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Common species shape the world around us, and changes in their commonness signify 12 

large-scale shifts in ecosystem structure and function1-4. Dominant taxa drive 13 

productivity and biogeochemical cycling, in direct interaction with abiotic components 14 

of the Earth system3,4. However, our understanding of the dynamic response of 15 

ecosystems to global environmental changes in the past is limited by our ability to 16 

robustly estimate fossil taxonomic richness5,6, and by our neglect of the importance of 17 

common species. To rectify this, we use observations of the most common and 18 

widespread species to track global changes in their distribution in the deep geological 19 

past. Our simple approach is robust to factors that bias richness estimators, including 20 

widely used sampling-standardization methods5, which we show are highly sensitive to 21 

variability in the species-abundance distribution. Causal analyses of common species 22 

frequency in the deep-sea sedimentary record detect a lagged response in the ecological 23 

prominence of planktonic foraminifera to oceanographic changes captured by deep-24 

ocean temperature records over the last 65 million years, encompassing one of Earth's 25 

major climate transitions. Our results demonstrate that common species can act as 26 

tracers of a past global ecosystem and its response to physical changes in Earth's 27 

dynamic history.  28 

True species richness can be elusive even in well-studied ecosystems, because most 29 

species are very rare, and relatively few species account for most of the total abundance1,2. 30 

For example, only ~1.4 % of the estimated tree species account for half of the biomass and 31 

control the cycling of water, carbon, and nutrients in the Amazon forest3. Similarly, a recent 32 

survey of eukaryotic diversity in the oceans found that ~0.24 % of the taxa accounted for half 33 

of the total number of rDNA reads4. 34 

Abundance and occupancy are typically positively correlated, with the more abundant 35 

species being the more widespread4,7. In the fossil record, species and higher taxa generally 36 
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have a humped temporal distribution of occurrences, being rare in the early and late stages of 37 

their known stratigraphic range8-10. 38 

Here we accommodate these ecological features by focussing only on species that are 39 

common and widespread at any given time, using the Summed Common species Occurrence 40 

Rate (SCOR), a very simple occurrence-based quantity that is sensitive to changes in total 41 

abundance (Methods)11. We apply SCOR to deep-sea sedimentary records of calcifying 42 

plankton (coccolithophores and foraminifera) over the last 65 years to demonstrate how 43 

relative changes in the distribution of common and widespread species were linked to climate 44 

change on geological time scales.  45 

First, we evaluate the sensitivity of SCOR and commonly used richness estimators to 46 

potential biases using Poseidon, a simulation model of planktonic microfossil occurrences 47 

(Fig 1; Methods and Supplementary Code). We target methods currently popular in 48 

palaeobiology, and highlight the effects of two main factors: variability in the spatial 49 

sampling completeness (Fig. 1b), and variability in the shape of the species rank-abundance 50 

distribution (RAD; Fig. 1c).  51 

Our simulations with Poseidon show that the SCOR estimate of relative changes in 52 

total abundance is highly robust to variability in both spatial sampling and RAD shape (Fig. 53 

1d). By definition, SCOR is immune to the loss of rare species, and decoupled from changes 54 

in richness. As expected, the fidelity of raw sampled richness (S) decays rapidly with 55 

increasing sampling variability, but shows little sensitivity to changes in the shape of the 56 

RAD. Simple range-through richness (RT; assuming a species existed in all time bins 57 

between its first and last occurrence) is relatively robust to both factors, indicating that the 58 

level of sampling in Poseidon is sufficient to avoid severe edge effects. The Shannon entropy 59 

H, which reflects both richness and evenness, is very sensitive to RAD shape variability, 60 

ultimately tracking changes in evenness at the expense of changes in richness. Classical 61 
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rarefaction (CR) and shareholder quorum subsampling (SQS)5, being sampling-62 

standardization methods, are robust to the effect of spatial sampling variability on richness, 63 

all else being equal. However, both CR and SQS are highly sensitive to changes in RAD 64 

shape. As with Shannon H, increasing RAD variability causes CR and SQS to lose track of 65 

richness and respond to changes in the shape parameter σ of the RAD instead. Note that the σ 66 

values used in Poseidon generally correspond to high, moderately variable species evenness 67 

(Supplementary Fig. 1). A third subsampling method, occurrences-squared weighted 68 

(O2W)12, shows overall poor agreement with true richness.  69 

Turning to the rich deep-sea sedimentary record of the Cenozoic Era (0-65 million 70 

years ago), we analysed global occurrences of the two most prominent groups of calcifying 71 

plankton, coccolithophores and foraminifera, from the Neptune Sandbox Berlin (NSB) 72 

database13,14 (Methods). In both groups, raw S generally increases along with the number of 73 

boreholes representing the spatial sampling, while sampled evenness (J) decreases 74 

(Supplementary Fig. 2a,b), as expected if improved sampling enhances the detection of rare 75 

species (Fig. 1b,c). Sampling-standardized richness estimates (SQS) seem to remove the 76 

sampling trend, but given the sensitivity of subsampling methods to RAD shape found in 77 

Poseidon, we suspected an evenness signal in the SQS estimates. Indeed, SQS richness can 78 

be reproduced by simply adding together the raw S and J curves (Supplementary Fig. 2c,d), a 79 

relationship that emerges across NSB data and simulation runs (Fig. 2). This result implies 80 

that changes in evenness are a major confounding factor for current sampling-standardized 81 

richness estimators. 82 

Focussing instead on common species, coccolithophores and foraminifera have 83 

markedly different SCOR trajectories through the Cenozoic. On average, coccolithophores 84 

have their highest SCOR values in the Eocene, followed by a decline in the Oligocene and a 85 

resurgence in the late Miocene and Pliocene. Aspects of the coccolithophore SCOR pattern 86 
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have been linked to Cenozoic proxy records of atmospheric CO2, suggesting that 87 

coccolithophores could thrive in a high-CO2 world11,15. Since their rise in the Mesozoic, 88 

coccolithophores shifted the dominant locus of carbonate burial from continental shelves to 89 

the deep sea, providing a new mechanism for buffering ocean chemistry and atmospheric 90 

CO2 through carbonate compensation16. Oligocene cooling and CO2 decline was 91 

accompanied by a lowering of the carbonate compensation depth, which has been attributed 92 

to changes in the supply of weathering products to the ocean17. The Oligocene reduction of 93 

coccolithophore SCOR is opposite to that expected if SCOR were biased upward by 94 

enhanced deep-sea preservation11, and carbonate preservation trends cannot explain the 95 

independent SCOR patterns in the two calcifying groups. Selective dissolution or taxonomic 96 

preferences in sample processing may cause short-term volatility in SCOR, but only if 97 

species presence or absence is random with respect to commonness (Supplementary Fig. 3). 98 

Planktonic foraminifera SCOR was compared to Cenozoic deep-ocean temperature 99 

(DOT) records18 (Methods; Supplementary Data Set). Although the net trends are inversely 100 

related (foraminifera flourish as the world cools), shorter-term changes suggest positive co-101 

variation, including the Early Eocene climate optimum, Eocene cooling, as well as Miocene 102 

and Pliocene optima (Fig. 3a). Geological proxy records are generally noisy mixtures of 103 

signals representing multiple processes, derived from a sedimentary record that is itself an 104 

active component of the Earth system. Any causal connection detected between proxy 105 

records would necessarily be indirect with respect to the underlying processes of interest. 106 

Nonetheless, the DOT record reflects a set of climate-related variables, including changes in 107 

ocean thermohaline circulation, water mass structure, and nutrient dynamics, all considered 108 

to be important abiotic controls on the long-term evolution of planktonic foraminifera6,19-21. 109 

Here we tested this drive-response hypothesis using three conceptually very different 110 

methods for causal detection in time series (Methods): (1) Convergent cross mapping22, based 111 
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on the concept of state space reconstruction from time-delay embedding; (2) Information 112 

transfer analysis23,24, based on the concept of transfer entropy25; and (3) Bayesian inference 113 

of causal models based on linear stochastic differential equations26,27. 114 

Convergent cross mapping (CCM) from foraminifera SCOR to DOT peaks at a 115 

negative lag, indicating that the SCOR signal carries a response to past changes captured in 116 

the DOT record (Fig. 3b). The optimum lag is a single time bin, implying a causal delay of 117 

0.5 million years (Myr) or less. CCM is also significant in the opposite direction but this is 118 

stronger at positive lags (Fig. 3b), which are non-causal (future "drives" past). This result is 119 

consistent with a unidirectional forcing where the dynamics of the response variable (SCOR) 120 

is dominated by the driving variable (DOT), such that predictability flows both ways28. 121 

Information transfer (IT) analysis supports this inference: predictive information flow is 122 

significant from past DOT to SCOR, although the optimal lag is shifted backward by one 123 

time bin, implying a more protracted causal delay (Fig. 3c). In the opposite direction, IT 124 

peaks at the corresponding positive (non-causal) lags, but is significantly weaker than in the 125 

causal direction. Using a series of linear Stochastic Differential Equations (SDEs) to model 126 

correlation and causality between the two records (Supplementary Fig. 4), we recover 127 

relatively strong evidence that SCOR responds to changes in DOT, with a time lag of 0.33-128 

1.1 Myr, comparable to the CCM and IT analyses (Supplementary Tables 1, 2), although the 129 

detailed nature of the causal relationship cannot be clearly resolved (Methods).   130 

The congruence of these results strongly suggests that the ecological prominence of 131 

planktonic foraminifera has evolved in response to past climatic and oceanographic changes 132 

captured in the deep-ocean temperature proxy record. Furthermore, the inferred time delay 133 

implies that the causal connection is highly indirect, involving climate changes propagating 134 

through the Earth system to influence the commonness of foraminifera in the global plankton 135 

on evolutionary time scales. In the modern global ocean, eukaryotic plankton richness 136 
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involves a vast number of parasite and symbiont species, highlighting the importance of 137 

biotic interactions in driving diversification through trophic connectivity and complexity4. 138 

Abiotic factors, such as differences in nutrient level among ocean basins, are more clearly 139 

reflected in the relative abundance of the dominant species. A restructuring of water masses 140 

and nutrient distributions is likely to cause a dramatic and discernible shift in the distribution 141 

and abundance of many species, yet have a far less predictable impact on richness. Our 142 

results imply that if such a fundamental ecosystem response were to leave a signature in the 143 

fossil record, it would be far more evident in the robustly detectable distribution of the most 144 

common species than in the indeterminate richness of rare species. Dominant groups also 145 

reveal macroevolutionary trends in functional morphology otherwise obscured by rare taxa29. 146 

Given their critical importance to ecosystem functioning, common species provide a nexus 147 

for understanding the role of an evolving biota in global environmental changes of the past.  148 

 149 
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 237 

 238 

Figure 1 | Performance of SCOR and richness estimators in Poseidon model 239 

experiments. a, Simulated species richness and total abundance are decoupled. b, Sampled 240 

species occurrences reflect abundance distorted by the trend and short-term variability in 241 

sampled sites (in this example, variability = 0.1, corresponding to the standard deviation 242 

around the mean trend). c, Sampled species evenness (Pielou's J) captures changes in the 243 

shape parameter σ of the RAD (in this example, variability = 2, corresponding to the range of 244 

σ), superimposed on richness fluctuations and a net decrease caused by the sampling trend. d, 245 

Sensitivity to sampling variability and RAD shape variability. Values are median goodness-246 

of-fit (R2) of 50 model runs, comparing SCOR to true abundance, and richness estimates to 247 

true richness. See text for abbreviations. 248 
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 249 

Figure 2 | Empirical relationship between sampling-standardized richness and the sum 250 

of raw richness and evenness. Values are first differences of normalized time series of SQS 251 

richness and of the sum of normalized raw richness (S) and evenness (Pielou's J). Data 252 

include Cenozoic coccolithophores (black) and planktonic foraminifera (red) from the NSB 253 

database (Supplementary Fig. 2), and all Poseidon model experiments (blue; N = 262,500). 254 

Stippled line marks the 1:1 relationship. 255 

  256 
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 257 

Figure 3 | Testing a causal link between planktonic foraminifera SCOR and Cenozoic 258 

climate changes. a, SCOR of planktonic foraminifera from the NSB database at 0.5 Myr 259 

resolution, and DOT estimates18 at 0.1 Myr resolution. b, c, CCM skill (b) and IT (c) between 260 

SCOR and DOT as a function of time lag. If past DOT drives SCOR, then SCOR xmap DOT, 261 

while information flows DOT → SCOR, at negative lags. Values are medians (dots) and 95 262 

% ranges (whiskers) for 500 random subsamples of length 100, dashed lines are 95th 263 

percentiles of 1,000 surrogates. All values are normalized to a surrogate mean of zero. Ma, 264 

million years before present; Paleoc., Paleocene; Oligoc., Oligocene; P, Pliocene; Pt, 265 

Pleistocene.   266 
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METHODS 267 

Data. Microfossil occurrences were retrieved from the NSB database13,14 (accessed April 22, 268 

2015). SCOR and richness estimates were calculated using 0.5 Myr time bins. For the 269 

planktonic foraminifera, we compared the inferred times of species rise and fall in NSB10, 270 

which encompass any period of potential commonness, to the species ranges in the 271 

PlankRange database30 (http://palaeo.gly.bris.ac.uk/Data/plankrange.html, accessed Aug. 24, 272 

2014). After resolving most of the taxonomic discrepancies, ~82 % of the species have a rise-273 

fall interval that fits within the proposed range or is offset by < 2 Myr (a single time bin in 274 

ref. 10). Of the remaining species, which could either not be matched taxonomically or have 275 

a significant range offset, ~73 % are rare (peak occurrence frequency, as a proportion of all 276 

sites with at least one species sampled, < 0.2), and none have a peak occurrence frequency > 277 

0.4. Taxonomic or range errors in NSB are therefore unlikely to have a significant impact on 278 

SCOR, which is sensitive only to the most widespread species. Quantification of this impact 279 

awaits the public release of the updated PlankRange database31.  280 

 DOT estimates were obtained from ref. 18, using their > 9 Ma Td-SL record (based on 281 

subtracting New Jersey sea level records from a benthic δ18O stack) and scaled δ18O record 282 

for the interval < 9 Ma, with their interpolation at 0.1 Myr resolution. Both SCOR and DOT 283 

were tied to the GTS2004 time scale32. 284 

SCOR. We treat the observation of a specific number of individuals as a Poisson-distributed 285 

variable with parameter λ in each time bin. The probability of finding an individual of species 286 

i in time bin j is then pij = 1 − exp(−λij), and thus λij = − ln(1 − pij). In practice, pij is estimated 287 

as yij/nj, where yij is the number of sites in which species i is observed at time bin j and nj is 288 

the number of sites in that time bin where at least one of the species included in the analysis 289 

is observed. SCOR is the total density of a given set of mj species in a time bin:  290 
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             (1) 291 

and we estimate its variance by the delta method33: 292 

        (2) 293 

SCOR is based on the observation that the more globally abundant a species is, the more 294 

likely it is to occur at a greater number of sites4. As p approaches 1, the rate of increase in λ 295 

grows rapidly, such that very widespread species have a much greater influence on SCOR 296 

than restricted species. If a species occurs at all sites in a time bin, its λ for that time bin is 297 

undefined.  298 

 SCOR is decoupled from species richness and relative abundance. If a species 299 

becomes globally more abundant and widespread in a time interval, then its λ, and thus 300 

SCOR, will increase. Even if all species became exactly equally more common in absolute 301 

terms, with no change in relative abundance, their individual λ values will be higher and 302 

SCOR will capture the proportional change in absolute abundance of the total species set. 303 

Poseidon simulations. To evaluate the performance of SCOR relative to commonly used 304 

diversity metrics, we designed a set of numerical experiments on the effects of temporal 305 

variability in three factors: (1) spatial sampling completeness; (2) the shape of the species 306 

rank-abundance distribution (RAD); and (3) the proportion of species lost randomly (with 307 

respect to abundance). 308 

 Poseidon consists of 1,000 spatial grid cells and 105 time steps, where true species 309 

richness and abundance are allowed to vary independently (Fig. 1a).  In each time step, we 310 

randomly assign an abundance value to each species, such that the entire community has a 311 

log-normal rank-abundance distribution (RAD), the shape of which can be fixed or time-312 

varying. Species ranks are randomly reshuffled between time steps. We then randomly assign 313 

SCORj = λij
i=1

mj

∑

Var(SCORj ) =
pij

(1− pij )nj
.

i=1

mj

∑
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a spatial grid cell (site) to an individual of a species, where it can potentially be preserved and 314 

sampled.  315 

 Next, we sample only a proportion of the sites (spatial cells) such that this proportion 316 

increases linearly from 0.1 to 0.4, representing a declining sampling coverage with age, 317 

typical of deep-sea sedimentary records. Any short-term variability is thus superimposed on 318 

this trend (e.g. Fig. 1b). Furthermore, a proportion of the remaining species can be randomly 319 

removed (representing dissolution, selective picking, or other processes causing a species to 320 

be absent in a time bin, regardless of its original abundance).  321 

 We then calculate raw S, RT, Shannon H, and three sampling-standardized richness 322 

metrics widely used in palaeobiology (CR, O2W, and SQS). Although a generalized OXW 323 

has been recommended for paleontological datasets34, we use O2W here because our data 324 

meet the assumptions of the latter12. We used two versions of the shareholder quorum 325 

subsampling  (SQS) method5,35-37: the SQS3.3 R script 326 

(http://bio.mq.edu.au/~jalroy/SQS.html, downloaded Aug. 26, 2014), and the SQS4.3 perl 327 

script, kindly provided by J. Alroy (Sept. 3, 2014). We did not modify the SQS codes but 328 

wrote a function to format Poseidon output to species occurrence data for SQS4.3. For 329 

SQS3.3, we input the list of sampled individuals (abundances). A quorum level of 0.6 was 330 

used in all runs. Both SQS versions yielded very similar results when given the same type of 331 

data (abundances or occurrences). For all subsampling methods (CR, O2W, and SQS), 100 332 

iterations were used in obtaining each estimated richness value. Increasing the number of 333 

iterations offered no discernible improvement. Shannon H was output from the SQS 3.3 R 334 

script and used to calculate Pielou's J evenness. The goodness-of-fit between true and 335 

estimated richness, and between true abundance and SCOR, was assessed by the coefficient 336 

of determination (R2) between time series. Poseidon R scripts are provided as Supplementary 337 

Code.  338 
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Time Series Analysis. We used three different time series analysis methods to test for a 339 

causal relationship between SCOR and DOT. Two of the methods are non-parametric, while 340 

the third is based on linear models. To implement a time-displacement (lag) analysis for the 341 

non-parametric methods, missing SCOR values were linearly interpolated, and the 0.1-Myr 342 

resolution DOT record was bin-averaged on the SCOR time bins (0.5 Myr). Furthermore, the 343 

non-parametric methods use surrogate time series to assess significance, which requires 344 

detrending of the original time series. To avoid any bias from differences in non-stationarity 345 

that are not reproduced by the surrogates, both records were detrended using a third-order 346 

polynomial to satisfy a stationarity criterion38, then normalized to zero mean and unit 347 

standard deviation. For consistency, the model-based analysis was also performed on the pre-348 

processed data. However, the detrending may remove components of the variation relevant to 349 

uncovering the parameters of underlying processes. We therefore repeated the model-based 350 

analysis on untransformed data. 351 

CCM analysis. CCM is a method for causal inference in nonlinear dynamical systems based 352 

on the theory of state-space reconstruction22. Consider two time series X and Y consisting of 353 

scalar observations of variables in a dynamical system. According to Takens's theorem39, we 354 

can construct a delay-coordinate embedding of the state space of the dynamical system into 355 

an m-dimensional real space, by constructing the vectors EX = {⟨x(ti), x(ti − τ), x(ti − 2τ),. . . , 356 

x(ti − (mτ)⟩}, where x(ti) is the scalar value of the time series X at time ti. That is, the vectors 357 

in EX are in one-to-one correspondence with the states of the dynamical system. If X and Y 358 

are coupled variables of the same dynamical system (i.e. they are causally influencing each 359 

other), this correspondence is also true for time series Y, and therefore EX and EY are in one-360 

to-one correspondence with each other. CCM uses this result to predict scalar values of Y 361 

from the coordinate-delay embedding of X and vice versa.  362 
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The CCM algorithm locates, for each scalar point Pi in the prediction set (subset of 363 

time series Y), the contemporaneous state vector Li in the library set (subset of state vectors in 364 

the time-delay embedding constructed from time series X). Next, it finds Li's closest 365 

neighbours and estimates a value for the predictee Pi* using simplex projection40. CCM skill 366 

is determined by the correlation (Pearson's ρ) between estimated Pi* and actual values of Pi. 367 

With increasing library size, CCM skill is expected to increase and converge if the variables 368 

are causally related. The notation “X xmap Y” refers to estimating y(ti) from corresponding 369 

lagged-coordinate state versions of x(ti), which in a causal context is read as “Y is causally 370 

influencing X”. 371 

CCM analysis was performed using the rEDM software package41. We constructed 372 

time-delay embeddings using embedding dimension m = 2 and delay time step τ = 1. Cross 373 

mapping was then performed using the entire time series as both prediction and library sets. 374 

To avoid biased results, we used leave-one-out cross validation (i.e. the predictee Pi itself and 375 

points in a time radius of E around Pi were excluded from the libraries, such that no points 376 

sharing coordinates with Pi were used in the predictions; see refs. 41, 42). 377 

If unidirectional forcing is sufficiently strong, the dynamics of the response variable 378 

can become dominated by the driving variable. In this case, CCM may be significant in both 379 

directions, and thus unable to distinguish unidirectional forcing from bidirectional causality. 380 

To address this, we used the extended CCM approach 28, which repeats the cross mapping 381 

using different time-displacements of the original time series. If there is a discernable lag 382 

between cause and effect, then optimal cross map skill is expected to occur for negative time 383 

lags in the direction(s) of true causality (past drives future). If true causality is unidirectional, 384 

then any CCM skill in the non-causal direction is expected to peak for positive lags (future 385 

"drives" past).  386 
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Extended CCM analysis of SCOR and DOT is reported as median cross map skill and 387 

95 % ranges at different lags after drawing 500 samples with replacement from libraries of 388 

size 100. Statistical significance is evaluated against a null distribution of CCM results for 389 

1000 surrogate time series. For each lag, CCM skill is considered significant if it exceeds the 390 

95th percentile of the surrogates. We verified the results using three different methods for 391 

generating surrogate data: phase-randomized and amplitude-adjusted Fourier transform 392 

(AAFT)43, phase-randomized Fourier transform44, and randomly shuffled surrogates. All 393 

three methods indicate significant causality from DOT to SCOR, and we limit our results to 394 

the AAFT method, which gave the most conservative significance estimates.  395 

IT analysis. If two processes X and Y are independent, then a general Markov property will 396 

hold25: 397 

    ,   (3) 398 

where p(xn+1) is the transition probability to state n+1, and indices k and l are the dimensions 399 

of vectors of past states. In the absence of information flow from Y to X, knowing the past l 400 

states of Y has no influence on the transition probability of X beyond knowing the past k 401 

states of X alone. Transfer entropy25 quantifies the incorrectness of assuming independence 402 

by means of a Kullback-Leibler divergence, a non-symmetric measure of the information lost 403 

when the right hand side is used to approximate the left hand side of equation (3): 404 

  (4) 

Transfer entropy is thus a non-symmetric measure of information flow, which has been 405 

shown to be equivalent to a conditional mutual information45, and equivalent to Granger 406 

causality46 for linear, Gaussian systems47. We implement it in the modified IT form proposed 407 

by Verdes23, which has previously been applied to the analysis of geological records11,24,48,49.  408 

p(xn+1 | xn
(k ), yn

(l ) ) = p(xn+1 | xn
(k ) )

TY→X = p(xn+1, xn
(k ), yn

(l ) ) log p(xn+1 | xn
(k ), yn

(l ) )
p(xn+1 | xn

(k ) )x,y
∑
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Here we expand on these earlier applications by repeating the IT analysis for different 409 

time-displacements of the original time series, analogous to the extended CCM analysis 410 

described above. Similar to CCM, predictive information flow may become symmetric if 411 

unidirectional forcing and/or linear correlation is sufficiently strong. However, if there is a 412 

discernable lag between cause and effect, then optimal information transfer is expected to 413 

occur for negative time lags in the direction(s) of true causality (past → future). If true 414 

causality is unidirectional, then any information flow in the non-causal direction is expected 415 

to peak for positive lags (future → past). IT is a coarse-grained relative entropy measure, 416 

which varies as a function of the data gridding resolution, summarized in a single IT value as 417 

the area under the resulting curve23. Lagged IT analysis of SCOR and DOT is reported as 418 

median IT and 95 % ranges at different lags after drawing 500 random subsamples of size 419 

100. IT is considered significant if it exceeds the 95th percentile of a null distribution of IT 420 

results for 1,000 AAFT surrogate time series. Unlike CCM, this IT implementation does not 421 

use time-delay embedding. Combined with coarse-graining of the data, this may help explain 422 

the difference in optimal lag between IT and CCM (Fig. 3b, c), although more work is needed 423 

to clarify this. 424 

Linear SDE analysis. Given two time series representing two measured processes, linear 425 

SDEs can be used to distinguish between correlation and Granger causality. Uni- and 426 

bidirectional causation as well as hidden (unmeasured) processes can be modelled in the SDE 427 

framework, expanding the space of possible connections 26,27. A basic linear SDE can be 428 

written as  429 

       (5) 430 

This describes a mean-reverting Ornstein-Uhlenbeck process (OUP) X, which contains a 431 

systematic part (the term) and a stochastic part (the  term). If the systematic part is 432 

dropped (  = 0), then equation (5) describes a Wiener process (WP, or random walk). The 433 

( )( ) X
X X X tdX X dt dBα µ σ= − − +

dt dB

Xα
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OUP has expectation  , stationary standard deviation   and half-life 434 

. To model a hidden process, we can write  435 

        

(6) 436 

Here, the measured process Y1 has a hidden process (or layer) Y2 folded into its systematic 437 

part, such that Y1 tracks Y2. Y1 is similar to an OUP, but instead of fluctuating around a fixed 438 

expected value it fluctuates with a lagged response to the OUP Y2. 439 

 When modelling connections between processes, we use vector notation. A pure 440 

correlation between X and Y entails that the covariance matrix in front of the stochastic term 441 

 will have off-diagonal elements. If there is a causal connection from Y2 to X, for 442 

instance, the system takes the following form 443 

 444 

 445 

   

            (7) 446 

where   describes the connection strength from Y2 to X. Equation (7) describes a 447 

“common cause” situation, where Y2 drives both X and Y1. 448 

 To analyse the SCOR and DOT records, we first characterized each time series 449 

separately, examining models with up to three layers (two hidden). In each model, the layers 450 

could be WP or OUP (including fully deterministic layers where  = 0), excluding a one-451 

layered WP, which prohibits incoming causal links. We also excluded internal feedback 452 

loops in multi-layer models because of numerical intractability. For both time series,  was 453 

assigned a prior distribution , where i denotes the layer. All model parameters 454 

Xµ / 2X X Xs σ α=

1/2, log(2) /X Xt α=

1

1 1

2

2 2

( )
1 1 2

( )
2 2

( )

( )

Y
Y Y t

Y
Y Y Y t

dY Y Y dt dB

dY Y dt dB

α σ

α µ σ

= − − +

= − − +

dB

2

1

1 1

2

2 2

( )
2

( )
1 1 2

( )
2 2

( ( ))

( )

( )

X
X X Y X X X t

Y
Y Y t

Y
Y Y Y t

dX X Y dt dB

dY Y Y dt dB

dY Y dt dB

α µ β µ σ

α σ

α µ σ

→= − − − − +

= − − +

= − − +

2Y Xβ →

iσ

µ

~ (0,1)i Nµ
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were assigned normal priors, with 95 % prior probability ranges of  for the 455 

stochastic term,  for the half life,  for the causal connections, 456 

and , for the logit-transformed correlation coefficients. We used MCMC 457 

importance sampling to estimate Bayesian model likelihoods and calculate model 458 

probabilities.  459 

 The best model for SCOR in isolation was a one-layered OUP, while a three-layered 460 

model with a WP as the bottom driver was the best model for DOT in isolation. We then 461 

investigated all 15 connection models between these two best models, including the null 462 

hypothesis of no relationship (Supplementary Fig. 4). We allowed for causality from SCOR 463 

to DOT because both proxy records ultimately derive from deep-sea carbonate sediments, 464 

hence SCOR could in principle contain a signal of processes that have influenced DOT. The 465 

null hypothesis was assigned 50 % prior probability, while 50 % was distributed evenly 466 

among the 14 connection models. For model comparison, we used Jeffreys’s scale to assess 467 

the strength of evidence represented by the Bayes factor B, where    is evidence 468 

“barely worth mentioning”,  is “substantial evidence”, 10 < ! < 10!/! is 469 

“strong” evidence and ! > 10!/! is “very strong” evidence50. 470 

 The posterior probability of the null hypothesis was 11.2 % (Model 1; Supplementary 471 

Fig. 4), hence the Bayes factor favouring a connection between SCOR and DOT is 7.9 472 

(substantial evidence). The most probable model (Model 5; Supplementary Fig. 4) involves a 473 

feedback loop, where the upper DOT process (DOT1) affects SCOR positively while SCOR 474 

affects DOT1 negatively. All parameter estimates with credible intervals for the best model 475 

are presented in Supplementary Table 1. In the second most (and almost equally) probable 476 

model, (Model 12; Supplementary Fig. 4), SCOR affects the second DOT layer (DOT2) 477 

instead.  478 

(0.01,1.0)iσ ∈

1/2, (0.1 ,50 )it My My∈ ( 2,2)β ∈ −

( 0.96,0.96)ρ ∈ −

1 10B< <

10 10B< <
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 With a half-life of ~0.5 Myr, SCOR responds to DOT processes on time scales 479 

comparable to those inferred from the other analyses (Fig. 3b, c). In contrast, DOT processes 480 

react very slowly to changes in SCOR (Supplementary Table 1), and because SCOR changes 481 

rapidly, the response in DOT will be smoothed out. From equation 5, the effect of SCOR on 482 

DOT1 is 0.07 Myr-1, while the effect of DOT1 on the SCOR process is 0.6 Myr-1. Thus, DOT 483 

influences SCOR much more strongly per time unit than vice versa. 484 

 The third most likely model (Model 4; Supplementary Fig. 4) only had a causal 485 

connection from DOT1 to SCOR, consistent with CCM and IT inferences. This model had a 486 

posterior probability of 17.5 %, hence the evidence for a feedback loop is less than 487 

“substantial" (B = 2.6). In summary, we find evidence for there being at least one connection 488 

(B = 7.9); for the connections to be causal rather than correlative given that there are 489 

connections (B = 12.5); and specifically for a causal connection from DOT to SCOR given 490 

that there are connections (B = 15.4).  491 

 We then repeated the analysis on untransformed data (not detrended or normalized), 492 

denoted uDOT and uSCOR. In this case, the best isolated model for both time series is a 493 

three-layer model with a WP at the bottom. The Bayes factor favouring a connection over no 494 

connection is 73, which is deemed “very strong evidence”. The best connection model 495 

involves a feedback loop between the top layers uDOT1 and uSCOR1. However, there is a 496 

very high probability for parameters enforcing cyclical behaviour, with a period of 1.5 Myr, 497 

which is consistent with an internal feedback loop model as the best isolated model for 498 

uDOT. Parameter estimates are shown in Supplementary Table 2. 499 
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Supplementary Figure 1 | Distribution of sampled evenness across all Poseidon 

experiments. Shaded histogram represents the model runs testing the sensitivity to 

variability in the proportion of species randomly removed, and variability in RAD 

shape parameter σ (Supplementary Fig. 3). Un-shaded histogram (note transparency 

in overlap) represents the model runs testing the sensitivity to variability in the 

proportion of sites sampled, and variability in σ (Fig. 1). The median evenness is 0.76, 

and 95 % of the values are in the range 0.65 - 0.90. 

  

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 15, 2016. ; https://doi.org/10.1101/043729doi: bioRxiv preprint 

https://doi.org/10.1101/043729


 

Supplementary Figure 2 | Sampling-standardized richness can be reproduced by 

the sum of raw richness and evenness. a,b, Raw sampled richness (S) and evenness 

(Pielou's J) of Cenozoic coccolithophores (a) and planktonic foraminifera (b) species 

from the NSB database. c, d, The sum of raw S and raw J superimposed on 

shareholder quorum subsampling (SQS) estimates of richness for coccolithophores (c) 

and foraminifera (d), all normalized to zero mean and unit standard deviation. SQS 

was calculated with a quorum level of 0.4 (higher quorum levels give nearly identical 

results but are less complete for the older part of the record). Ma, million years before 

present; Paleoc., Paleocene; Oligoc., Oligocene; P, Pliocene; Pt, Pleistocene. 
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Supplementary Figure 3 | Effect of random species loss in Poseidon model 

experiments. a, Simulated richness and abundance as in Fig. 1a. b, Site sampling 

increases smoothly in all experiments. Instead, a proportion of the species is randomly 

removed in each time step, causing volatility in occurrences. No variability in the 

proportion lost means that 50 % are always removed. In this example, variability = 

0.4, meaning that between 30 % and 70 % of species are lost. c, Even with a constant 

original RAD shape, random species loss, and variability in the proportion lost, 

generates volatility in sampled evenness (this example is an extreme case, see 

Supplementary Fig. 1). d, Sensitivity to variability in RAD shape and in the 

proportion of species lost. Values are median goodness-of-fit (R2) of 50 model runs, 

comparing SCOR to true abundance, and richness estimates to true richness. 
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Supplementary Figure 4 | Schematic of all connection models between SCOR 

and DOT in linear SDE analysis. The best model for SCOR in isolation is a one-

layered OUP. The best model for DOT in isolation is a three-layered model with a 

WP as the bottom layer (DOT3).  All models possible between these two best models 

are shown. Note that SCOR cannot drive DOT3 because DOT3 is a WP. Percentage 

values represent posterior model probabilities. Solid arrows represent casual 

connections pointing from driver to response. Dotted lines represent correlative 

relationships. See Methods for details. 
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Supplementary Table 1 | Parameter estimates for the most probable connection 

model between SCOR and DOT  

Parameter Estimate (posterior median) 95 % credible interval 

 0.53 Myr (0.33, 1.1) Myr 

 0.94 (0.65, 1.1) 

 0.43 (-0.01, 0.94) 

 8.0 Myr (0.91, 31) Myr 

 1.2 (0.37, 2.4) 

 16 Myr (3.4, 166) Myr 

 0.45 (0.03, 2.8) 

 0.027 (0.003, 0.22) 

 0.45 (0.14, 0.76) 

 -0.77 (-2.3, 0.5) 

 

Parameter estimates for Model 5 (Supplementary Fig. 4), where  are half-lives,  

are the stationary standard deviations,  are the expected values of OUP,  are 

stochastic terms in WP. The bottom DOT layer (DOT3) is a WP. The interpretation of 

parameter values depend on other processes, e.g. the causal connection from DOT to 

SCOR will increase the total stationary standard deviation of the SCOR process. The 

reported values represent what the process itself supplies in isolation. See Methods 

for details. 
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Supplementary Table 2 | Parameter estimates for the most probable connection 

model between uSCOR and uDOT  

Parameter Estimate (posterior median) 95 % credible interval 

 0.91 Myr (0.32, 1.6) Myr 

 0.07 (0.01,0.35) 

 
2.4 Myr (0.86, 68) Myr 

 
0.7 (0.02,21) 

 2.8 (0.04, 5.8) 

 0.24 Myr (0.13, 0.33) Myr 

 0.50 Myr (0.21, 1.5) Myr 

 4.1 (1.9, 8.9) 

 2.7 (-2.6, 3.8) 

 -2.7 (-5.2, 1.9) 

 

Symbols and interpretations as in Supplementary Table 1, but in this case both uDOT 

and uSCOR have 3-layer models with a WP at the bottom. See Methods for details. 
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