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Modeling error in experimental assays using the bootstrap principle:
Understanding discrepancies between assays using different dispensing technologies

Sonya M. Hanson,' Sean Ekins,? and John D. Chodera® *

'Computational Biology Program, Sloan Kettering Institute,
Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States'
2Collaborations in Chemistry, Fuquay-Varina, NC 27526, United States*
(Dated: December 1, 2015)

All experimental assay data contains error, but the magnitude, type, and primary origin of this error is often
not obvious. Here, we describe a simple set of assay modeling techniques based on the bootstrap principle
that allow sources of error and bias to be simulated and propagated into assay results. We demonstrate how
deceptively simple operations—such as the creation of a dilution series with a robotic liquid handler—can
significantly amplify imprecision and even contribute substantially to bias. To illustrate these techniques,
we review an example of how the choice of dispensing technology can impact assay measurements, and
show how large contributions to discrepancies between assays can be easily understood and potentially
corrected for. These simple modeling techniques—illustrated with an accompanying IPython notebook—can
allow modelers to understand the expected error and bias in experimental datasets, and even help experi-
mentalists design assays to more effectively reach accuracy and imprecision goals.

Keywords: error modeling; assay modeling; Bootstrap principle; dispensing technologies; liquid handling;

direct dispensing; acoustic droplet ejection

I. INTRODUCTION

Measuring the activity and potency of compounds—
whether in biophysical or cell-based assays—is an impor-
tant tool in the understanding of biological processes. How-
ever, understanding assay data for the purpose of optimiz-
ing small molecules for use as chemical probes or potential
therapeutics is complicated by the fact that all assay data
are contaminated with error from numerous sources.

Often, the dominant contributions to assay error are sim-
ply not known. This is unsurprising, given the number
and variety of potential contributing factors. Even for what
might be considered a straightforward assay involving fluo-
rescent measurements of a ligand binding to a protein tar-
get, this might include (but is by no means limited to): com-
pound impurities and degradation [1-4], imprecise com-
pound dispensing [5, 6], unmonitored water absorption by
DMSO stocks [4], the effect of DMSO on protein stability [7],
intrinsic compound fluorescence [8, 9], compound insolu-
bility [10] or aggregation [9, 11-14], variability in protein con-
centration or quality, pipetting errors, and inherent noise in
any fluorescence measurement—not to mention stray lab
coat fibers as fluorescent contaminants [15]. Under ideal
circumstances, control experiments would be performed to
measure the magnitude of these effects, and data quality
tests would either reject flawed data or ensure that all con-
tributions to error have been carefully accounted for in pro-
ducing an assessment of error and confidence for each as-
sayed value. Multiple independent replicates of the exper-
iment would ideally be performed to verify the true uncer-
tainty and replicability of the assay data’.

* Corresponding author; john.chodera@choderalab.org
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T Care must be taken to distinguish between fully independent replicates
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Unfortunately, by the time the data reach the hands of
a computational chemist (or other data consumer), the op-
portunity to perform these careful control experiments has
usually long passed. In the worst case, the communicated
assay data may not contain any estimate of error at all.
Even when error has been estimated, it is often not based
on a holistic picture of the assay, but may instead reflect
historical estimates of error or statistics for a limited panel
of control measurements. As a last resort, one can turn to
large-scale analyses that examine the general reliability of
datasets across many assay types [17, 18], but this is to be
avoided unless absolutely necessary.

When multiple independent measurements are not avail-
able, but knowledge of how a particular assay was con-
ducted is available, this knowledge can inform the construc-
tion of an assay-specific model incorporating some of the
dominant contributions to error in a manner that can still
be highly informative. Using the bootstrap principle—where
we construct a simple computational replica of the real ex-
periment and simulate virtual realizations of the experiment
to understand the nature of the error in the experimental
data—we often do a good job of accounting for dominant
sources of error. Using only the assay protocol and basic
specifications of the imprecision and inaccuracy of various
operations such as weighing and volume transfers, we show
how to construct and simulate a simple assay model thatin-
corporates these important (often dominant) sources of er-
ror. This approach, while simple, provides a powerful tool
to understand how assay error depends on both the as-
say protocol and the imprecision and inaccuracy of basic
operations, as well as the true value of the quantity being

and partial replicates that only repeat part of the experiment (for exam-
ple, repeated measurements performed using the same stock solutions),
since partial measurements can often underestimate true error by orders
of magnitude [16].
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measured (such as compound affinity). This strategy is not
limited to computational chemists and consumers of assay
data—it can also be used to help optimize assay formats be-
fore an experiment is performed, help troubleshoot prob-
lematic assays after the fact, orensure that all major sources
of error are accounted for by checking that variation among
control measurements match expectations.

We illustrate these concepts by considering a recent ex-
ample from the literature: a report by Ekins et al. [19] on how
the choice of dispensing technology impacts the apparent
biological activity of the same set of compounds under oth-
erwise identical conditions. The datasets employed in the
analyses [20, 21] were originally generated by AstraZeneca
using either a standard liquid handler with fixed (washable)
tips or an acoustic droplet dispensing device to prepare
compounds at a variety of concentrations in the assay, re-
sulting in highly discrepant assay results (Figure 1). The as-
say probed the effectiveness of a set of pyrimidine com-
pounds as anti-cancer therapeutics, targeting the EphB4 re-
ceptor, thought to be a promising target for several cancer
types [22, 23]. While the frustration for computational mod-
elers was particularly great, since quantitative structure ac-
tivity relationship (QSAR) models derived from these oth-
erwise identical assays produce surprisingly divergent pre-
dictions, numerous practitioners from all corners of drug
discovery expressed their frustration in ensuing blog posts
and commentaries [24-26]. Hosts of potential explanations
were speculated, including sticky compounds absorbed by
tips [27] and compound aggregation [13,14].

For simplicity, we ask whether the simplest contribu-
tions to assay error—imprecision and bias in material trans-
fer operations and imprecision in measurement—might ac-
count for some component of the discrepancy between as-
say techniques. We make use of basic information—the as-
say protocol as described (with some additional inferences
based on fundamental concepts such as compound solubil-
ity limits) and manufacturer specifications for imprecision
and bias—to construct a model of each dispensing process
in order to determine the overall inaccuracy and impreci-
sion of the assay due to dispensing errors, and identify the
steps that contribute the largest components to error. To
better illustrate these techniques, we also provide an an-
notated IPython notebook? that includes all of the compu-
tations described here in detail. Interested readers are en-
couraged to download these notebooks and explore them
to see how different assay configurations affect assay error,
and customize the notebooks for their own scenarios.

Il. EXPERIMENTAL ERROR

Experimental error can be broken into two components:
The imprecision (quantified by standard deviation or vari-

2 The companion IPython notebook is available online at: http://
github.com/choderalab/dispensing-errors-manuscript
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ance), which characterizes the random component of the er-
ror that causes different replicates of the same assay to give
slightly different results, and the inaccuracy (quantified by
bias), which is the deviation of the average over many repli-
cates from the true value of the quantity being measured.

There are a wide variety of sources that contribute to ex-
perimental error. Variation in the quantity of liquid deliv-
ered by a pipette, errors in the reported mass of a dry com-
pound, or noise in the measured detection readout of a well
will all contribute to the error of an assay measurement. If
the average (mean) of these is the true or desired quantity,
then these variations all contribute to imprecision. If not—-
such as when a calibration error leads to a systematic devi-
ation in the volume delivered by a pipette, the mass mea-
sured by a balance, or the average signal measured by a
plate reader—the transfers or measurements will also con-
tribute to inaccuracy or bias. We elaborate on these con-
cepts and how to quantify them below.

MODELING EXPERIMENTAL ERROR
1. The hard way: Propagation of error

There are many approaches to the modeling of error and
its propagation into derived data. Often, undergraduate
laboratory courses provide an introduction to the tracking
of measurement imprecision, demonstrating how to prop-
agate imprecision in individual measurements into derived
quantities using Taylor series expansions—commonly re-
ferred to simply as propagation of error [28]. For example,
for a function f(x, y) of two measured quantities x and y with
associated standard errors o, and o, (which represent our
estimate of the standard deviation of repeated measure-
ments of x and y), the first-order Taylor series error propa-
gation rule s,

of1? of? of Tof
2F= | 2 2 _ 2 _ - 2
wr= o), (5] 5+ (). [5),
(M

where the correlated error afy = 0 if the measurements of
x and y are independent. The expression for §%f, the es-
timated variance in the computed function f over experi-
mental replicates, in principle contains higher-order terms
as well, but first-order Taylor series error propagation pre-
sumes these higher-order terms are negligible and all error
can be modeled well as a Gaussian (normal) distribution.

For addition or subtraction of two independent quanti-
ties, this rule gives a simple, well-known expression for the
additivity of errors in quadrature,

f=xxy
Pf =0+ 05 (2)
For more complex functions of the data, however, even the
simple form of Eq. 1 for just two variables can be a struggle

for most scientists to apply, since it involves more complex
derivatives that may not easily simplify.
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FIG. 1. lllustration of the stages of the two assay protocols considered here, utilizing either tip-based or acoustic droplet dispensing.
Two different assay protocols—utilizing different dispensing technologies—were used to perform the same assay [19-21]. In the case of
tip-based dispensing, a Tecan Genesis liquid handler was used to create a serial dilution of test compounds using fixed washable tips,
and a small quantity of each dilution was pipetted into the enzyme assay mixture prior to detection. In the case of acoustic dispensing
(sometimes called acoustic droplet ejection), instead of creating a serial dilution, a Labcyte Echo was used to directly dispense nanoliter
quantities of compound stock into the enzyme assay mixture prior to detection. The detection phase measured product accumulation
after a fixed amount of time (here, detection of accumulated phosphorylated substrate peptide using AlphaScreen), and the resulting
data were fit to obtain plCso estimates. Ekins et al. [19] noted that the resulting pICso data between tip-based dispensing and acoustic
dispensing were highly discrepant, as shown in the central figure where the two sets of assay data are plotted against each other.

2. The easy way: The bootstrap principle w  Forexample, for the case of quantities x and y and associ-
s ated errors o, and oy, we would conduct many realizations

Instead, we adopt a simpler approach based on the boot- ' 1 = .1, ..., N of an experiment in which we draw bootstrap
strap principle [29]. Bootstrapping allows the sampling dis- replicates x, and y, from normal (Gaussian) distributions
tribution to be approximated by simulating from a good es- Xp ~ N(x,02)
timate (or simulacrum) of the real process. While many com- " o
putational chemists may be familiar with resampling boot- Yo~ N, ay)
strapping for a large dataset, where resampling values from fn = f(Xn, ¥n)
the dataset with replacement provides a way to simulate a
replica of the real process, it is also possible to simulate the
process in other ways, such as from a parametric or other
model of the process. Here, we model sources of random er-
ror using simple statistical distributions, and simulate multi-
ple replicates of the experiment, examining the distribution
of experimental outcomes in order to quantify error. Unlike
propagation of error based on Taylor series approximations

(3)

s where the notation x ~ N (u, 0?) denotes that we draw the
w2 variable x from a normal (Gaussian) distribution with mean
sy and variance o2,

RY
x ~ N(u,o?) < px) = x M)] (4)

1
V2mo P { 202

1we We then analyze the statistics of the {f,} samples as if we

S

[

b

G

o

(Eq. 1), which can become nightmarishly complex for even
simple models, quantifying the error by bootstrap simula-
tion is straightforward even for complex assays. While there
are theoretical considerations, practical application of the
bootstrap doesn’t even require that the function f be differ-
entiable or easily written in closed form—as long as we can
compute the function f on a dataset, we can bootstrap it.

ws had actually run the experiment many times. For example,
ws We can quantify the statistical uncertainty 6f using the stan-
w dard deviation over the bootstrap simulation realizations,
ws Std(f,). Alternatively, presuming we have simulated enough
wo bootstrap replicates, we can estimate 68% or 95% confi-
20 dence intervals, which may sometimes be very lopsided if
.o the function f is highly nonlinear.
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Since most instruments we deal with in a laboratory—
such as pipettes or liquid handlers or balances—have read-
ily available manufacturer-provided specifications for im-
precision and accuracy, we will generally make use of the
normal (Gaussian) distribution® in modeling the error Ax,

Ax ~ N(p, 02), (5)

where Ax X — X, is the deviation from the true or de-
sired value x,, the mean p represents the inaccuracy, and
the standard deviation o represents the imprecision.

We will generally quantify the error from our bootstrap
simulation replicates in terms of two primary statistics:
Relative bias (RB). As a measure of inaccuracy, we will com-
pute the relative expected deviation from the true value f,

o= 611 @
Thisis often expressed as a percentage (RB%) by multiplying
RB by 100. Note that, for cases where f = 0, this can be a
problematic measure, in which case the absolute bias (just
the numerator) is a better choice.
Coefficient of variation (CV). As a measure of imprecision,
we will compute the relative standard deviation,

_std(fy)
V= EAR (7)
which can again be estimated from the mean over many

bootstrap replicates, and is often also represented as a per-
cent (CV%) by multiplying CV by 100.

Simple liquid handling: Mixing solutions
The bootstrap principle

Consider the simplest kind of liquid transfer operation,
in which we use some sort of pipetting instrument (hand-
held or automated) to combine two solutions. For simplic-
ity, we presume we combine a volume vk of compound
stock solution of known true concentration ¢, with a quan-
tity of buffer of volume vy yger-

Initially, we presume that these operations are free of
bias, but have associated imprecisions osock and opyfer- TO
simulate this process using the bootstrap principle, we sim-
ulate a number of realizationsn = 1,..., N, where we again
assume a normal distribution for the sources of error, ne-
glecting bias and accounting only for imprecision,

Vgt]c)mk ~

(n)
Vouffer ™

(n) —
Viot =

cn =

2
N(VStOCk: Ostock)

2
N(Vbuﬁer; O—buﬁ’er)

(n)
Vstock

Co/Vimh.

(n)
+ Vbuffer

(8)

3 Volumes, masses, and concentrations must all be positive, so it is more
appropriate in principle to use a lognormal distribution to model these
processes to prevent negative values. In practice, however, if the relative
imprecision is relatively small and negative numbers do not cause large
problems for the functions, a normal distribution is sufficient.
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We can then compute statistics over the bootstrap repli-
cates of the resulting solution concentrations, {c}, n =
1,...,Nto estimate the bias and variance in the concentra-
tion in the prepared solution.

Relative imprecision

Manufacturer specifications* often provide the impreci-
sion in relative terms as a coefficient of variation (CV), from
which we can compute the imprecision o in terms of transfer
volumevviaoc =CV-v,

Ostock = Vstock * CV
Tbuffer = Vbuffer * CV
Vgt,lck ~ N (Vstocks Ugtock)
Vl(arzj)ﬁer ~ N (Vpuffer, CTguffer)
Végl = Vgc)n))ck + vgz;)ffer
= co/vigr- (9)

We remind the reader that a CV specified as a % (CV% or
%CV) should be divided by 100 to obtain the CV we use here.

Relative inaccuracy

Similarly, the expected inaccuracy might also be stated
in terms of a relative percentage of the volume being trans-
ferred. Theinaccuracy behaves differently from the impreci-
sion in that the inaccuracy will bias the transferred volumes
in a consistent way throughout the whole experiment. To
model bias, we draw a single random bias for the instrument
from a normal distribution, and assume all subsequent op-
erations with this instrument are biased in the same rela-
tive way. We presume the relative bias (RB)—expressed as
afraction, rather than a percent—is given as RB, and draw a
specificinstrumental bias b for each bootstrap replicate of
the experiment, simulating the effect of many replications
of the experiment where the instrument is randomly recali-
brated,

b ~ N(0,RB?)
Ostock = Vstock * CV
Obuffer = Vbuffer - CV
Vgtgck ~ N (Vstoek (1 b™), 0F0ck)
Vier ~ N Woutter(1+ b7), 08 )
Viot = Vo * Vier
¢ = oV (10)

4 While manufacturer-provided specifications for imprecision and inac-
curacy are often presented as the maximum-allowable values, we find
these are a reasonable starting point for this kind of modeling.
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Obviously, if the instrument is never recalibrated, the bias
will be the same over many realizations of the experiment,
but we presume that a calibration process is repeated fre-
quently enough that its effect can be incorporated as a ran-
dom effect over many replicates of the assay over a long
timespan.

Uncertainty in initial concentration

We could further extend this model to include uncertainty
o¢ in the stock concentration ¢y (where the concentration
may be stated ¢o + o), and begin to see how powerful and
modular the bootstrap scheme is. In this new model, each
simulation realization n includes one additional initial step,

¢ ~ N(co, 0?)

b ~ N(0,RB?)
Ostock = Vstock * CV
Obuffer = Vpuffer - CV
V.i:z:ck ~ N (Vstoek (1 + b), 0% 00k
Viter ~ N huter (1 + b™), 03,
Viot = Vi * Vier
<™ = fvigt - ()

All we had to do was add one additional step to our boot-
strap simulation scheme (Eq. 10) in which the stock concen-
tration cg’) is independently drawn from a normal distribu-
tion with each bootstrap realization n. The model can be ex-
panded indefinitely with additional independent measure-
ments or random variables in the same simple way.

Below, we exploit the modularity of bootstrap simula-
tions to design a simple scheme to model a real assay—the
measurement of plCsos for compounds targeting the EphB4
receptor [19-21]—without being overwhelmed by complex-
ity. This assay is particularly interesting because data exists
for the same assay performed using two different dispensing
protocols that led to highly discrepant assay plCsy data, al-
lowing us to examine how different sources of error arising
from different dispensing technologies can impact an oth-
erwise identical assay. We consider only errors that arise
from the transfer and mixing of volumes of solutions with
different concentrations of compound, using the same ba-
sic strategy seen here to model the mixing of two solutions
applied to the complex liquid handling operations in the as-
say. To more clearly illustrate the impact of imprecision and
inaccuracy of dispensing technologies, we neglect consider-
ations of the completeness of mixing, which can itself be a
large source of error in certain assays®.

5 A surprising amount of effort is required to ensure thorough mixing of
two solutions, especially in the preparation of dilution series [30-32]. We
have chosen not to explicitly include this effect in our model, but it could
similarly be added within this framework given some elementary data
quantifying the bias induced by incomplete mixing.
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Modeling an enzymatic reaction and detection of product
accumulation

The EphB4 assay we consider here [19-21], illustrated
schematically in Figure 1, measures the rate of substrate
phosphorylation in the presence of different inhibitor con-
centrations. After mixing the enzyme with substrate and in-
hibitor, the reaction is allowed to progress for one hour be-
fore being quenched by the addition of a quench buffer con-
taining EDTA. The assay readout (in this case, AlphaScreen)
measures the accumulation of phosphorylated substrate
peptide. Fitting a binding model to the assay readout over
the range of assayed inhibitor concentrations yields an ob-
served plCsg.

A simple model of inhibitor binding and product accu-
mulation for this competition assay can be created using
standard models for competitive inhibition of a substrate S
with an inhibitor /. Here, we assume that in excess of sub-
strate, the total accumulation of product in a fixed assay
time will be proportional to the relative enzyme turnover ve-
locity times time, Vyt, and use an equation derived assum-
ing Michaelis-Menten kinetics,

Vot = Vmax[S]t

= Ko (1 11K + IS (12)

where the Michaelis constant K,,, and substrate concentra-
tion [S] for the EphB4 system are pulled directly from the as-
say methodology description [20, 21]. To simplify our mod-
eling, we divide by the constants V,.t, and work with the
simpler ratio,

Vo

Vmax

_ [s)
K (1 T1/K) + ST

(13)

In interrogating our model, we will vary the true inhibitor
affinity K; to determine how the assay imprecision and in-
accuracy depend on true inhibitor affinity.

In reality, detection of accumulated product will also
introduce uncertainty.  First, there is a minimal de-
tectable signal below which the signal cannot be accurately
quantified—below this threshold, a random background
signal or “noise floor” is observed. Second, any measure-
ment will be contaminated with noise, though changes to
the measurement protocol—such as collecting more illumi-
nation data at the expense of longer measurement times—
can affect this noise. While simple calibration experiments
can often furnish all of the necessary parameters for a useful
detection error model—such as measuring the background
signal and signal relative to a standard for which manufac-
turer specifications are available—we omit these effects to
focus on the potential for the discrepancy between liquid
handling technologies to explain the difference in assay re-
sults.

Advanced liquid handling: Making a dilution series

Because the affinities and activities of compounds can
vary across a dynamic range that spans several orders of
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magnitude, it is common for assays to use a dilution series
to measure the activity and potency of ligands. To create
a dilution series, an initial compound stock is diluted into
buffer in the first well of the series, and the contents mixed;
for each subsequent well, a volume from the previous well
is transferred into a well containing only buffer, and mixed
(Figure 2). Commonly, each subsequent dilution step uses
fixed ratios, such as 1:2 or 1:10 of solute solution to total vol-
ume®,

It is easy to see how the creation of a dilution series by
pipetting can amplify errors: because each dilution step in-
volves multiple pipetting operations, and the previous dilu-
tion in the series is used to prepare the next dilution, errors
will generally grow with each step. As a result, the liquid
handling instrumentation can have a substantial impact on
the results obtained. Here, we compare an aqueous dilution
series made with a liquid handler that makes use of fixed,
washable tips (a Tecan Genesis) with an assay prepared di-
rectly via direct-dispensing using an acoustic dispensing in-
strument (a Labcyte Echo).

Tip-based liquid handling

To create a serial dilution series (Figure 2), we first trans-
fer an aliquot of compound in DMSO stock solution to the
first well, mixing it with buffer, to prepare the desired initial
concentration ¢g at volume Viptermediate fOr the dilution series.
Next, we sequentially dilute a volume Vyanster Of this solu-
tion with a volume vy g, of buffer, repeating this process to
create a total of ngiutions Solutions. To model the impact of
imprecision and inaccuracy on the serial dilution process,
we again use manufacturer-provided specifications for the
Tecan Genesis: the relative imprecision is stated to be 3%
and the inaccuracy as 3-5% for the volumes in question [33].
The resulting concentration ¢, of each dilution m is deter-
mined by both the previous concentration ¢,,_; and by the
pipetted volumes Viransfer and Vpufter, €ach of which is ran-
domly drawn from a normal distribution. Putting this to-
gether in the same manner as for the simple mixing of so-
lutions, we have

b ~ N(0,RB?)

Otransfer = Vtransfer * CV
Obuffer = Vbuffer - CV
Vt(lr'gnsfer,m ~ N(Vtransfer“ + b(n))7 Utzransfer)
ngj)f'fer,m ~ N (Voutter (1 + b(n))’ Ut2>uﬁer)
Vi(gt)ermediate,m = Vifgnsfer,m + t(arlj)ffer,m
f(inn)al,(mf1) ~ Vintermediate,(m—1) — Vtransfer,m
C,(-Z) = Cﬁg)q/vintermediate,m s (14)

6 Note that a 1:2 dilution refers to combining one part solute solution with
one part diluent.
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where the last five steps are computed for dilution m =
1,.. ., (Ndilutions — 1). In the companion notebook, we make
comparisons easier by also removing a final volume Vi ansfer
from the last well so all wells have the same intended final
volume.

In the EphB4 protocol [20, 21], the initial dilution step
from 10 mM DMSO stocks is not specified, so we choose ini-
tial concentration cg = 600 M in order to match the max-
imum assay concentration used in the direct dispense ver-
sion of the assay (described in the next section). We pre-
sume an initial working volume of Vintermediate = 100 L, and
model this dispensing process using Eq. 10. We presume this
solution is then serially 1:2 diluted with 5% DMSO for a total
of Ngitutions = 8 dilutions’ With Visanster = Vbutter = 50 L, which
after dilution into the assay plate will produce a range of as-
say concentrations from 800 nM to 100 M8, We estimate
the appropriate coefficient of variation (CV) and relative bias
(RB) for the Tecan Genesis liquid handling instrument used
in this assay using a linear interpolation over the range of
volumes in a manufacturer-provided table [33]. Sampling
over many bootstrap replicates, we are then able to esti-
mate the CV and RB in the resulting solution concentrations
for the dilution series. Figure 5 (left panel) shows the esti-
mated CV and RB for the resulting concentrations in the di-
lution series. While the CV for the volume is relatively con-
stant since we are always combining only two transferred
aliquots of liquid, the CV for both the concentration and the
total quantity of compound per well grow monotonically
with each subsequent dilution. On the other hand, because
the bias is assumed to be zero on average, the average di-
lution series bias over many bootstrap replicates with ran-
domly calibrated instruments will be free of bias. This situa-
tion may be different, of course, if the same miscalibrated in-
strument is used repeatedly without frequent recalibration.

Once the dilution series has been prepared, the assay is
performed in a 384-well plate, with each well containing 2
uL of the diluted compound in buffer combined with 10 uL
of assay mix (which contains EphB4, substrate peptide, and
cofactors) for a total assay volume of 12 uL. This liquid trans-
fer step is easily modeled using the steps for modeling the
mixing of two solutions in Eq. 10.

Direct dispensing technologies

Using a direct dispensing technology such as acoustic
droplet ejection (ADE), we can eliminate the need to prepare
an intermediate dilution series, instead adding small quan-
tities of the compound DMSO stock solution directly into the

" The published protocol [20, 21] does not specify how many dilutions
were used, so for illustrative purposes, we selected ngjutions = 8-

8 We note that real assays may encounter solubility issues with such high
compound concentrations, and that the nonideal nature of water:DMSO
solutions means that serial dilution of DMSO stocks will not always guar-
antee all dilutions will readily keep compound soluble. Here, we also
presume the DMSO and EDTA control wells are not used in fitting to ob-
tain plCsp values.
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FIG. 2. Preparation of a serial dilution series with a fixed-tip liquid handler. To create a dilution series with a fixed-tip liquid handler,
a protocol similar to the preparation of a dilution series by hand pipetting is followed. Starting with an initial concentration ¢y and initial
volume Viyitial in the first well, a volume vyanster is transferred from each wellinto the next well, in which a volume of buffer, vyuser, has already
been pipetted. In the case of a 1:2 dilution series, Viranster and Vuusrer are equal, so the intended concentration in the second well will be ¢ /2.
This transfer is repeated for all subsequent wells to create a total of ngiytions dilutions. For convenience, we assume that a volume Viransfer
is removed from the last well so that all wells have the same final volume of Vianster = Viuffer, and that the error in the initial concentration

(co) is negligible.

assay plate. For the LabCyte Echo used in the EphB4 assay,
the smallest volume dispensed is 2.5 nL droplets; other in-
struments such as the HP D300/D300e can dispense quan-
tities as small as 11 pL using inkjet technology. To construct
a model for a direct dispensing process, we transfer a vol-
ume Vgispense Of ligand stock in DMSO at concentration ¢
into each well already containing assay mix at volume vpix
(presumed to be pipetted by the Tecan Genesis), and back-
fill a volume v ks With DMSO to ensure each well has the
same intended volume and DMSO concentration (Figure 3).
We again incorporate the effects of imprecision and bias us-
ing manufacturer-provided values; for the Labcyte Echo, the
relative imprecision (CV) is stated as 8% and the relative in-
accuracy (RB) as 10% for the volumes in question [34],
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O mix
(n)
dispense
(n)
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V(n)
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~ N Winix(1+ b))
) = 0 (n) (n)
4 - Vdispense * Vhackfitl ¥ Vimix

ng = Cstock/Vgg)say . (15)

«s Since the maximum specified backfilled volume was 120 nL,
s We presume that vgispense consisted of 8 dilutions ranging
wr from 2.5 nL (the minimum volume the Echo can dispense)
ws t0 120 nL in a roughly logarithmic series. Note that this
ws produces a much narrower dynamic range than the dilu-
w0 tion series experiment, with the minimum assay intended
s concentration being 2.5 uM assuming a 10 mM DMSO stock
2 solution concentration csiock. We can then produce an es-

1+— Vbackfill
1
Cstock Vdispense

FIG. 3. Preparation of a dilution series with direct-dispense
technology. With a direct-dispense liquid handler—such as the
LabCyte Echo, which uses acoustic droplet ejection—instead of
first preparing a set of compound solutions at different concentra-
tions via serial dilution, the intended quantity of compound can be
dispensed into the assay plates directly without the need for creat-
ing an intermediate serial dilution. We model this process by con-
sidering the process of dispensing into each well independently. A
volume Vgispense Of compound stock in DMSO at concentration co is
dispensed directly into an assay plate containing a volume vpmix of
assay mix. To maintain a constant DMSO concentration through-
out the assay—in this case of the EphB4 assay, 120 nL—a volume
Vbackiill Of pure DMSO is also dispensed via acoustic ejection.

timate for the errors in volumes and concentrations (Fig-
ure 5, middle panels) by generating many synthetic repli-
w5 cates of the experiment. Because direct dispensing tech-
s nologies can dispense directly into the assay plate, rather
than creating an intermediate dilution series that is then
«s transferred into the assay wells, direct dispensing experi-
ments can utilize fewer steps (and hence fewer potential
inaccuracy- and imprecision-amplifying steps) than the tip-
based assays that are dependent on the creation of an inter-
mediate dilution series.
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Fixed tips and the dilution effect

463

Simply including the computed contributions from in-
accuracy and imprecision in our model of the Ekins et
al. dataset [19], it is easy to see that the imprecision is
not nearly large enough to explain the discrepancies be-
tween measurements made with the two dispensing tech-
nologies (Figure 7). Multichannel liquid-handlers such as
the Tecan Genesis that utilize liquid-displacement pipet-
ting with fixed tips actually have a nonzero bias in liquid
transfer operations due to a dilution effect. This effect was
previously characterized in work from Bristol Myers Squibb
(BMS) [35, 36], where it was found that residual system
liquid—the liquid used to create the pressure differences re-
quired for pipetting—can cling to the interior of the tips after
washing and mix with sample whenitis being aspirated (Fig-
ure 4). While the instrument can be calibrated to dispense
volume without bias, the concentration of the dispensed so-
lution can be measurably diluted.

To quantify this effect, the BMS team used both an Ar-
tel dye-based Multichannel Verification System (MVS) and
gravimetric methods, concluding that this dilution effect
contributes a -6.30% inaccuracy for a target volume of 20
1L [35]. We can expand our bootstrap model of dilution with
fixed tips (Eq. 15) to include this effect with a simple modifi-
cation to the concentration of dilution solution m,

i =(+d)c v

intermediate,m
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(16)

where the factor d = —0.0630 accounts for the -6.30% dilu-
tion effect. The resulting CV and RB in volumes, concentra-
tions, and quantities (Figure 5, middle) indicate a significant
accumulation of bias. This is especially striking when con-
sidered alongside the corresponding values for disposable
tips (Figure 5, left)—which lack the dilution effect—and the
acoustic-dispensing model (Figure 5, right), both of which
are essentially free of bias when the average over many ran-
dom instrument recalibrations is considered.

This dilution effect also must be incorporated into the
transfer of the diluted compound solutions (2 uL) into the
enzyme assay mix (10 ul) to prepare the final 12 ulL assay
volume, further adding to the overall bias of the assay re-
sults from the fixed-tips instrument.
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Fitting the assay readout to obtain pICs, data

ss  While the ICsq reported in the EphB4 assay [19-21] in prin-
ciple represents the stated concentration of compound re-
quired to inhibit enzyme activity by half, this value is esti-
mated in practice by numerically fitting a model of inhibi-
tion to the measured assay readout across the whole range
of concentrations measured using a method such as least-
squared (the topic of another article in this series [37]).

s0o  To mimic the approach used in fitting the assay data,
st we use a nonlinear least-squares approach (based on the
sz simple curve_fit function from scipy.optimize) to fit
sz Vo /Vmax computed from the competitive inhibition model
su (EQ. 13, shown in Fig. 6, top panels) using the true assay
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FIG. 4. Fixed tips dilute aspirated samples with system lig-
uid. Automated liquid handlers with fixed tips utilizing liquid-
displacement pipetting technology (such as the Tecan Genesis
used in the EphB4 assay described here) use a washing cycle in
which system liquid (generally water or buffer) purges samples
from the tips in between liquid transfer steps. Aspirated sample
(blue) can be diluted by the system liquid (light purple) when some
residual system liquid remains wetting the inside walls of the tip af-
ter purging. This residual system liquid is mixed with the sample as
itis aspirated, creating a mixture of system liquid and sample (red)
that dilutes the sample that is dispensed. While the use of an air
gap (white) reduces the magnitude of this dilution effect, dilution
is a known issue in fixed tip liquid-based automated liquid han-
dling technologies, requiring more complex liquid-handling strate-
gies to eliminate it [36]. Diagram adapted from Ref. [36].

ss well concentrations to obtain a K; and then compute the ICsq
s from this fit value. We can then use a simple relation be-
s7 tween ICso and K; to compute the reported assay readout,

S
ICs0 = K; (1"‘}[(,3,) .

ss The reported results are not ICsg values but plCsq values,

(17)

p|C50 = lng |C50. (18)
s Note that no complicated manipulation of these equations
is required. As can be seen in the companion IPython note-
sn book, we can simply use the curve_fit function to obtain
a K; for each bootstrap replicate, and then store the plCsq
s obtained from the use of Egs. 17 and 18 above (Fig. 6, mid-
su dle panels). Repeating this process for a variety of true com-
s pound affinities allows the imprecision (CV) and bias (RB) to
=6 be quantified as a function of true compound affinity (Fig. 6,
sr bottom panels).

520

522


https://doi.org/10.1101/033985
http://creativecommons.org/licenses/by/4.0/

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

bioRxiv preprint doi: https://doi.org/10.1101/033985; this version posted December 9, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

i +
tips 5
. .
tips dilution acoustic ~_
d YRS
effect
6 o ° 6 “ra = m
[ [ ]
e ¢ e ° 5 5 S e o 3
o ° 12
5 5
o °
° ] ° ° ° [] [ ] ° L] [ ] [ ° ° ° 10
_ 4 ° 4 L] ° i
< ) ° [ ] 9 ° S B concentration
N ° ° N S8 ® volume
o L4 o ° ° o o ° [ ° ° o ® quantity
2 2 6
@®  concentration ®  concentration
1 ® volume 1 ® volume 4 L] ° L] ° L] L] ° ]
@ quantity @® quantity
0 0 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
dilution number dilution number dilution number
100 100 100
= 1 none
B concentration
50 50 ® volume 50
@® quantity
g g S
o 0| 0= mem == o= B = & = O == o O g mem == =t = = & = == o O W e b = = = =
o [i4 " s g o
== 1 none - [ ] ™ - == 1 none
-50 ®  concentration -50 -50 B concentration
® volume ® volume
@® quantity ® quantity
-100 -100 -100
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

dilution number

dilution number

dilution number

FIG. 5. Modeled accumulation of random and systematic error in creating dilution series with fixed tips and acoustic dispensing.
The model predicts how errors in compound concentration, well volume, and compound quantity accumulate for a dilution series pre-
pared using fixed tips neglecting dilution effects (left) or including dilution effects (middle) compared with an acoustic direct-dispensing
process (right). Imprecision and inaccuracy parameters appropriate for a Tecan Genesis (fixed tips dispensing) or Labcyte Echo (acoustic
dispensing) were used, and assume that the initial compound stocks had negligible concentration error; see text for more details. The top
panels show the average relative random error via the coefficient of variation (CV) of concentration, volume, or quantity, while the bottom
panels depict the relative bias (RB); both quantities are expressed as a percentage. For tip-based dispensing, relative random concen-
tration error (CV) accumulates with dilution number, while for acoustic dispensing, this is constant over all dilutions. When the dilution
effectis included for fixed tips, there is significant bias accumulation over the dilution series. Note that the CV and RB shown for acoustic
dispensing are for the final assay solutions, since no intermediate dilution series is created.

11l. DISCUSSION

Use of fixed washable tips can cause significant accumulation
of bias due to dilution effects

The most striking feature of Fig. 5 is the significant accu-
mulation of bias in the preparation of a dilution series us-
ing fixed washable tips (Fig. 5, bottom middle panel). Even
for an 8-point dilution series, the relative bias (RB) is al-
most -50% in the final well of the dilution series. As a re-
sult, the measured plCsq values also contain significant bias
toward weaker affinities (Fig. 6, bottom middle panel) by
about 0.25 log;o units for a large range of compound affini-
ties. At weaker compound affinities, this effect is diminished
by virtue of the fact that the first few wells of the dilution se-
ries have a much smaller RB (Fig. 5, bottom middle panel).

This cumulative dilution effect becomes more drastic if
the dilution series is extended beyond 8 points. If instead a
dilution series is created across 16 or 32 wells and assayed,
the RBin the final well of the dilution series can reach nearly
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-100% (see accompanying IPython notebook for 32-well di-
lution series). As aresult, the bias in the measured pICsg as a
function of true pK; also grows significantly for these larger
dilution series (Fig. 8).

Imprecision is greater for direct dispensing with the Echo

As evident from the top panels of Fig. 5, the CV for con-
centrations in the assay volume for direct acoustic dispens-
ing (right) is significantly higher than the CV of the dilution
series prepared with tips (left and middle). This effect mani-
festsitselfin the CV of measured plCsq values as a higherim-
precision (Fig. 6, bottom panels), where the CV for acoustic
dispensing is nearly twice that of tip-based dispensing. De-
spite the increased CV, there are still numerous advantages
to the use of direct dispensing technology: Here, we have
ignored a number of difficulties in the creation of a dilution
series beyond this dilution effect, including the difficulty of
attaining good mixing [30-32], the time required to prepare
the serial dilution series (during which evaporation may be
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FIG. 6. Comparing modeled errors in measured plCs, values using tip-based or acoustic direct dispensing. Top row: Bootstrap simu-
lation of the entire assay yields a distribution of Vo /Vmax (proportional to measured product accumulation) vs ideal inhibitor concentration
[N curves for many synthetic bootstrap replicates of the assay. Here, the inhibitor is modeled to have a true K; of 1 nM (pK; = —9). Middle
row: For the same inhibitor, we obtain a distribution of measured pICso values from fitting the Using our model we can look at the variance
in activity measurements as a function of inhibitor concentration [/] (top), which then directly translates into a distribution of measured
plCso values. Bottom row: Scaning across a range of true compound affinities, we can repeat the bootstrap sampling procedure and analyze
the distribution of measured plCsy values to obtain estimates of the relative bias (red) and CV (black) for the resulting measured plCsps.
For all methods, the CV increases for weaker affinities; for tip-based dispensing using fixed tips and incorporating the dilution effect, a
significant bias is notable.

problematic), and a host of other issues. sn between assay technologies would mean all points fall on
s the black diagonal line. We can see that simply adding the
su imprecision in a model with fixed tips (Fig. 4, blue circles,
Imprecision is insufficient to explain the discrepancy between . horizontal and vertical bars denote 95% confidence inter-
assay technologies % vals) is insufficient to explain the departure of the dataset

sn from this diagonal concordance line.

Fig. 7 depicts the reported assay results [19-21] aug-

mented with error bars and corrected for bias using models s  When the tip dilution effect for washable tips is incorpo-
appropriate for disposable tips (blue circles) or fixed wash- s» rated (Fig. 4, green circles), thereis a substantial shift toward
able tips (green circles) that include the dilution effect de- s higher concordance. If, instead of an 8-point dilution series,
scribed in Fig. 4. Perfect concordance of measured plCsps ss a 16- or 32-point dilution series was used, this shift toward
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FIG. 7. Adding bias shifts pICs, values closer to equivalence. °

The original experimental pIC50 values obtained using from fixed
tips (red) are plotted against plCso values from acoustic dispens-
ing, with errors bars representing the uncertainty (shown as 95%
confidence intervals) estimated by bootstrapping from our mod-
els. Since the bias is relatively sensitive to pIC50 value, here it is
determined by including both the experimental value and the es-
timated bias. Incorporating the dilution effect from tip-based dis-
pensing (green) shifts the experimental pICso values closer to con-
cordance between tip-based and acoustic-based measurements.
While this does not entirely explain all discrepancies between the
two sets of data, it shifts the root mean square error between the
tip-based and acoustic-based dispensing methods from 1.56 to 1.37
pIC50 units. The model also demonstrates that (1) the biasinduced
by the fixed tips explains much of the pICsq shift between the two
datasets, and (2) there is still a large degree of variation among the
measurements not accounted for by simple imprecision in liquid
transfers. This demonstrates the power of building simple error
models to improve our understanding of experimental data sets.
Grey box indicates portion of graph shown in Fig. 8.

concordance is even larger (Fig. 8). While this effect may ex-
plain a substantial component of the divergence between
assay technologies, there is no doubt a significant discrep-
ancy remains.

Other contributions to the discrepancy are likely relevant

Serial dilutions are commonly used in the process of de-
termining biologically and clinically relevant values such as
inhibition concentrations (ICs¢) and dissociation constants
(Kg). While high-throughput automation methods can im-
prove the reproducibility of these measurements over man-
ual pipetting, even robotic liquid handlers are victim to the
accumulation of both random and systematic error. Since
the AstraZeneca dataset [20, 21] and the related analysis by
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Ekins et al. [19], several studies have posited that acous-
tic dispensing results in fewer false positives and negatives
than tip-based dispensing and that this phenomenon is not
isolated to EphB4 receptor inhibitors [38-41].

The power of bootstrapping

We have demonstrated how a simple model based on
the bootstrap principle, in which nothing more than the
manufacturer-provided imprecision and inaccuracy values
and a description of the experimental protocol were used
to simulate virtual replicates of the experiment for a vari-
ety of simulated compound affinities allowed us to estimate
the imprecision and inaccuracy of measured plCsps. It also
identified the difficulty in creating an accurate dilution se-
ries using washable fixed tips, with the corresponding dilu-
tion effect being a significant contribution to discrepancies
in measurements between fixed pipette tips and direct dis-
pensing technologies. In addition to providing some esti-
mate for the random error in measured affinities, the com-

s puted bias can even be used to correct for the bias intro-

duced by this process after the fact, though it is always safer
to take steps to minimize this bias before the assay is per-
formed.

The EphB4 assay considered here is just one example of a
large class of assays involving dilution or direct dispensing
of query compounds followed by detection of some read-
out. The corresponding bootstrap model can be used as a
template for other types of experiments relevant to compu-
tational modelers.

This approach can be a useful general tool for both exper-
imental and computational chemists to understand com-
mon sources of error within assays that use dilution series
and how to model and correct for them. Instead of sim-
ply relying on intuition or historically successful protocol
designs, experimentalists could use bootstrap simulation
models during assay planning stages to verify that the pro-
posed assay protocol is capable of appropriately discrimi-
nating among the properties of the molecules in question
given the expected range of ICso or K; to be probed, once
known errors are accounted for. Since the model is quanti-
tative, adjusting the parameters in the assay protocol could
allow the experimentalist to optimize the protocol to make
sure the data is appropriate to the question at hand. For ex-
ample, in our own laboratory, it has informed the decision
to use only direct dispensing technologies—in particular the
HP D300 [42]—for fluorescent ligand-binding assays that re-
quire preparation of a range of compound concentrations.

This modeling approach can also be extremely useful in
determining appropriate tests and controls to use to be sure
errors and biases are properly taken into account in general.
If one is not certain about the primary sources of errorin an
experiment, one is arguably not certain about the results of
the experiment in general. Understanding these errors, and
being certain they are accounted for via clear benchmarks
in experimental assays could help ensure the reproducibil-
ity of assays in the future, which is currently a topic of great
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S

interest. Especially with such a wide ranging set of assays
that use dilution series, most notably toward the develop-
ment of proteins and small molecules to study and treat dis-
ease, this is a very important category of experiments to un-
derstand how to make more clearly reproducible and inter-
pretable.

While here we have illustrated the importance of model-
ing to the specific case of liquid handling with fixed tips in
ess the context of measuring I1Csq values for EphB4 inhibitors,
eso there are still large discrepancies that have not been ex-
plained, and perhaps variations on this model could explain
everything, but perhaps the full explanation comes from
parts of the assay yet to be incorporated into this model.
ess As experiments become more automated and analysis be-
comes more quantitative, understanding these errors will
be increasingly important both for the consumers (com-
putational modelers) and producers (experimentalists) of
ser these data.
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FIG. 8. Bias in measured pICs;, depends on number of wells in
dilution series when using fixed washable tips. (a) If the dilu-
tion series is extended beyond 8 wells (yellow) to instead span 16
(green) or 32 (blue) wells, the bias effect in the measured pICs in-
creases as the cumulative effect of the dilution effect illustrated in
Fig. 4 shifts the apparent affinity of the compound. Because the di-
lution bias is greater for lower compound concentrations, this ef-
fect is more drastic for compounds with high affinity. (b) Applying
these biases to the pIC50 from the sample dataset shows the bias
increases with both the 16 (green) and 32 (blue) well dilution series,
shifting the points even further toward the line of ideal equivalence
of the two types of liquid handling. Note these points overlap ex-
actly.
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