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Abstract 

Background: Modern clinical trials in stroke reperfusion fall into two categories: alternative systemic 

pharmacological regimens to alteplase and “rescue” endovascular approaches using targeted 

thrombectomy devices and/or medications delivered directly for persistently vessel occlusions.  Clinical 

trials in stroke have not evaluated how initial pharmacological thrombolytic management might 

influence subsequent rescue strategy. A sequential multiple assignment randomized trial (SMART) is a 

novel trial design that can test these dynamic treatment regimens and lead to treatment guidelines 

which more closely mimic practice. 

Aim: To characterize a SMART design in comparison to traditional approaches for stroke reperfusion 

trials.  

Methods: We conducted a numerical simulation study that evaluated the performance of contrasting 

acute stroke clinical trial designs of both initial reperfusion and rescue therapy. We compare a SMART 

design where the same patients are followed through initial reperfusion and rescue therapy within one 

trial to a standard phase III design comparing two reperfusion treatments and a separate phase II futility 

design of rescue therapy in terms of sample size, power, and ability to address particular research 

questions. 

Results: Traditional trial designs can be well powered and have optimal design characteristics for 

independent treatment effects. When treatments, such as the reperfusion and rescue therapies, may 

interact, commonly used designs fail to detect this. A SMART design, with similar sample size to 

standard designs, can detect treatment interactions. 

Conclusions: The use of SMART designs to investigate effective and realistic dynamic treatment 

regimens is a promising way to accelerate the discovery of new, effective treatments for stroke. 
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Main Manuscript 

Introduction 

Since 1995, intravenous alteplase is the only pharmacological treatment approved for use to reduce 

disability following acute ischemic stroke.(1) Despite its lone position in the stroke pharmacological 

arsenal, a large proportion of treated patients do not improve. Two primary reasons likely drive this, 

namely failure to re-open the affected blood vessel or restoration of blood flow that occurs after 

permanent injury to brain tissue. In carefully selected patients, endovascular treatments after 

intravenous thrombolysis can remarkably improve patient outcomes.  

Modern clinical trials in stroke reperfusion have been broadly grouped into two categories: alternative 

systemic pharmacological regimens to alteplase and “rescue” endovascular approaches using targeted 

thrombectomy devices and/or medications delivered directly to the persistently occluded blood vessel.  

Several recent trials that predominately included patients treated with alteplase using a variety of 

selection criteria demonstrated that mechanical thrombectomy improved clinical outcomes.(2-4) Clinical 

trial design in this field has not frequently evaluated the interplay between initial pharmacological 

thrombolytic management and subsequent rescue strategy. In addition, endovascular treatments are 

available in a small portion of hospitals worldwide. Ischemic stroke is a time-sensitive disease, and 

patients need rapid treatment. The current clinical trial paradigm cannot adequately answer important 

treatment questions. For example, if a new pharmacological regimen is superior to alteplase, will 

endovascular approaches have the same, better, or worse efficacy and safety? In addition, might faster 

pharmacological alternatives or adjuncts to endovascular approaches such as rescue doses of alternative 

thrombolytics or other adjunctive treatments also be safe and effective and expand the number of 
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hospitals that can rapidly address initial alteplase (or new regimen) failures in patients with large vessel 

occlusions.  

Newer methods in clinical trials likely can improve discovery in this arena. While clinicians use 

sequentially accruing information to make decisions at the bedside, this information is infrequently 

incorporated into clinical trials. A dynamic treatment regimen (DTR) is a guideline specifying a sequence 

of treatments based on individual characteristics, behaviors, or response.(5) A DTR includes an initial 

treatment, an intermediate outcome, and subsequent treatment based on each intermediate outcome 

option. For example, one DTR for the treatment of stroke is to first treat the patient with alteplase. If the 

patient has an NIHSS score ≤ 7 after two hours from alteplase administration, continue to monitor 

patient; if the patient has an NIHSS >7 after two hours from alteplase administration, take the patient to 

endovascular intervention. Therefore, a DTR is a tool for physicians for which to base treatment for 

patients at the onset of disease and to continue throughout time adjusting to the patient. DTRs 

formalize the way physicians practice medicine depending on patient outcomes throughout time, but 

appear to patients to be just the sequence of treatments that they receive. In order to construct and 

provide evidence for beneficial or optimal DTRs, we need to extend the standard (one-stage) 

randomized control trial design.  

This extension to construct and compare DTRs is called a sequential multiple assignment randomized 

trial.(6, 7) This type of trial follows the same patients throughout two or more stages, re-randomizing 

patients to subsequent therapy based on intermediate outcomes. The trial is similar to a sequential 

factorial design where randomization at later stages depends on patient characteristics (e.g. response to 

treatment at previous stage).  The goal of a SMART is to inform the development of DTRs and to 

potentially find an optimal DTR that will more closely mimic the treatment process.  
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Aims and Objectives 

Our objective is to demonstrate the utility of an alternate design strategy (SMART) in stroke reperfusion 

trials, an area where quick, sequential, individualized decisions are necessary and to compare this 

strategy to clinical trial designs traditionally used in stroke. 

Methods 

Overview 

We conducted a numerical simulation study that evaluated the performance of contrasting acute stroke 

clinical trial designs of both initial reperfusion and rescue therapy. We used several scenarios for the 

“true” treatment effects of the various strategies. We evaluated two initial reperfusion strategies, which 

represent alteplase versus a new pharmacologic regimen. In addition, we evaluated two rescue 

therapies, which represent the current best endovascular approach versus rescue pharmacotherapy. 

The scenarios reflected a range of possible situations, including for example, rescue pharmacotherapy 

only being effective if linked with the alteplase initial re-perfusion treatment. We evaluated the 

approach of doing the initial reperfusion and rescue trials separately, versus the SMART approach. The 

main outcome for any simulated trial was the proportion of true positive and false positive trials given 

the scenario in question over a range of plausible sample sizes. 

Design of Trial 

An example of a SMART in the treatment of stroke is shown in Figure 1. Here there are two stages, one 

for the initial randomization to receive two distinct thrombolytic regimens, lytic A versus lytic B (i.e. A is 

alteplase and B is tenecteplase; or A is alteplase and B is the combination of alteplase and an additional 

agent such as a glycoprotein IIb/IIIa inhibitor), and then another stage based on response to NIHSS after 

two hours from lytic administration. The example is not specific to comparisons of single agents (e.g. 

first-stage treatments could include a single agent, A is alteplase, versus a combination, B is alteplase 
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combined with eptifibitide). At 2 hours, responders are defined as those with NIHSS≤ 7 and these 

patients are monitored to make sure their response is stable (it is possible to have a SMART design 

where these patients are also re-randomized to a set of treatment options). Non-responders are those 

with an NIHSS>7 and are re-randomized to undergo mechanical thrombectomy versus a new adjunctive 

medication. The outcome of the trial is a categorization of overall response at 90 days based on the 

modified Rankin scale (mRS; success is defined for those who initially respond to the first-stage 

treatment as an mRS at 90 days of 0 or 1 and success is defined for those who do not initially respond 

and received follow-up treatment as an mRS of 0, 1 or 2).  

There are four embedded DTRs in the SMART from Figure 1. Two DTRs begin with lytic A ([1] First give 

patient lytic A. If NIHSS≤ 7 then continue to monitor patient (usual care). If NIHSS>7 then proceed for 

the patient to undergo mechanical thrombectomy (usual care); [2] First give patient lytic A. If NIHSS≤ 7 

then continue to monitor patient. If NIHSS>7 then give the new adjunctive treatment). Two DTRs begin 

with lytic B ([1] First give patient lytic B.I If NIHSS≤ 7 then continue to monitor patient (usual care). If 

NIHSS>7 then proceed for the patient to undergo mechanical thrombectomy (usual care); [2] First give 

patient lytic B. If NIHSS≤ 7 then continue to monitor patient. If NIHSS>7 then give the new adjunctive 

treatment). Note that in Figure 1, each branch of treatment is not its own DTR; rather, a DTR 

recommends treatments for both responders and non-responders, and so is composed of two branches 

of treatment. DTRs that begin with the same treatment overlap by including one of the same treatment 

branches (here monitoring responder patients). In addition, while an NIHSS of 7 was used for this 

example – an alternate, rapidly available clinical parameter (e.g. presence of a large vessel occlusion) 

could easily be substituted for this as the information that provides the branch point. 
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Base case scenarios 

In clinical trial simulation, design performance is evaluated under a number of simulated truths. The 

scenarios that the SMART and the conventional clinical trial were simulated under are summarized in 

Table 1. For example, in the null scenario patients who receive lytic A or lytic B and respond (NIHSS≤7) 

have 76% probability of a good outcome at 90 days; similarly patients who do not initially respond but 

received either treatment in the second stage (undergoing mechanical thrombectomy or current usual 

care versus new adjunctive medication) have 30% probability of a good outcome at 90 days. It is 

important to simulate a null scenario like this to determine how frequently the design leads to a false 

positive conclusion.  Scenario 2 subjects the clinical trials to the situation that lytic A is superior to B 

(76% of early responders have a good 90-day outcome with A versus only 57% with B) for the first stage 

treatments, and there is a 10% absolute increase in the proportion of initially non-responding subjects 

with a good outcome at 90 days (30% undergoing mechanical thrombectomy or current standard of care 

and 40% with new adjunctive medication) which was not different whether or not lytic A or B was the 

initial treatment. In this scenario, fewer lytic A patients were initial non-responders. Other scenarios 

follow directly from the table. 

Simulation 

We simulated the above-described SMART with sample sizes of 2000, 1500 and 700. In addition, we 

calculated the power for a traditional clinical trial comparing lytic A to lytic B under of the same sample 

sizes which are typically within the range of sample sizes used for phase III trials in acute stroke 

treatment (2000, 1500, 700). To mimic one of the favored designs for trial development in stroke, we 

assumed that a single arm futility trial (phase II) would first be used for the second stage treatment (new 

medicine versus undergoing mechanical thrombectomy in non-responders) and that this trial would 

draw from entirely different patients than the larger trial (phase III) comparing lytic A and B.(8) We 

assumed type I and type II errors of 0.1 for the futility trial and sample sizes of 200, 150 and 70. We also 
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assumed that the historical rate of good outcome (mRS = 0 or 1) for this trial would be 30%. We 

simulated the trial to find the results of the futility trial (i.e. to go forward or declare futility) under three 

scenarios: the new medication having a 20% good outcome rate (harm), a 30% good outcome rate (null), 

or a 40% good outcome rate (benefit). Numerical simulations were performed with R version 3.1.3. We 

provide the code used the supplementary material. 

Results 

Performance of the traditional approach 

The simulated phase III trial performed as expected – with a type I error of 0.05 (Table 2, power under 

the null case). High power was observed for scenario 1 (great superiority of A versus B). Scenarios 5 and 

6 were similar to the null, as the differential effects in those scenarios were the different responses to 

the second-stage treatments (undergoing mechanical thrombectomy versus new adjunctive medication) 

which were not included in this trial. Scenario 2 had low power (relatively weak effect of B versus A), 

and scenarios 3 and 4 had reasonable power, even at a sample size of 700 (0.59).  

For the separate futility trial comparing the second stage treatments, we observed almost no chance of 

recommending taking the new treatment forward when it was harmful (Table 3), a relatively high 

likelihood (43.3%) of proceeding in the null case with low sample size (n=70), and a very high likelihood 

of proceeding with the new second stage treatment having a treatment effect size of 10% (about 95% 

for sample sizes of 70-200.) 

Performance of the SMART 

In the null case for the trial of sample size 1500, each of the DTRs has estimated individual patient 

success probabilities of 0.471 or 0.472 (Table 4). This value represents the overall average good 

outcome rate within each of the groups, and takes into account responders (subjects who have a post 
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first stage NIHSS ≤7) and non-responders who are eligible to receive a second stage treatment – new 

adjunctive medication versus usual care. Similar to the traditional case above, in scenario 1, comparing 

the DTRs that end with undergoing mechanical thrombectomy or usual care (lytic A or B followed with 

usual care) shows better outcomes with lytic A: 0.472 (95% CI 0.427-0.518) versus lytic B: 0.376 (95% 

0.333-0.422). In addition, within Scenario 1, DTRs that end with the new medication are numerically 

better in terms of the probability of a good outcome than the DTRs that end with usual care in the 

second stage. Scenario 2 shows similar results for a small effect of DTRs that begin with new lytic B 

having better outcome than DTRs that begin with lytic A; again with DTRs that begin with new medicine 

in the second stage being better than DTRs that end with usual care. Scenario 3 is similar to scenario 2, 

but gives greater differences between DTRs that begin with lytic B vs. A and greater effect of DTRs that 

end with new medicine vs. usual care. Scenario 4 sets DTRs that begin with lytic A to have the same 

probability of successful outcome and DTRs that begin with lytic B to have a different from A, but equal 

to each other probability of a successful outcome such that the effect of second-stage treatment is 

equal across lytics. We simulated the DTR with a total sample size of 2000, and as expected the 

confidence intervals were slightly narrower (Supplemental Table 1). 

In scenario 5, the comparison of DTRs that begin with A and B lytics followed by usual care shows the 

expected null result (both 0.472); however, for DTRs that give the new second stage treatment for non-

responders, the outcome is numerically higher if the first treatment was lytic B – 0.597 (95% CI 0.551-

0.641) versus if the first treatment was lytic A – 0.534 (95% CI 0.488-0.580).  

In scenario 6, the comparison of DTRS that begin A and B followed by usual care is again null, however 

the use of the new second stage treatment following A demonstrates worse outcomes – 0.409 (95% CI 

0.366-0.453). 
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As expected, the overall type I error is well controlled by the SMART (Table 5, null scenario), with the 

proportion of false positive trials in the null case approximately at 0.05 from sample sizes of 700 to 

2000. In scenario 1, the power for the SMART (that one of the four DTRs is statistically different) is high 

across the sample sizes from 700-2000. For the 700 patient version of scenario 1, power is 0.80 to find a 

significant difference in the DTR  versus 0.95 in the traditional trial to find only a significant different in 

lytics A and B. Considering the 1500 patient sized trials, the SMART has higher power for scenario 2 

(0.766) when compared to the traditional trial (0.27). SMARTs are effective tools for constructing high 

quality DTRs and to find differences between DTRs. SMARTs can detect differences with greater power 

than a standard trial when, for example, the effect of the first-stage treatments was small, but there is a 

synergistic effect when a first-stage treatment is followed by a particular second stage treatment.  This 

hypothesis (does a new medication work for the second stage versus usual care) would not have been 

tested in the traditional A versus B trial, but would have been evaluated separately in the futility trial. 

Discussion 

Using numerical simulation, we have demonstrated the utility of an alternative clinical trial design to 

test sequential treatments for acute stroke. For modest effect sizes, the SMART design provides 

comparable statistical power to conventional, separate clinical trials (one large phase III and one small 

futility design) testing alternative thrombolytic regimens and new treatments for reperfusion in the 

setting of non-response to initial thrombolytic therapy. One of the most important benefits of using the 

SMART strategy is the ability to find differences in DTRs or tailored sequences of treatments or 

treatment interactions (synergies or antagonisms), as opposed to treatments at a single stage. There is 

great biological plausibility that initial thrombolytic regimens other than alteplase may be more 

effective, however the incremental benefit is likely to be small and challenging to detect. The ability for 

an alternative initial thrombolytic regimen to improve the performance of second stage treatments 
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(mechanical thrombectomy or alternative pharmacotherapies to safely enable reperfusion) would 

simply not be detected using the current trial development paradigm.  Also important, if an alternative 

thrombolytic regimen displaced alteplase as the drug of choice, it is entirely conceivable that the benefit 

/ risk profile of adjunctive mechanical therapies would be substantially altered as well, possibly with 

more adverse events and it would be extremely challenging to conduct randomized trials in this area. In 

essence, when a new thrombolytic regimen supplants alteplase for stroke, we will be treating patients 

based on the intuition that the newer regimen will be just as safe with thombectomy as opposed to 

objectively obtained randomized clinical trial data. Some comparisons to historical data will be possible, 

but will have important limitations. 

Such a consolidated design also offers practical benefits. Clinical trials are costly to start up, complete, 

and disseminate the results. Particularly in the academic stroke world, which in the United States is 

largely consolidated with the StrokeNET as the platform for multi-center trials both in the late 

exploratory and confirmatory phase, clinical trial volunteers are a limited and precious resource. The 

ability to concurrently answer two important questions, (i.e. is a new lytic regimen better than the old, 

and is there a faster, easier, safe, effective pharmacological alternative to thrombectomy) and 

understand the interaction between the two stages of treatment presents a useful alternative pathway 

for the development of acute stroke treatments. Acute stroke care is dynamic at the bedside, but clinical 

trials in this space have typically focused only on the first decision. The SMART design presented here 

allows learning to occur at two important time points. This could also be applied to combined 

interventions at other time points, such as an alternative treatment up front changing the rehabilitation 

trajectory and making different restorative or compensatory methods for physical and occupational 

therapy more effective. 
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This work has several important limitations. First, we developed treatment response scenarios and 

treatment effects based on the responses seen in the NINDS tissue plasminogen activator trial. As the 

goal of our project was to demonstrate the utility of competing designs, it would be straightforward for 

other researchers to simulate other scenarios using the design and code we have developed for this. 

Second, the final analysis of the SMART clinical trial as we have simulated uses an omnibus test that one 

of the four DTRs is different. As can be observed with the overlapping confidence intervals for some of 

the treatment arms that are clearly superior to one another (based on the truth of the scenario that was 

simulated), using this exact approach may lead to important scientific and regulatory difficulties with 

interpretation. Still, additional design and simulation work that balances the needs of the clinical 

investigators with what is inferentially possible within plausible sample sizes could further refine this to 

ensure that the design satisfies regulators and the stroke community. Finally, developing clinical 

scenarios and simulations is time consuming and requires substantial effort and iterative 

communication between statisticians and clinicians.(9) Current funding opportunities and promotion 

and tenure requirements in academia do not adequately reflect and compensate for this time. Despite 

this, we invest a large amount of resources both financially and in the limited pool of available acute 

stroke patients conducting clinical trials. Developing modern, innovative, and flexible clinical trial 

designs that can maximize learning in this space should be facilitated by funding models or design 

competitions that bring better designs to the table for consideration in peer review. 

In summary, the use of SMART designs to investigate effective and realistic dynamic treatment regimens 

are promising ways to accelerate the discovery of new, effective treatments for stroke. The current 

treatment development pathway in academia has important shortcomings including lack of direct 

insights into how new combined treatments will work in the future. More attention to clinical trial 

design and simulation is warranted and will help achieve the goals of reducing stroke disability. 
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Figures and Tables 

 

Table 1: The overall probabilities of success for individuals following each treatment pathway.  

 

Scenario 

Probability of Success 

Lytic A, 

respond 

Lytic A, no 

response, 

Cath Lab 

Lytic A, no 

response, 

New Med 

Lytic B, 

respond 

Lytic B, no 

response, 

Cath Lab 

Lytic B, no 

response, 

New Med 

Null A=B, CL=NM 0.76 0.30 0.30 0.76 0.30 0.30 

1 A>B, CL<NM 0.76 0.30 0.40 0.57 0.30 0.40 

2 A<B, CL<NM 0.76 0.30 0.40 0.80 0.30 0.40 

3 A<B, CL<NM 0.76 0.30 0.40 0.85 0.30 0.40 

4 A<B, CL=NM 0.76 0.30 0.30 0.85 0.30 0.30 

5 A=B, CL<NM 

more for B 
0.76 0.30 0.40 0.76 0.30 0.50 

6 A=B, CL>NM 

for A, CL=NM 

for B 

0.76 0.30 0.20 0.76 0.30 0.30 

*Success for individual patient defined as modified Rankin Score at 90 days for initial responders of 0-1 

and for initial non-responders of 0-2. Probability of responding depended on baseline NIHSS score and 

initial treatment. CL=Cath lab, NM = new medication 
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Table 2: Sample Sizes, power, and estimated 95% confidence intervals (CIs) of treatment success for a 

standard phase III stroke trial comparing lytic A to lytic B 

Scenario Truth (A, B) N Total Power Estimates (A, B) 95% CI (A), (B) 

Null (0.47, 0.47)     

  2000 0.05 (0.47, 0.47) (0.44, 0.50), (0.44, 0.50) 

  1500 0.05 (0.47, 0.47) (0.44, 0.51), (0.44, 0.51) 

  700 0.05 (0.47, 0.47) (0.42, 0.52), (0.42,0.52) 

1 (0.47,0.38)     

  2000 1.00 (0.47, 0.38) (0.44, 0.50), (0.35, 0.41) 

  1500 1.00 (0.47, 0.38) (0.44, 0.51), (0.34, 0.41) 

  700 0.95 (0.47, 0.38) (0.42, 0.52), (0.33, 0.43) 

2 (0.47,0.50)     

  2000 0.35 (0.47, 0.50) (0.44, 0.50), (0.47, 0.53) 

  1500 0.27 (0.47, 0.50) (0.44, 0.51), (0.46, 0.53) 

  700 0.15 (0.47, 0.50) (0.42, 0.52), (0.44, 0.55) 

3 (0.47,0.53)     

  2000 0.96 (0.47, 0.53) (0.44, 0.50), (0.50, 0.56) 

  1500 0.89 (0.47, 0.53) (0.44, 0.51), (0.49, 0.57) 

  700 0.59 (0.47, 0.53) (0.42, 0.52), (0.48, 0.58) 

4 (0.47,0.53)     

  2000 0.96 (0.47, 0.53) (0.44, 0.50), (0.50, 0.56) 

  1500 0.89 (0.47, 0.53) (0.44, 0.51), (0.49, 0.57) 

  700 0.59 (0.47, 0.53) (0.42, 0.52), (0.48, 0.58) 

5 (0.47,0.47)     

  2000 0.05 (0.47, 0.47) (0.44, 0.50), (0.44, 0.50) 

  1500 0.05 (0.47, 0.47) (0.44, 0.51), (0.44, 0.51) 

  700 0.05 (0.47, 0.47) (0.42, 0.52), (0.42,0.52) 

6 (0.47,0.47)     

  2000 0.05 (0.47, 0.47) (0.44, 0.50), (0.44, 0.50) 

  1500 0.05 (0.47, 0.47) (0.44, 0.51), (0.44, 0.51) 

  700 0.05 (0.47, 0.47) (0.42, 0.52), (0.42, 0.52) 
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Table 3: Results from a phase II single arm futility trial of new medicine following non-response to lytic 

A.  

Given 

Probability of 

Success for 

2nd-stage Sample Size 

Lower 

Bound to 

continue 

Proportion 

successful 

trials 

0.20 70 0.3037 0.018  

150 0.3342 0 

200 0.3430 0 

0.30 70 0.3037 0.433 

150 0.3342 0.164 

200 0.3430 0.107 

0.40 70 0.3037 0.947 

150 0.3342 0.945 

200 0.3430 0.953 

 

Caption: The lower bound is the lower 90% confidence interval for 40% success (using the Wald 

method). The hypothesis for the futility trial is that there is a 0.1 increase in proportion of good 

outcomes from a baseline good outcome proportion of 0.3. For example, if the truth is that 30% of 

patients treated with the new medicine have a good outcome, and using a single arm futility trial of 70 

patients to simulate this scenario, approximately 43% of trials will erroneously declare non-futility.  
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Table 4: Stroke SMART simulation results of the true and estimated probability of success of each 

dynamic treatment regimen  

 

Scenario/DTR 

P(Success) 

Truth Estimated 95% CI 

Null    

   ArUCnrNM 0.471 0.472 0.427, 0.517 

   ArUCnrCL 0.471 0.471 0.426, 0.517 

   BrUCnrNM 0.471 0.472 0.427, 0.517 

   BrUCnrCL 0.471 0.471 0.426, 0.516 

    

1    

   ArUCnrNM 0.534 0.534 0.488, 0.580 

   ArUCnrCL 0.472 0.472 0.427, 0.518 

   BrUCnrNM 0.448 0.448 0.402, 0.494 

   BrUCnrCL 0.376 0.376 0.333, 0.422 

    

2    

   ArUCnrNM 0.534 0.535 0.489, 0.580 

   ArUCnrCL 0.471 0.472 0.427, 0.517 

   BrUCnrNM 0.557 0.557 0.511, 0.602 

   BrUCnrCL 0.496 0.496 0.451, 0.541 

    

3    

   ArUCnrNM 0.534 0.534 0.489, 0.580 

   ArUCnrCL 0.472 0.472 0.427, 0.517 

   BrUCnrNM 0.588 0.588 0.541, 0.632 

   BrUCnrCL 0.530 0.530 0.485, 0.575 

    

4    

   ArUCnrNM 0.471 0.471 0.427, 0.517 

   ArUCnrCL 0.471 0.472 0.427, 0.518 

   BrUCnrNM 0.530 0.530 0.485, 0.575 

   BrUCnrCL 0.530 0.530 0.485, 0.575 

    

5    

   ArUCnrNM 0.534 0.534 0.488, 0.580 

   ArUCnrCL 0.472 0.472 0.427, 0.517 

   BrUCnrNM 0.597 0.597 0.551, 0.641 

   BrUCnrCL 0.472 0.471 0.426, 0.517 

    

6    

   ArUCnrNM 0.409 0.409 0.366, 0.453 

   ArUCnrCL 0.471 0.472 0.427, 0.517 

   BrUCnrNM 0.471 0.471 0.426, 0.516 

   BrUCnrCL 0.471 0.471 0.427, 0.517 
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Caption: Performance of dynamic treatment regime when n=1500. The treatment effects for the 2.5 and 

97.5th percentiles of the arms of all simulated trials are represented by the 95% confidence interval. For 

example, in the scenario 1, for the first row representing receiving lytic A first, receiving usual care if an 

initial response occurs and if no response, receiving the new medication in stage 2 (instead of cath lab) 

only 2.5% of simulated trials returned overall good outcome probability of 0.58 or greater for that arm 

(with the given truth for that scenario equal to 0.53).   A=Lytic A; B=Lytic B; r=responder; nr=non-

responder; UC=usual care; NM=New Medicine; CL=Cath Lab 
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Table 5: Number of individuals consistent with each dynamic treatment regimen (DTR) and the power  

 N  

Scenario Total ArUCnrNM ArUCnrCL BrUCnrNM BrBUCnrCL Power 

Null 2000 686 686 686 686 0.049 

 1500 515 515 515 515 0.04.5 

 700 240 240 240 240 0.05.3 

1 2000 686 686 641 641 1.0 

 1500 515 515 481 481 0.990 

 700 240 240 224 224 0.797 

2 2000 687 687 696 695 0.876 

 1500 515 515 522 522 0.766 

 700 240 240 244 244 0.401 

3 2000 686 686 710 709 0.961 

 1500 515 515 532 532 0.885 

 700 240 240 249 249 0.527 

4 2000 686 686 709 708 0.590 

 1500 516 516 531 531 0.449 

 700 241 241 248 248 0.215 

5 2000 687 686 686 686 1.0 

 1500 515 515 515 515 0.995 

 700 240 240 240 240 0.836 

6 2000 686 686 686 687 0.714 

 1500 515 515 515 515 0.588 

 700 240 240 240 240 0.291 

 

Caption: Power indicates the ability to detect any difference in treatment effects across the four DTRs 

for each given scenario and sample size. A=Lytic A; B=Lytic B; r=responder; nr=non-responder; UC=usual 

care; NM=New Medicine; CL=Cath Lab  
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Figure 1 title: Overview of a clinical trial incorporating a dynamic treatment regime.  

 

Figure 1 Caption: Cath Lab denotes when patients undergo mechanical thrombectomy.  
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Supplementary Material 

Supplemental Table 1:  

Stroke SMART simulation results of the true and estimate success of the dynamic treatment regimen  

 

Scenario/DTR 

P(Success) 

Truth Estimated 95% CI 

Null    

   ArUCnrNM 0.471 0.471 0.433-0.511 

   ArUCnrCL 0.471 0.471 0.432-0.510 

   BrUCnrNM 0.471 0.472 0.433-0.511 

   BrUCnrCL 0.471 0.472 0.433-0.512 

    

1    

   ArUCnrNM 0.534 0.534 0.494, 0.573 

   ArUCnrCL 0.472 0.471 0.432, 0.510 

   BrUCnrNM 0.448 0.448 0.408, 0.488 

   BrUCnrCL 0.376 0.377 0.339, 0.416 

    

2    

   ArUCnrNM 0.534 0.534 0.494, 0.573 

   ArUCnrCL 0.471 0.472 0.433, 0.511 

   BrUCnrNM 0.557 0.558 0.518, 0.597 

   BrUCnrCL 0.496 0.497 0.458, 0.536 
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3    

   ArUCnrNM 0.534 0.534 0.494, 0.573 

   ArUCnrCL 0.472 0.472 0.433, 0.511 

   BrUCnrNM 0.588 0.589 0.549, 0.627 

   BrUCnrCL 0.530 0.530 0.490, 0.569 

    

4    

   ArUCnrNM 0.471 0.471 0.432, 0.511 

   ArUCnrCL 0.471 0.471 0.433, 0.511 

   BrUCnrNM 0.530 0.530 0.491, 0.569 

   BrUCnrCL 0.530 0.531 0.491, 0.570 

    

5    

   ArUCnrNM 0.534 0.534 0.494, 0.574 

   ArUCnrCL 0.472 0.472 0.433, 0.511 

   BrUCnrNM 0.597 0.598 0.558, 0.636 

   BrUCnrCL 0.472 0.471 0.432, 0.510 

    

6    

   ArUCnrNM 0.409 0.409 0.372, 0.447 

   ArUCnrCL 0.471 0.472 0.433, 0.511 

   BrUCnrNM 0.471 0.472 0.433, 0.511 

   BrUCnrCL 0.471 0.472 0.433, 0.511 
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Captions: Given sample size is 2000 for this table. A=Lytic A; B=Lytic B; r=responder; nr=non-responder; 

UC=usual care; NM=New Medicine; CL=Cath Lab 
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R code to implement SMART simulations 

 

## DESCRIPTION OF VARIABLES: 

##   n: Sample Size 

##   qAr: Probability of Y=1 for those who are given first-stage treatment A and respond 

##   qBr: Probability of Y=1 for those who are given first-stage treatment B and respond 

##   qAnrWW: Probability of Y=1 for those who are given A, don't respond, and are assigned to WW 

##   qAnrCL: Probability of Y=1 for those who are given A, don't respond, and are assigned to CL 

##   qBnrWW: Probability of Y=1 for those who are given A, don't respond, and are assigned to WW 

##   qBnrCL: Probability of Y=1 for those who are given A, don't respond, and are assigned to CL 

##   prBl: Probability of response given B and low baseline 

##   prBh: Probability of response given B and high baseline 

##   alpha: Probability of Type-1 Error, defaults to 0.05 

##   niter: Number of iterations to carry out, defaults to 5000. 

#####################################################################################

## 

 

library(aod) 

library(geepack) 

library(doBy) 

#set seed 

RNGkind("Mersenne-Twister") 

set.seed(1111) 

 

simulate.strokeSMART<-function(n,qAr,qBr,qAnrWW,qAnrCL,qBnrWW,qBnrCL,prBl, prBh, 

alpha=0.05,niter=5000){ 

   

  N = n*niter 

   

  # model baseline NIHSS based on proportion data from NINDS 

  #create indicator for baseline: 1 if < 8, 0 otherwise 

  nihss.baseline.dichot<-rbinom(N,1,115/509) 

   

  #create outcome probability vectors for each embedded DTR 

  pArAnrWW <-rep(NA,N) 

  pArAnrCL <-rep(NA,N) 

  pBrBnrWW <-rep(NA,N) 

  pBrBnrCL <-rep(NA,N) 

  pArAnrWW[nihss.baseline.dichot==1]<-(0.93)*qAr + (0.07)*qAnrWW 

  pArAnrCL[nihss.baseline.dichot==1]<-(0.93)*qAr + (0.07)*qAnrCL 

  pArAnrWW[nihss.baseline.dichot==0]<-(0.21)*qAr + (0.79)*qAnrWW 

  pArAnrCL[nihss.baseline.dichot==0]<-(0.21)*qAr + (0.79)*qAnrCL 

  pBrBnrWW[nihss.baseline.dichot==1]<-prBl*qBr + (1-prBl)*qBnrWW ## 

  pBrBnrCL[nihss.baseline.dichot==1]<-prBl*qBr + (1-prBl)*qBnrCL ## 

  pBrBnrWW[nihss.baseline.dichot==0]<-prBh*qBr + (1-prBh)*qBnrWW ## 

  pBrBnrCL[nihss.baseline.dichot==0]<-prBh*qBr + (1-prBh)*qBnrCL ## 
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  #Miscellaneous initializations 

  omnibusCount=0 

  pairwiseCount=0 

  pairwiseCountWW=0 

  #percentDone = 0 

   

  #assign first-stage treatment  

  # 1 is A, -1 is B 

  stage1trt<-rbinom(N,1,.5) 

  stage1trt[stage1trt==0]<--1 

   

  #set response probability for A/B based on baseline NIHSS and simulate response 

  stage1resp<-rep(NA,N) 

  stage1resp[nihss.baseline.dichot==1 & stage1trt==1]<-rbinom(sum(nihss.baseline.dichot==1 & 

stage1trt==1),1,0.93) 

  stage1resp[nihss.baseline.dichot==0 & stage1trt==1]<-rbinom(sum(nihss.baseline.dichot==0 & 

stage1trt==1),1,0.21) 

  stage1resp[nihss.baseline.dichot==1 & stage1trt==-1]<-rbinom(sum(nihss.baseline.dichot==1 & 

stage1trt==-1),1,prBl) 

  stage1resp[nihss.baseline.dichot==0 & stage1trt==-1]<-rbinom(sum(nihss.baseline.dichot==0 & 

stage1trt==-1),1,prBh) 

   

  #assign second-stage treatment to non-responders 

  # 1 is CL, -1 is WW 

  num.resp<-sum(stage1resp==1) 

  stage2trt<-rep(NA,N) 

  stage2trt[stage1resp==0]<-rbinom(N-num.resp,1,.5) 

  stage2trt[stage2trt==0]<--1 

   

  #assign weights (2 per randomization) 

  weight<-rep(NA,N) 

  weight[stage1resp==1]<-2 

  weight[stage1resp==0]<-4 

   

  #simulate outcome Y 

  Y<-rep(NA,N) 

  Y[stage1trt==1 & stage1resp==1]<-rbinom(sum(stage1trt==1 & stage1resp==1),1,qAr) 

  Y[stage1trt==-1 & stage1resp==1]<-rbinom(sum(stage1trt==-1 & stage1resp==1),1,qBr) 

  Y[stage1trt==1 & stage1resp==0 & stage2trt==1]<-rbinom(sum(stage1trt==1 & stage1resp==0 & 

stage2trt==1),1,qAnrCL) 

  Y[stage1trt==1 & stage1resp==0 & stage2trt==-1]<-rbinom(sum(stage1trt==1 & stage1resp==0 & 

stage2trt==-1),1,qAnrWW) 

  Y[stage1trt==-1 & stage1resp==0 & stage2trt==1]<-rbinom(sum(stage1trt==-1 & stage1resp==0 & 

stage2trt==1),1,qBnrCL) 

  Y[stage1trt==-1 & stage1resp==0 & stage2trt==-1]<-rbinom(sum(stage1trt==-1 & stage1resp==0 & 

stage2trt==-1),1,qBnrWW) 
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  #identify DTR (path-specific, e.g., Ar, AnrWW, and AnrCL are considered separately) 

  # 11 is Ar, 100 is AnrWW, 101 is AnrCL, -11 is Br, -100 is BnrWW, -101 is BnrCL 

   DTR<-rep(NA,N) 

   DTR[stage1trt==1 & stage1resp==1]<-11 #Ar 

   DTR[stage1trt==-1 & stage1resp==1]<--11 #Br 

   DTR[stage1trt==1 & stage1resp==0 & stage2trt==1]<-101 #AnrCL 

   DTR[stage1trt==1 & stage1resp==0 & stage2trt==-1]<-100 #AnrWW 

   DTR[stage1trt==-1 & stage1resp==0 & stage2trt==1]<--101 #BnrCL 

   DTR[stage1trt==-1 & stage1resp==0 & stage2trt==-1]<--100 #BnrWW 

   

  #compute mean success probabilities 

  #Note: 0.309 is overall response probability 

  mspArAnrCL = (sum(Y[stage1trt==1 & stage1resp==1])/sum(DTR==11))*0.309 + (sum(Y[stage1trt==1 & 

stage1resp==0 & stage2trt==1])/sum(DTR==101))*(1-.309) 

  mspArAnrWW = (sum(Y[stage1trt==1 & stage1resp==1])/sum(DTR==11))*0.309 + (sum(Y[stage1trt==1 

& stage1resp==0 & stage2trt==-1])/sum(DTR==100))*(1-.309) 

  mspBrBnrCL = (sum(Y[stage1trt==-1 & stage1resp==1])/sum(DTR==11))*0.309 + (sum(Y[stage1trt==-1 

& stage1resp==0 & stage2trt==1])/sum(DTR==-101))*(1-.309) 

  mspBrBnrWW = (sum(Y[stage1trt==-1 & stage1resp==1])/sum(DTR==11))*0.309 + (sum(Y[stage1trt==-1 

& stage1resp==0 & stage2trt==-1])/sum(DTR==-100))*(1-.309) 

   

  #create bigdata matrix from which to sample. 

  bigdata<-matrix(c(stage1trt,stage1resp,stage2trt,Y, weight),ncol=5) 

  colnames(bigdata)<-c("stage1trt","stage1resp","stage2trt","Y","weight") 

  chooserows<-matrix(c(sample(1:N,N,replace=T)),nrow=niter,ncol=n) #get random sample of niter rows 

for each of the n subjects 

  data<-matrix(nrow=n,ncol=5) 

   

  #initialize probability and count matrices 

  DTRcount<-matrix(nrow=niter,ncol=4) 

  DTRlogitProb<-matrix(nrow=niter,ncol=4) 

  DTRlogitVar<-matrix(nrow=niter,ncol=4) 

  DTRlogitConf<-matrix(nrow=niter,ncol=8) 

  colnames(DTRcount)<-c("ACL","AWW","BCL","BWW") 

  colnames(DTRlogitProb)<-c("ACL","AWW","BCL","BWW") 

  colnames(DTRlogitVar)<-c("ACL","AWW","BCL","BWW") 

  colnames(DTRlogitConf)<-c("ACL Lower", "AWW Lower", "BCL Lower", "BWW Lower", "ACL Upper", 

"AWW Upper", "BCL Upper", "BWW Upper") 

   

  looptimeSTART<-proc.time()[3] 

   

  for (i in seq(from=1,to=niter,by=1)){ 

     

    #create data matrix 

     

    data<-bigdata[chooserows[i,],] #consider only n observations  
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    lengthNR<-dim(data[data[,2]==0,])[1] #number of non-responders to first-stage treatment 

    dataNR<-cbind(data[data[,2]==0,], c(seq(1,lengthNR,by=1))) #create dataset of just nonresponders to 

stage1trt and assign an ID 

    dataresp1<-data[data[,2]==1,] #subsetset of patients who responded to first-stage treatment 

    dataresp1[,3]<-1 #assign responders to stage2trt=1 

    lengthR<-dim(dataresp1)[1] #number of responders 

    dataresp1<-cbind(dataresp1, c(seq(lengthNR+1,lengthNR+lengthR))) #assign ID to responders 

    dataresp2<-data[data[,2]==1,] #subset of patients who responded to first-stage treatment 

    dataresp2[,3]<--1 #assign responders to stage2trt=-1 

    dataresp2<-cbind(dataresp2, c(seq(lengthNR+1,lengthNR+lengthR))) #assign ID 

     

    #Count individuals consistent with each DTR 

    DTRcount[i,1]<- sum(data[,1]==1 & data[,2]==1) + sum(data[,1]==1 & data[,2]==0 & data[,3]==1) 

#ArAnrCL 

    DTRcount[i,2]<- sum(data[,1]==1 & data[,2]==1) + sum(data[,1]==1 & data[,2]==0 & data[,3]==-1) 

#ArAnrWW 

    DTRcount[i,3]<- sum(data[,1]==-1 & data[,2]==1) + sum(data[,1]==-1 & data[,2]==0 & data[,3]==1) 

#BrBnrCL 

    DTRcount[i,4]<- sum(data[,1]==-1 & data[,2]==1) + sum(data[,1]==-1 & data[,2]==0 & data[,3]==-1) 

#BrBnrWW 

     

    #Replicate data 

    repdata<-rbind(dataNR, dataresp1, dataresp2) 

    colnames(repdata)<-c("stage1trt","response","stage2trt","Y","weight", "id") 

    inter<-c(repdata[,1]*repdata[,3]) #"interaction" variable  

    repdata<-cbind(repdata,inter) 

    repdata<-as.data.frame(repdata) 

    r<-sum(repdata$response==1)/2/n 

    sortrepdata<-repdata[order(repdata$id) , ] 

     

    #Estmate full and null models 

    glmrepdata3<-geeglm(Y ~ stage1trt+stage2trt+inter, id=id, weights=weight,  family = 

binomial("logit"),corstr="independence",data=sortrepdata) 

    glmrepdata3RED<-geeglm(Y ~1, id=id, weights=weight,  family = 

binomial("logit"),corstr="independence",data=sortrepdata) 

    #summary(glmrepdata3) 

     

    #Omnibus test 

    omnibustest<-anova(glmrepdata3,glmrepdata3RED, test="Chisq") 

    if (omnibustest$'P(>|Chi|)'<alpha) 

      omnibusCount = omnibusCount + 1 

     

    #Pairwise test: ArAnrCL vs. BrBnrCL 

    lpairACLBCL<-cbind(0,2,0,2) 

    pairACLBCL<-wald.test(b = coef(glmrepdata3), Sigma = vcov(glmrepdata3), 

L=lpairACLBCL)$result$chi2[3] 

    if (pairACLBCL<alpha) 
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      pairwiseCount = pairwiseCount + 1 

     

    #Pairwise test: ArAnrWW vs. BrBnrWW 

    lpairAWWBWW<-cbind(0,2,0,-2) 

    pairAWWBWW<-wald.test(b = coef(glmrepdata3), Sigma = vcov(glmrepdata3), 

L=lpairAWWBWW)$result$chi2[3] 

    if (pairAWWBWW<alpha) 

      pairwiseCountWW = pairwiseCountWW + 1 

     

     

    #Estimate and store logit(DTRprob) and confidence interval for each DTR 

    # 1,1,1,1 <=> ArAnrCL 

    # 1,1,-1,-1 <=> ArAnrWW 

    # 1,-1,1,-1 <=> BrBnrCL 

    # 1,-1,-1,1 <=> BrBnrWW 

    est<-esticon(glmrepdata3,matrix(c(1,1,1,1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1),ncol=4)) 

    DTRlogitProb[i,]<-est$Estimate 

    DTRlogitVar[i,]<-(est$Std.Error)^2 

    DTRlogitConf[i,]<-c(est$Lower,est$Upper) 

     

     

    #crude iteration indicator (for progress purposes) 

    #if (i%%50 == 0){ 

    #  percentDone = percentDone + 1 

    #  cat(percentDone,'% completed.','\n') 

  } 

   

  looptimeEND<-proc.time()[3] 

   

  powerOmnibus<-omnibusCount/niter 

  powerPairwiseACLBCL<-pairwiseCount/niter 

  powerPairwiseAWWBWW<-pairwiseCountWW/niter 

   

  #Compute expit probability and CI's 

  DTRprob<-exp(DTRlogitProb)/(1+exp(DTRlogitProb)) 

  DTRconf<-exp(DTRlogitConf)/(1+exp(DTRlogitConf)) 

   

  #Compute variances for each estimated DTR probability (columns of DTRprob) 

  varArAnrCL<-var(DTRprob[,1]) 

  varArAnrWW<-var(DTRprob[,2]) 

  varBrBnrCL<-var(DTRprob[,3]) 

  varBrBnrWW<-var(DTRprob[,4]) 

   

  #compute empirical confidence interval - method 1, using CLT 

  empDTRconf1<-matrix(NA,nrow=4,ncol=2) 

  empDTRconf1[1,]<-c(mean(DTRprob[,1])-

1.96*sqrt(varArAnrCL),mean(DTRprob[,1])+1.96*sqrt(varArAnrCL)) 
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  empDTRconf1[2,]<-c(mean(DTRprob[,2])-

1.96*sqrt(varArAnrWW),mean(DTRprob[,2])+1.96*sqrt(varArAnrWW)) 

  empDTRconf1[3,]<-c(mean(DTRprob[,3])-

1.96*sqrt(varBrBnrCL),mean(DTRprob[,3])+1.96*sqrt(varBrBnrCL)) 

  empDTRconf1[4,]<-c(mean(DTRprob[,4])-

1.96*sqrt(varBrBnrWW),mean(DTRprob[,4])+1.96*sqrt(varBrBnrWW))    

   

  #compute empirical confidence interval - method 2, using percentiles 

  empDTRconf2<-matrix(NA,nrow=4,ncol=2) 

  empDTRconf2[1,]<-quantile(DTRprob[,1],c(.025,.975),na.rm=TRUE) #ArAnrCL 

  empDTRconf2[2,]<-quantile(DTRprob[,2],c(.025,.975),na.rm=TRUE) #ArAnrWW 

  empDTRconf2[3,]<-quantile(DTRprob[,3],c(.025,.975),na.rm=TRUE) #BrBnrCL 

  empDTRconf2[4,]<-quantile(DTRprob[,4],c(.025,.975),na.rm=TRUE) #BrBnrWW     

   

  #t = time()-t0 

  #print(t) 

   

  cat(' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~','\n', 

      ' POWER with ', n, 'subjects: ','\n', 

      '   of the Omnibus Test: ',round(powerOmnibus,4),'\n', 

      '   of the ACLBCL Pairwise Test: ',round(powerPairwiseACLBCL,4),'\n', 

      '   of the AWWBWW Pairwise Test: ',round(powerPairwiseAWWBWW,4),'\n', 

      '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~','\n' ) 

  cat('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~','\n', 

      ' ESTIMATED success probability per DTR:', '\n', 

      '   ArAnrCL: ',mean(DTRprob[,1]),'\n', 

      '   ArAnrWW: ',mean(DTRprob[,2]),'\n', 

      '   BrBnrCL: ',mean(DTRprob[,3]),'\n', 

      '   BrBnrWW: ',mean(DTRprob[,4]),'\n', 

      '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~','\n') 

  cat('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n', 

      ' ESTIMATED 95% confidence interval for P(Success)\n', 

      ' ArAnrCL: (',mean(DTRconf[,1]),',',mean(DTRconf[,5]),') \n', 

      ' ArAnrWW: (',mean(DTRconf[,2]),',',mean(DTRconf[,6]),') \n',   

      ' BrBnrCL: (',mean(DTRconf[,3]),',',mean(DTRconf[,7]),') \n',   

      ' BrBnrWW: (',mean(DTRconf[,4]),',',mean(DTRconf[,8]),') \n',  

      '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n') 

  cat('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n', 

      ' EMPIRICAL 95% confidence interval for P(Success) (via variance)\n', 

      ' ArAnrCL: (',empDTRconf1[1,1],',',empDTRconf1[1,2],') \n', 

      ' ArAnrWW: (',empDTRconf1[2,1],',',empDTRconf1[2,2],') \n',   

      ' BrBnrCL: (',empDTRconf1[3,1],',',empDTRconf1[3,2],') \n',   

      ' BrBnrWW: (',empDTRconf1[4,1],',',empDTRconf1[4,2],') \n',  

      '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n') 

  cat('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n', 

      ' EMPIRICAL 95% confidence interval for P(Success) (via percentile)\n', 

      ' ArAnrCL: (',empDTRconf2[1,1],',',empDTRconf2[1,2],') \n', 
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      ' ArAnrWW: (',empDTRconf2[2,1],',',empDTRconf2[2,2],') \n',   

      ' BrBnrCL: (',empDTRconf2[3,1],',',empDTRconf2[3,2],') \n',   

      ' BrBnrWW: (',empDTRconf2[4,1],',',empDTRconf2[4,2],') \n',  

      '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n')   

  cat('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \n', 

      ' Mean number of individuals per DTR: \n', 

      '  ArAnrCL: ',mean(DTRcount[,1]),'\n', 

      '  ArAnrWW: ',mean(DTRcount[,2]),'\n', 

      '  BrBnrCL: ',mean(DTRcount[,3]),'\n', 

      '  BrBnrWW: ',mean(DTRcount[,4]),'\n', 

      '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \n') 

  cat('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~','\n', 

      ' TRUE success probability per DTR:', '\n', 

      '   ArAnrCL: ',mean(pArAnrCL),'\n', 

      '   ArAnrWW: ',mean(pArAnrWW),'\n', 

      '   BrBnrCL: ',mean(pBrBnrCL),'\n', 

      '   BrBnrWW: ',mean(pBrBnrWW),'\n', 

      '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~','\n') 

  cat('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~','\n', 

      ' Time Spent on Loop:', looptimeEND-looptimeSTART, '\n', 

      '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~','\n') 

} 

 

cat('NULL SCENARIO: \n') 

simulate.strokeSMART(2000,0.76,0.76,0.3,0.3,0.3,0.3,0.93,0.21, alpha=0.05,niter=5000) 
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