, this knowledge can inform the construc-52

tion of an assay-specific model incorporating some of the53

dominant contributions to error in a manner that can still54

be highly informative. Using the bootstrap principle—where55

we construct a simple computational replica of the real ex-56

perimentandsimulatevirtual realizationsof theexperiment57

to understand the nature of the error in the experimental58

data—we o�en do a good job of accounting for dominant59

sources of error. Using only the assay protocol and basic60

specifications of the imprecision and inaccuracy of various61

operations such asweighing and volume transfers, we show62

how to construct and simulate a simple assaymodel that in-63

corporates these important (o�en dominant) sources of er-64

ror. This approach, while simple, provides a powerful tool65

to understand how assay error depends on both the as-66

say protocol and the imprecision and inaccuracy of basic67

operations, as well as the true value of the quantity being68

and partial replicates that only repeat part of the experiment (for exam-
ple, repeatedmeasurementsperformedusing the samestock solutions),
sincepartialmeasurements cano�enunderestimate trueerrorbyorders
of magnitude [16].
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measured (such as compound a�inity). This strategy is not69

limited to computational chemists and consumers of assay70

data—it can also be used to help optimize assay formats be-71

fore an experiment is performed, help troubleshoot prob-72

lematic assaysa�er the fact, or ensure that allmajor sources73

of error are accounted for by checking that variation among74

control measurements match expectations.75

We illustrate these concepts by considering a recent ex-76

ample from the literature: a report by Ekins et al. [19] onhow77

the choice of dispensing technology impacts the apparent78

biological activity of the same set of compounds under oth-79

erwise identical conditions. The datasets employed in the80

analyses [20, 21] were originally generated by AstraZeneca81

using either a standard liquid handler with fixed (washable)82

tips or an acoustic droplet dispensing device to prepare83

compounds at a variety of concentrations in the assay, re-84

sulting in highly discrepant assay results (Figure 1). The as-85

say probed the e�ectiveness of a set of pyrimidine com-86

pounds as anti-cancer therapeutics, targeting the EphB4 re-87

ceptor, thought to be a promising target for several cancer88

types [22, 23]. While the frustration for computational mod-89

elers was particularly great, since quantitative structure ac-90

tivity relationship (QSAR) models derived from these oth-91

erwise identical assays produce surprisingly divergent pre-92

dictions, numerous practitioners from all corners of drug93

discovery expressed their frustration in ensuing blog posts94

and commentaries [24–26]. Hosts of potential explanations95

were speculated, including sticky compounds absorbed by96

tips [27] and compound aggregation [13, 14].97

For simplicity, we ask whether the simplest contribu-98

tions to assay error—imprecision and bias inmaterial trans-99

fer operations and imprecision in measurement—might ac-100

count for some component of the discrepancy between as-101

say techniques. We make use of basic information—the as-102

say protocol as described (with some additional inferences103

based on fundamental concepts such as compound solubil-104

ity limits) and manufacturer specifications for imprecision105

and bias—to construct a model of each dispensing process106

in order to determine the overall inaccuracy and impreci-107

sion of the assay due to dispensing errors, and identify the108

steps that contribute the largest components to error. To109

better illustrate these techniques, we also provide an an-110

notated IPython notebook2 that includes all of the compu-111

tations described here in detail. Interested readers are en-112

couraged to download these notebooks and explore them113

to see how di�erent assay configurations a�ect assay error,114

and customize the notebooks for their own scenarios.115

II. EXPERIMENTAL ERROR116

Experimental error can be broken into two components:117

The imprecision (quantified by standard deviation or vari-118

2 The companion IPython notebook is available online at: http://
github.com/choderalab/dispensing-errors-manuscript

ance),which characterizes the randomcomponentof theer-119

ror that causes di�erent replicates of the same assay to give120

slightly di�erent results, and the inaccuracy (quantified by121

bias), which is the deviation of the average over many repli-122

cates from the true value of the quantity being measured.123

There are a wide variety of sources that contribute to ex-124

perimental error. Variation in the quantity of liquid deliv-125

ered by a pipette, errors in the reported mass of a dry com-126

pound, or noise in themeasured detection readout of awell127

will all contribute to the error of an assay measurement. If128

the average (mean) of these is the true or desired quantity,129

then these variations all contribute to imprecision. If not—-130

such as when a calibration error leads to a systematic devi-131

ation in the volume delivered by a pipette, the mass mea-132

sured by a balance, or the average signal measured by a133

plate reader—the transfers or measurements will also con-134

tribute to inaccuracy or bias. We elaborate on these con-135

cepts and how to quantify them below.136

MODELING EXPERIMENTAL ERROR137

1. The hard way: Propagation of error138

There are many approaches to the modeling of error and139

its propagation into derived data. O�en, undergraduate140

laboratory courses provide an introduction to the tracking141

of measurement imprecision, demonstrating how to prop-142

agate imprecision in individual measurements into derived143

quantities using Taylor series expansions—commonly re-144

ferred to simply as propagation of error [28]. For example,145

for a function f (x, y) of twomeasured quantities x and ywith146

associated standard errors σx and σy (which represent our147

estimate of the standard deviation of repeated measure-148

ments of x and y), the first-order Taylor series error propa-149

gation rule is,150

δ2f =
[
∂f
∂x

]2
x
σ2x +

[
∂f
∂y

]2
y
σ2y +

[
∂f
∂x

]
x

[
∂f
∂y

]
y
σ2xy

(1)

where the correlated error σ2xy = 0 if the measurements of151

x and y are independent. The expression for δ2f , the es-152

timated variance in the computed function f over experi-153

mental replicates, in principle contains higher-order terms154

as well, but first-order Taylor series error propagation pre-155

sumes these higher-order terms are negligible and all error156

can be modeled well as a Gaussian (normal) distribution.157

For addition or subtraction of two independent quanti-158

ties, this rule gives a simple, well-known expression for the159

additivity of errors in quadrature,160

f = x ± y
δ2f = σ2x + σ

2
y (2)

For more complex functions of the data, however, even the161

simple form of Eq. 1 for just two variables can be a struggle162

for most scientists to apply, since it involves more complex163

derivatives that may not easily simplify.164
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FIG. 1. Illustrationof the stagesof the twoassayprotocols consideredhere, utilizingeither tip-basedoracousticdropletdispensing.
Two di�erent assay protocols—utilizing di�erent dispensing technologies—were used to perform the same assay [19–21]. In the case of
tip-based dispensing, a Tecan Genesis liquid handler was used to create a serial dilution of test compounds using fixed washable tips,
and a small quantity of each dilution was pipetted into the enzyme assay mixture prior to detection. In the case of acoustic dispensing
(sometimes called acoustic droplet ejection), instead of creating a serial dilution, a Labcyte Echo was used to directly dispense nanoliter
quantities of compound stock into the enzyme assay mixture prior to detection. The detection phase measured product accumulation
a�er a fixed amount of time (here, detection of accumulated phosphorylated substrate peptide using AlphaScreen), and the resulting
data were fit to obtain pIC50 estimates. Ekins et al. [19] noted that the resulting pIC50 data between tip-based dispensing and acoustic
dispensing were highly discrepant, as shown in the central figure where the two sets of assay data are plotted against each other.

2. The easy way: The bootstrap principle165

Instead, we adopt a simpler approach based on the boot-166

strap principle [29]. Bootstrapping allows the sampling dis-167

tribution to be approximated by simulating from a good es-168

timate (or simulacrum)of the real process. Whilemanycom-169

putational chemists may be familiar with resampling boot-170

strapping for a large dataset, where resampling values from171

the dataset with replacement provides a way to simulate a172

replica of the real process, it is also possible to simulate the173

process in other ways, such as from a parametric or other174

model of the process. Here, wemodel sources of randomer-175

rorusing simple statistical distributions, and simulatemulti-176

ple replicates of the experiment, examining the distribution177

of experimental outcomes in order to quantify error. Unlike178

propagation of error based on Taylor series approximations179

(Eq. 1), which can become nightmarishly complex for even180

simple models, quantifying the error by bootstrap simula-181

tion is straightforward even for complex assays. While there182

are theoretical considerations, practical application of the183

bootstrap doesn’t even require that the function f be di�er-184

entiable or easily written in closed form—as long as we can185

compute the function f on a dataset, we can bootstrap it.186

For example, for the case of quantities x and y and associ-187

ated errors σx and σy, we would conduct many realizations188

n = 1, . . . ,N of an experiment in which we draw bootstrap189

replicates xn and yn from normal (Gaussian) distributions190

xn ∼ N (x,σ2x )
yn ∼ N (y,σ2y )
fn ≡ f (xn, yn) (3)

where the notation x ∼ N (µ,σ2) denotes that we draw the191

variable x from a normal (Gaussian) distribution with mean192

µ and variance σ2,193

x ∼ N (µ,σ2)⇔ p(x) =
1√
2πσ

exp
[
− (x − µ)

2

2σ2

]
(4)

We then analyze the statistics of the {fn} samples as if we194

had actually run the experiment many times. For example,195

we can quantify the statistical uncertainty δf using the stan-196

dard deviation over the bootstrap simulation realizations,197

std(fn). Alternatively, presuming we have simulated enough198

bootstrap replicates, we can estimate 68% or 95% confi-199

dence intervals, which may sometimes be very lopsided if200

the function f is highly nonlinear.201
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Since most instruments we deal with in a laboratory—202

such as pipettes or liquid handlers or balances—have read-203

ily available manufacturer-provided specifications for im-204

precision and accuracy, we will generally make use of the205

normal (Gaussian) distribution3 in modeling the error ∆x,206

∆x ∼ N (µ,σ2), (5)
where ∆x ≡ x − x∗ is the deviation from the true or de-207

sired value x∗, the mean µ represents the inaccuracy, and208

the standard deviation σ represents the imprecision.209

We will generally quantify the error from our bootstrap210

simulation replicates in terms of two primary statistics:211

Relativebias (RB).Asameasureof inaccuracy,wewill com-212

pute the relative expected deviation from the true value f ,213

RB ≡ E[fn − f ]
f

. (6)

This is o�enexpressedasapercentage (RB%)bymultiplying214

RB by 100. Note that, for cases where f = 0, this can be a215

problematic measure, in which case the absolute bias (just216

the numerator) is a better choice.217

Coe�icient of variation (CV). As a measure of imprecision,218

we will compute the relative standard deviation,219

CV ≡ std(fn)
E[fn]

, (7)

which can again be estimated from the mean over many220

bootstrap replicates, and is o�en also represented as a per-221

cent (CV%) by multiplying CV by 100.222

Simple liquid handling: Mixing solutions223

The bootstrap principle224

Consider the simplest kind of liquid transfer operation,225

in which we use some sort of pipetting instrument (hand-226

held or automated) to combine two solutions. For simplic-227

ity, we presume we combine a volume vstock of compound228

stock solution of known true concentration c0 with a quan-229

tity of bu�er of volume vbu�er.230

Initially, we presume that these operations are free of231

bias, but have associated imprecisions σstock and σbu�er. To232

simulate this process using the bootstrap principle, we sim-233

ulate a number of realizations n = 1, . . . ,N, where we again234

assume a normal distribution for the sources of error, ne-235

glecting bias and accounting only for imprecision,236

v(n)stock ∼ N (vstock,σ
2
stock)

v(n)bu�er ∼ N (vbu�er,σ
2
bu�er)

v(n)tot = v(n)stock + v(n)bu�er
c(n) = c0/v(n)tot. (8)

3 Volumes, masses, and concentrations must all be positive, so it is more
appropriate in principle to use a lognormal distribution to model these
processes to prevent negative values. In practice, however, if the relative
imprecision is relatively small and negative numbers do not cause large
problems for the functions, a normal distribution is su�icient.

We can then compute statistics over the bootstrap repli-237

cates of the resulting solution concentrations, {c(n)}, n =238

1, . . . ,N to estimate the bias and variance in the concentra-239

tion in the prepared solution.240

Relative imprecision241

Manufacturer specifications4 o�en provide the impreci-242

sion in relative terms as a coe�icient of variation (CV), from243

whichwecancompute the imprecisionσ in termsof transfer244

volume v via σ = CV · v,245

σstock = vstock · CV
σbu�er = vbu�er · CV
v(n)stock ∼ N (vstock,σ

2
stock)

v(n)bu�er ∼ N (vbu�er,σ
2
bu�er)

v(n)tot = v(n)stock + v(n)bu�er
c(n) = c0/v(n)tot. (9)

We remind the reader that a CV specified as a % (CV% or246

%CV) should be divided by 100 to obtain the CVwe use here.247

Relative inaccuracy248

Similarly, the expected inaccuracy might also be stated249

in terms of a relative percentage of the volume being trans-250

ferred. The inaccuracybehavesdi�erently from the impreci-251

sion in that the inaccuracy will bias the transferred volumes252

in a consistent way throughout the whole experiment. To253

modelbias,wedrawasingle randombias for the instrument254

from a normal distribution, and assume all subsequent op-255

erations with this instrument are biased in the same rela-256

tive way. We presume the relative bias (RB)—expressed as257

a fraction, rather than a percent—is given as RB, and draw a258

specific instrumental biasb(n) for eachbootstrap replicateof259

the experiment, simulating the e�ect of many replications260

of the experiment where the instrument is randomly recali-261

brated,262

b(n) ∼ N (0, RB2)
σstock = vstock · CV
σbu�er = vbu�er · CV
v(n)stock ∼ N (vstock(1 + b(n)),σ2stock)

v(n)bu�er ∼ N (vbu�er(1 + b(n)),σ2bu�er)

v(n)tot = v(n)stock + v(n)bu�er
c(n) = c0/v(n)tot . (10)

4 While manufacturer-provided specifications for imprecision and inac-
curacy are o�en presented as the maximum-allowable values, we find
these are a reasonable starting point for this kind of modeling.
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Obviously, if the instrument is never recalibrated, the bias263

will be the same over many realizations of the experiment,264

but we presume that a calibration process is repeated fre-265

quently enough that its e�ect can be incorporated as a ran-266

dom e�ect over many replicates of the assay over a long267

timespan.268

Uncertainty in initial concentration269

Wecould further extend thismodel to includeuncertainty270

σc in the stock concentration c0 (where the concentration271

may be stated c0 ± σc), and begin to see how powerful and272

modular the bootstrap scheme is. In this new model, each273

simulation realization n includes one additional initial step,274

c(n)0 ∼ N (c0,σ2c )
b(n) ∼ N (0, RB2)

σstock = vstock · CV
σbu�er = vbu�er · CV
v(n)stock ∼ N (vstock(1 + b(n)),σ2stock)

v(n)bu�er ∼ N (vbu�er(1 + b(n)),σ2bu�er)

v(n)tot = v(n)stock + v(n)bu�er
c(n) = c(n)0 /v(n)tot . (11)

All we had to do was add one additional step to our boot-275

strap simulation scheme (Eq. 10) in which the stock concen-276

tration c(n)0 is independently drawn from a normal distribu-277

tionwith each bootstrap realization n. Themodel can be ex-278

panded indefinitely with additional independent measure-279

ments or random variables in the same simple way.280

Below, we exploit the modularity of bootstrap simula-281

tions to design a simple scheme to model a real assay—the282

measurement of pIC50s for compounds targeting the EphB4283

receptor [19–21]—without being overwhelmed by complex-284

ity. This assay is particularly interesting because data exists285

for the sameassayperformedusing twodi�erentdispensing286

protocols that led to highly discrepant assay pIC50 data, al-287

lowing us to examine how di�erent sources of error arising288

from di�erent dispensing technologies can impact an oth-289

erwise identical assay. We consider only errors that arise290

from the transfer and mixing of volumes of solutions with291

di�erent concentrations of compound, using the same ba-292

sic strategy seen here to model the mixing of two solutions293

applied to the complex liquid handling operations in the as-294

say. Tomore clearly illustrate the impact of imprecision and295

inaccuracy of dispensing technologies, weneglect consider-296

ations of the completeness of mixing, which can itself be a297

large source of error in certain assays5.298

5 A surprising amount of e�ort is required to ensure thorough mixing of
two solutions, especially in thepreparationof dilution series [30–32]. We
have chosen not to explicitly include this e�ect in ourmodel, but it could
similarly be added within this framework given some elementary data
quantifying the bias induced by incomplete mixing.

Modeling an enzymatic reaction and detection of product299

accumulation300

The EphB4 assay we consider here [19–21], illustrated301

schematically in Figure 1, measures the rate of substrate302

phosphorylation in the presence of di�erent inhibitor con-303

centrations. A�er mixing the enzyme with substrate and in-304

hibitor, the reaction is allowed to progress for one hour be-305

fore being quenched by the addition of a quench bu�er con-306

taining EDTA. The assay readout (in this case, AlphaScreen)307

measures the accumulation of phosphorylated substrate308

peptide. Fitting a binding model to the assay readout over309

the range of assayed inhibitor concentrations yields an ob-310

served pIC50.311

A simple model of inhibitor binding and product accu-312

mulation for this competition assay can be created using313

standard models for competitive inhibition of a substrate S314

with an inhibitor I. Here, we assume that in excess of sub-315

strate, the total accumulation of product in a fixed assay316

timewill beproportional to the relative enzyme turnover ve-317

locity times time, V0t, and use an equation derived assum-318

ing Michaelis-Menten kinetics,319

V0t =
Vmax[S]t

Km (1 + [I]/Ki) + [S]
, (12)

where the Michaelis constant Km and substrate concentra-320

tion [S] for the EphB4 systemare pulled directly from the as-321

say methodology description [20, 21]. To simplify our mod-322

eling, we divide by the constants Vmaxt, and work with the323

simpler ratio,324

V0
Vmax

=
[S]

Km (1 + [I]/Ki) + [S]
, (13)

In interrogating our model, we will vary the true inhibitor325

a�inity Ki to determine how the assay imprecision and in-326

accuracy depend on true inhibitor a�inity.327

In reality, detection of accumulated product will also328

introduce uncertainty. First, there is a minimal de-329

tectable signal belowwhich the signal cannot be accurately330

quantified—below this threshold, a random background331

signal or “noise floor” is observed. Second, any measure-332

ment will be contaminated with noise, though changes to333

the measurement protocol—such as collecting more illumi-334

nation data at the expense of longer measurement times—335

can a�ect this noise. While simple calibration experiments336

can o�en furnish all of the necessary parameters for a useful337

detection error model—such as measuring the background338

signal and signal relative to a standard for which manufac-339

turer specifications are available—we omit these e�ects to340

focus on the potential for the discrepancy between liquid341

handling technologies to explain the di�erence in assay re-342

sults.343

Advanced liquid handling: Making a dilution series344

Because the a�inities and activities of compounds can345

vary across a dynamic range that spans several orders of346

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 9, 2015. ; https://doi.org/10.1101/033985doi: bioRxiv preprint 

https://doi.org/10.1101/033985
http://creativecommons.org/licenses/by/4.0/


6

magnitude, it is common for assays to use a dilution series347

to measure the activity and potency of ligands. To create348

a dilution series, an initial compound stock is diluted into349

bu�er in the first well of the series, and the contents mixed;350

for each subsequent well, a volume from the previous well351

is transferred into a well containing only bu�er, and mixed352

(Figure 2). Commonly, each subsequent dilution step uses353

fixed ratios, such as 1:2 or 1:10 of solute solution to total vol-354

ume6.355

It is easy to see how the creation of a dilution series by356

pipetting can amplify errors: because each dilution step in-357

volves multiple pipetting operations, and the previous dilu-358

tion in the series is used to prepare the next dilution, errors359

will generally grow with each step. As a result, the liquid360

handling instrumentation can have a substantial impact on361

the results obtained. Here, we compare an aqueous dilution362

series made with a liquid handler that makes use of fixed,363

washable tips (a Tecan Genesis) with an assay prepared di-364

rectly via direct-dispensing using an acoustic dispensing in-365

strument (a Labcyte Echo).366

Tip-based liquid handling367

To create a serial dilution series (Figure 2), we first trans-368

fer an aliquot of compound in DMSO stock solution to the369

first well, mixing it with bu�er, to prepare the desired initial370

concentration c0 at volume vintermediate for thedilution series.371

Next, we sequentially dilute a volume vtransfer of this solu-372

tion with a volume vbu�er of bu�er, repeating this process to373

create a total of ndilutions solutions. To model the impact of374

imprecision and inaccuracy on the serial dilution process,375

we again use manufacturer-provided specifications for the376

Tecan Genesis: the relative imprecision is stated to be 3%377

and the inaccuracy as 3-5% for the volumes in question [33].378

The resulting concentration cm of each dilution m is deter-379

mined by both the previous concentration cm−1 and by the380

pipetted volumes vtransfer and vbu�er, each of which is ran-381

domly drawn from a normal distribution. Putting this to-382

gether in the same manner as for the simple mixing of so-383

lutions, we have384

b(n) ∼ N (0, RB2)
σtransfer = vtransfer · CV
σbu�er = vbu�er · CV

v(n)transfer,m ∼ N (vtransfer(1 + b(n)),σ2transfer)

v(n)bu�er,m ∼ N (vbu�er(1 + b(n)),σ2bu�er)

v(n)intermediate,m = v(n)transfer,m + v(n)bu�er,m
v(n)final,(m−1) ∼ vintermediate,(m−1) − vtransfer,m

c(n)m = c(n)m−1/vintermediate,m , (14)

6 Note that a 1:2 dilution refers to combining one part solute solution with
one part diluent.

where the last five steps are computed for dilution m =385

1, . . . , (ndilutions − 1). In the companion notebook, we make386

comparisons easier by also removing a final volume vtransfer387

from the last well so all wells have the same intended final388

volume.389

In the EphB4 protocol [20, 21], the initial dilution step390

from 10 mM DMSO stocks is not specified, so we choose ini-391

tial concentration c0 = 600 µM in order to match the max-392

imum assay concentration used in the direct dispense ver-393

sion of the assay (described in the next section). We pre-394

sume an initial working volume of vintermediate = 100 µL, and395

model this dispensingprocessusingEq. 10. Wepresume this396

solution is then serially 1:2 diluted with 5% DMSO for a total397

of ndilutions = 8 dilutions7 with vtransfer = vbu�er = 50 µL, which398

a�er dilution into the assay plate will produce a range of as-399

say concentrations from 800 nM to 100 µM8. We estimate400

theappropriate coe�icientof variation (CV) and relativebias401

(RB) for the Tecan Genesis liquid handling instrument used402

in this assay using a linear interpolation over the range of403

volumes in a manufacturer-provided table [33]. Sampling404

over many bootstrap replicates, we are then able to esti-405

mate the CV and RB in the resulting solution concentrations406

for the dilution series. Figure 5 (le� panel) shows the esti-407

mated CV and RB for the resulting concentrations in the di-408

lution series. While the CV for the volume is relatively con-409

stant since we are always combining only two transferred410

aliquots of liquid, the CV for both the concentration and the411

total quantity of compound per well grow monotonically412

with each subsequent dilution. On the other hand, because413

the bias is assumed to be zero on average, the average di-414

lution series bias over many bootstrap replicates with ran-415

domly calibrated instrumentswill be free of bias. This situa-416

tionmaybedi�erent, of course, if the samemiscalibrated in-417

strument is used repeatedly without frequent recalibration.418

Once the dilution series has been prepared, the assay is419

performed in a 384-well plate, with each well containing 2420

µL of the diluted compound in bu�er combined with 10 µL421

of assaymix (which contains EphB4, substrate peptide, and422

cofactors) for a total assay volumeof 12µL. This liquid trans-423

fer step is easily modeled using the steps for modeling the424

mixing of two solutions in Eq. 10.425

Direct dispensing technologies426

Using a direct dispensing technology such as acoustic427

droplet ejection (ADE),we caneliminate theneed toprepare428

an intermediate dilution series, instead adding small quan-429

tities of the compoundDMSOstock solutiondirectly into the430

7 The published protocol [20, 21] does not specify how many dilutions
were used, so for illustrative purposes, we selected ndilutions = 8.

8 We note that real assays may encounter solubility issues with such high
compound concentrations, and that the nonideal nature of water:DMSO
solutionsmeans that serial dilution of DMSO stockswill not always guar-
antee all dilutions will readily keep compound soluble. Here, we also
presume the DMSO and EDTA control wells are not used in fitting to ob-
tain pIC50 values.
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1 2 3 4 5 6 7 8

Vtransfer

Vintermediate

Vbuffer

ndilutions

C0

⎬⎭ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪

waste

FIG. 2. Preparation of a serial dilution series with a fixed-tip liquid handler. To create a dilution series with a fixed-tip liquid handler,
a protocol similar to the preparation of a dilution series by hand pipetting is followed. Starting with an initial concentration c0 and initial
volume Vinitial in the firstwell, a volume vtransfer is transferred fromeachwell into thenextwell, inwhich a volumeof bu�er, vbu�er, has already
been pipetted. In the case of a 1:2 dilution series, vtransfer and vbu�er are equal, so the intended concentration in the secondwell will be c0/2.
This transfer is repeated for all subsequent wells to create a total of ndilutions dilutions. For convenience, we assume that a volume vtransfer
is removed from the last well so that all wells have the same final volume of vtransfer = vbu�er, and that the error in the initial concentration
(c0) is negligible.

assay plate. For the LabCyte Echo used in the EphB4 assay,431

the smallest volume dispensed is 2.5 nL droplets; other in-432

struments such as the HP D300/D300e can dispense quan-433

tities as small as 11 pL using inkjet technology. To construct434

a model for a direct dispensing process, we transfer a vol-435

ume vdispense of ligand stock in DMSO at concentration c0436

into each well already containing assay mix at volume vmix437

(presumed to be pipetted by the Tecan Genesis), and back-438

fill a volume vbackfill with DMSO to ensure each well has the439

same intended volume and DMSO concentration (Figure 3).440

We again incorporate the e�ects of imprecision and bias us-441

ingmanufacturer-provided values; for the Labcyte Echo, the442

relative imprecision (CV) is stated as 8% and the relative in-443

accuracy (RB) as 10% for the volumes in question [34],444

b(n)Echo ∼ N (0, RB
2
Echo)

b(n)Genesis ∼ N (0, RB
2
Genesis)

σdispense = vdispense · CVEcho
σbackfill = vbackfill · CVEcho
σmix = vmix · CVGenesis

v(n)dispense ∼ N (vdispense(1 + b(n)Echo),σ
2
dispense)

v(n)backfill ∼ N (vbackfill(1 + b(n)Echo),σ
2
backfill)

v(n)mix ∼ N (vmix(1 + b(n)Genesis),σ
2
mix)

v(n)assay = v(n)dispense + v(n)backfill + v(n)mix
c(n)m = cstock/v(n)assay . (15)

Since themaximum specified backfilled volumewas 120 nL,445

we presume that vdispense consisted of 8 dilutions ranging446

from 2.5 nL (the minimum volume the Echo can dispense)447

to 120 nL in a roughly logarithmic series. Note that this448

produces a much narrower dynamic range than the dilu-449

tion series experiment, with the minimum assay intended450

concentration being 2.5 µM assuming a 10 mM DMSO stock451

solution concentration cstock. We can then produce an es-452

Vbackfill

Vdispense

Vmix

Cstock

FIG. 3. Preparation of a dilution series with direct-dispense
technology. With a direct-dispense liquid handler—such as the
LabCyte Echo, which uses acoustic droplet ejection—instead of
first preparing a set of compound solutions at di�erent concentra-
tions via serial dilution, the intendedquantity of compound canbe
dispensed into the assay plates directlywithout the need for creat-
ing an intermediate serial dilution. We model this process by con-
sidering the process of dispensing into each well independently. A
volume vdispense of compound stock in DMSO at concentration c0 is
dispensed directly into an assay plate containing a volume vmix of
assay mix. To maintain a constant DMSO concentration through-
out the assay—in this case of the EphB4 assay, 120 nL—a volume
vbackfill of pure DMSO is also dispensed via acoustic ejection.

timate for the errors in volumes and concentrations (Fig-453

ure 5, middle panels) by generating many synthetic repli-454

cates of the experiment. Because direct dispensing tech-455

nologies can dispense directly into the assay plate, rather456

than creating an intermediate dilution series that is then457

transferred into the assay wells, direct dispensing experi-458

ments can utilize fewer steps (and hence fewer potential459

inaccuracy- and imprecision-amplifying steps) than the tip-460

based assays that are dependent on the creation of an inter-461

mediate dilution series.462
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Fixed tips and the dilution e�ect463

Simply including the computed contributions from in-464

accuracy and imprecision in our model of the Ekins et465

al. dataset [19], it is easy to see that the imprecision is466

not nearly large enough to explain the discrepancies be-467

tween measurements made with the two dispensing tech-468

nologies (Figure 7). Multichannel liquid-handlers such as469

the Tecan Genesis that utilize liquid-displacement pipet-470

ting with fixed tips actually have a nonzero bias in liquid471

transfer operations due to a dilution e�ect. This e�ect was472

previously characterized in work from Bristol Myers Squibb473

(BMS) [35, 36], where it was found that residual system474

liquid—the liquid used to create the pressure di�erences re-475

quired for pipetting—can cling to the interior of the tips a�er476

washingandmixwith samplewhen it isbeingaspirated (Fig-477

ure 4). While the instrument can be calibrated to dispense478

volumewithout bias, the concentrationof thedispensed so-479

lution can be measurably diluted.480

To quantify this e�ect, the BMS team used both an Ar-481

tel dye-based Multichannel Verification System (MVS) and482

gravimetric methods, concluding that this dilution e�ect483

contributes a -6.30% inaccuracy for a target volume of 20484

µL [35]. We can expandour bootstrapmodel of dilutionwith485

fixed tips (Eq. 15) to include this e�ect with a simple modifi-486

cation to the concentration of dilution solutionm,487

c(n)m = (1 + d) c(n)m−1/v(n)intermediate,m (16)

where the factor d = −0.0630 accounts for the -6.30% dilu-488

tion e�ect. The resulting CV and RB in volumes, concentra-489

tions, andquantities (Figure 5,middle) indicate a significant490

accumulation of bias. This is especially striking when con-491

sidered alongside the corresponding values for disposable492

tips (Figure 5, le�)—which lack the dilution e�ect—and the493

acoustic-dispensing model (Figure 5, right), both of which494

are essentially free of bias when the average overmany ran-495

dom instrument recalibrations is considered.496

This dilution e�ect also must be incorporated into the497

transfer of the diluted compound solutions (2 µL) into the498

enzyme assay mix (10 µL) to prepare the final 12 µL assay499

volume, further adding to the overall bias of the assay re-500

sults from the fixed-tips instrument.501

Fitting the assay readout to obtain pIC50 data502

While the IC50 reported in the EphB4 assay [19–21] in prin-503

ciple represents the stated concentration of compound re-504

quired to inhibit enzyme activity by half, this value is esti-505

mated in practice by numerically fitting a model of inhibi-506

tion to the measured assay readout across the whole range507

of concentrations measured using a method such as least-508

squared (the topic of another article in this series [37]).509

To mimic the approach used in fitting the assay data,510

we use a nonlinear least-squares approach (based on the511

simple curve_fit function from scipy.optimize) to fit512

V0/Vmax computed from the competitive inhibition model513

(Eq. 13, shown in Fig. 6, top panels) using the true assay514

Idle Aspiration Dispense

System Liquid

Air Gap

Sample

Mixture of System
Liquid and Sample

FIG. 4. Fixed tips dilute aspirated samples with system liq-
uid. Automated liquid handlers with fixed tips utilizing liquid-
displacement pipetting technology (such as the Tecan Genesis
used in the EphB4 assay described here) use a washing cycle in
which system liquid (generally water or bu�er) purges samples
from the tips in between liquid transfer steps. Aspirated sample
(blue) canbediluted by the system liquid (light purple)when some
residual system liquid remainswetting the insidewalls of the tip af-
ter purging. This residual system liquid ismixedwith the sample as
it is aspirated, creating amixture of system liquid and sample (red)
that dilutes the sample that is dispensed. While the use of an air
gap (white) reduces the magnitude of this dilution e�ect, dilution
is a known issue in fixed tip liquid-based automated liquid han-
dling technologies, requiringmore complex liquid-handling strate-
gies to eliminate it [36]. Diagram adapted from Ref. [36].

well concentrations toobtain aKi and then compute the IC50515

from this fit value. We can then use a simple relation be-516

tween IC50 and Ki to compute the reported assay readout,517

IC50 = Ki

(
1 +

[S]
Km

)
. (17)

The reported results are not IC50 values but pIC50 values,518

pIC50 = log10 IC50. (18)

Note that no complicated manipulation of these equations519

is required. As can be seen in the companion IPython note-520

book, we can simply use the curve_fit function to obtain521

a Ki for each bootstrap replicate, and then store the pIC50522

obtained from the use of Eqs. 17 and 18 above (Fig. 6, mid-523

dle panels). Repeating this process for a variety of true com-524

pound a�inities allows the imprecision (CV) and bias (RB) to525

be quantified as a function of true compound a�inity (Fig. 6,526

bottom panels).527
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tips
tips +

dilution
effect

acoustic

FIG. 5. Modeled accumulation of random and systematic error in creating dilution series with fixed tips and acoustic dispensing.
The model predicts how errors in compound concentration, well volume, and compound quantity accumulate for a dilution series pre-
pared using fixed tips neglecting dilution e�ects (le�) or including dilution e�ects (middle) compared with an acoustic direct-dispensing
process (right). Imprecision and inaccuracy parameters appropriate for a Tecan Genesis (fixed tips dispensing) or Labcyte Echo (acoustic
dispensing) were used, and assume that the initial compound stocks had negligible concentration error; see text formore details. The top
panels show the average relative randomerror via the coe�icient of variation (CV) of concentration, volume, or quantity, while the bottom
panels depict the relative bias (RB); both quantities are expressed as a percentage. For tip-based dispensing, relative random concen-
tration error (CV) accumulates with dilution number, while for acoustic dispensing, this is constant over all dilutions. When the dilution
e�ect is included for fixed tips, there is significant bias accumulation over the dilution series. Note that the CV and RB shown for acoustic
dispensing are for the final assay solutions, since no intermediate dilution series is created.

III. DISCUSSION528

Use of fixed washable tips can cause significant accumulation529

of bias due to dilution e�ects530

The most striking feature of Fig. 5 is the significant accu-531

mulation of bias in the preparation of a dilution series us-532

ing fixed washable tips (Fig. 5, bottom middle panel). Even533

for an 8-point dilution series, the relative bias (RB) is al-534

most -50% in the final well of the dilution series. As a re-535

sult, themeasured pIC50 values also contain significant bias536

toward weaker a�inities (Fig. 6, bottom middle panel) by537

about 0.25 log10 units for a large range of compound a�ini-538

ties. Atweaker compounda�inities, this e�ect is diminished539

by virtue of the fact that the first fewwells of the dilution se-540

ries have a much smaller RB (Fig. 5, bottommiddle panel).541

This cumulative dilution e�ect becomes more drastic if542

the dilution series is extended beyond 8 points. If instead a543

dilution series is created across 16 or 32 wells and assayed,544

the RB in the final well of the dilution series can reach nearly545

-100% (see accompanying IPython notebook for 32-well di-546

lution series). As a result, the bias in themeasuredpIC50 as a547

function of true pKi also grows significantly for these larger548

dilution series (Fig. 8).549

Imprecision is greater for direct dispensing with the Echo550

As evident from the top panels of Fig. 5, the CV for con-551

centrations in the assay volume for direct acoustic dispens-552

ing (right) is significantly higher than the CV of the dilution553

series preparedwith tips (le� andmiddle). This e�ectmani-554

fests itself in the CV ofmeasured pIC50 values as a higher im-555

precision (Fig. 6, bottom panels), where the CV for acoustic556

dispensing is nearly twice that of tip-based dispensing. De-557

spite the increased CV, there are still numerous advantages558

to the use of direct dispensing technology: Here, we have559

ignored a number of di�iculties in the creation of a dilution560

series beyond this dilution e�ect, including the di�iculty of561

attaining goodmixing [30–32], the time required to prepare562

the serial dilution series (during which evaporation may be563
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tips
tips +

dilution
effect

acoustic

FIG. 6. Comparingmodeled errors in measured pIC50 values using tip-based or acoustic direct dispensing. Top row: Bootstrap simu-
lation of the entire assay yields a distribution of V0/Vmax (proportional tomeasured product accumulation) vs ideal inhibitor concentration
[I] curves for many synthetic bootstrap replicates of the assay. Here, the inhibitor is modeled to have a true Ki of 1 nM (pKi = −9). Middle
row: For the same inhibitor, we obtain a distribution ofmeasured pIC50 values from fitting the Using ourmodel we can look at the variance
in activity measurements as a function of inhibitor concentration [I] (top), which then directly translates into a distribution of measured
pIC50 values. Bottomrow: Scaningacross a rangeof true compounda�inities,wecan repeat thebootstrap samplingprocedureandanalyze
the distribution of measured pIC50 values to obtain estimates of the relative bias (red) and CV (black) for the resulting measured pIC50s.
For all methods, the CV increases for weaker a�inities; for tip-based dispensing using fixed tips and incorporating the dilution e�ect, a
significant bias is notable.

problematic), and a host of other issues.564

Imprecision is insu�icient to explain the discrepancy between565

assay technologies566

Fig. 7 depicts the reported assay results [19–21] aug-567

mented with error bars and corrected for bias using models568

appropriate for disposable tips (blue circles) or fixed wash-569

able tips (green circles) that include the dilution e�ect de-570

scribed in Fig. 4. Perfect concordance of measured pIC50s571

between assay technologies would mean all points fall on572

the black diagonal line. We can see that simply adding the573

imprecision in a model with fixed tips (Fig. 4, blue circles,574

horizontal and vertical bars denote 95% confidence inter-575

vals) is insu�icient to explain the departure of the dataset576

from this diagonal concordance line.577

When the tip dilution e�ect for washable tips is incorpo-578

rated (Fig. 4, greencircles), there is a substantial shi� toward579

higher concordance. If, instead of an 8-point dilution series,580

a 16- or 32-point dilution series was used, this shi� toward581
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FIG. 7. Adding bias shi�s pIC50 values closer to equivalence.
The original experimental pIC50 values obtained using from fixed
tips (red) are plotted against pIC50 values from acoustic dispens-
ing, with errors bars representing the uncertainty (shown as 95%
confidence intervals) estimated by bootstrapping from our mod-
els. Since the bias is relatively sensitive to pIC50 value, here it is
determined by including both the experimental value and the es-
timated bias. Incorporating the dilution e�ect from tip-based dis-
pensing (green) shi�s the experimental pIC50 values closer to con-
cordance between tip-based and acoustic-based measurements.
While this does not entirely explain all discrepancies between the
two sets of data, it shi�s the root mean square error between the
tip-basedandacoustic-baseddispensingmethods from1.56 to 1.37
pIC50units. Themodel alsodemonstrates that (1) thebias induced
by the fixed tips explains much of the pIC50 shi� between the two
datasets, and (2) there is still a large degree of variation among the
measurements not accounted for by simple imprecision in liquid
transfers. This demonstrates the power of building simple error
models to improve our understanding of experimental data sets.
Grey box indicates portion of graph shown in Fig. 8.

concordance is even larger (Fig. 8). While this e�ect may ex-582

plain a substantial component of the divergence between583

assay technologies, there is no doubt a significant discrep-584

ancy remains.585

Other contributions to the discrepancy are likely relevant586

Serial dilutions are commonly used in the process of de-587

termining biologically and clinically relevant values such as588

inhibition concentrations (IC50) and dissociation constants589

(Kd). While high-throughput automation methods can im-590

prove the reproducibility of thesemeasurements overman-591

ual pipetting, even robotic liquid handlers are victim to the592

accumulation of both random and systematic error. Since593

the AstraZeneca dataset [20, 21] and the related analysis by594

Ekins et al. [19], several studies have posited that acous-595

tic dispensing results in fewer false positives and negatives596

than tip-based dispensing and that this phenomenon is not597

isolated to EphB4 receptor inhibitors [38–41].598

The power of bootstrapping599

We have demonstrated how a simple model based on600

the bootstrap principle, in which nothing more than the601

manufacturer-provided imprecision and inaccuracy values602

and a description of the experimental protocol were used603

to simulate virtual replicates of the experiment for a vari-604

ety of simulated compound a�inities allowedus to estimate605

the imprecision and inaccuracy of measured pIC50s. It also606

identified the di�iculty in creating an accurate dilution se-607

ries using washable fixed tips, with the corresponding dilu-608

tion e�ect being a significant contribution to discrepancies609

in measurements between fixed pipette tips and direct dis-610

pensing technologies. In addition to providing some esti-611

mate for the random error in measured a�inities, the com-612

puted bias can even be used to correct for the bias intro-613

duced by this process a�er the fact, though it is always safer614

to take steps to minimize this bias before the assay is per-615

formed.616

The EphB4 assay considered here is just one example of a617

large class of assays involving dilution or direct dispensing618

of query compounds followed by detection of some read-619

out. The corresponding bootstrap model can be used as a620

template for other types of experiments relevant to compu-621

tational modelers.622

This approach can be a useful general tool for both exper-623

imental and computational chemists to understand com-624

mon sources of error within assays that use dilution series625

and how to model and correct for them. Instead of sim-626

ply relying on intuition or historically successful protocol627

designs, experimentalists could use bootstrap simulation628

models during assay planning stages to verify that the pro-629

posed assay protocol is capable of appropriately discrimi-630

nating among the properties of the molecules in question631

given the expected range of IC50 or Ki to be probed, once632

known errors are accounted for. Since the model is quanti-633

tative, adjusting the parameters in the assay protocol could634

allow the experimentalist to optimize the protocol to make635

sure the data is appropriate to the question at hand. For ex-636

ample, in our own laboratory, it has informed the decision637

to useonly direct dispensing technologies—inparticular the638

HPD300 [42]—for fluorescent ligand-binding assays that re-639

quire preparation of a range of compound concentrations.640

This modeling approach can also be extremely useful in641

determining appropriate tests and controls to use to be sure642

errors andbiases are properly taken into account in general.643

If one is not certain about the primary sources of error in an644

experiment, one is arguably not certain about the results of645

the experiment in general. Understanding these errors, and646

being certain they are accounted for via clear benchmarks647

in experimental assays could help ensure the reproducibil-648

ity of assays in the future, which is currently a topic of great649
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interest. Especially with such a wide ranging set of assays650

that use dilution series, most notably toward the develop-651

ment of proteins and smallmolecules to study and treat dis-652

ease, this is a very important category of experiments to un-653

derstand how to make more clearly reproducible and inter-654

pretable.655

While here we have illustrated the importance of model-656

ing to the specific case of liquid handling with fixed tips in657

the context of measuring IC50 values for EphB4 inhibitors,658

there are still large discrepancies that have not been ex-659

plained, andperhaps variations on thismodel could explain660

everything, but perhaps the full explanation comes from661

parts of the assay yet to be incorporated into this model.662

As experiments become more automated and analysis be-663

comes more quantitative, understanding these errors will664

be increasingly important both for the consumers (com-665

putational modelers) and producers (experimentalists) of666

these data.667
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(a) Bias as a function of wells in dilution series.

(b) Zoom of pIC50 data with bias as a function of wells plotted.

FIG. 8. Bias in measured pIC50 depends on number of wells in
dilution series when using fixed washable tips. (a) If the dilu-
tion series is extended beyond 8 wells (yellow) to instead span 16
(green) or 32 (blue) wells, the bias e�ect in the measured pIC50 in-
creases as the cumulative e�ect of the dilution e�ect illustrated in
Fig. 4 shi�s the apparent a�inity of the compound. Because the di-
lution bias is greater for lower compound concentrations, this ef-
fect is more drastic for compounds with high a�inity. (b) Applying
these biases to the pIC50 from the sample dataset shows the bias
increaseswithboth the 16 (green) and32 (blue)well dilution series,
shi�ing thepoints even further toward the lineof ideal equivalence
of the two types of liquid handling. Note these points overlap ex-
actly.
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