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Abstract: Cells can sense and respond to mechanical signals over relatively long distances across 

fibrous extracellular matrices. Recently proposed models suggest that long-range force 

transmission can be attributed to the nonlinear elasticity or fibrous nature of collagen matrices, yet 

the mechanism whereby fibers align remains unknown. Moreover, cell shape and anisotropy of 

cellular contraction are not considered in existing models, although recent experiments have shown 

that they play crucial roles. Here, we explore all of the key factors that influence long-range force 

transmission in cell-populated collagen matrices: alignment of collagen fibers, responses to 

applied force, strain stiffening properties of the aligned fibers, aspect ratios of the cells, and the 

polarization of cellular contraction. A constitutive law accounting for mechanically-driven 

collagen fiber reorientation is proposed. We systematically investigate the range of collagen fiber 

alignment using both finite element simulations and analytical calculations. Our results show that 

tension-driven collagen fiber alignment plays a crucial role in force transmission. Small critical 

stretch for fiber alignment, large fiber stiffness and fiber strain-hardening behavior enable long-

range interaction. Furthermore, the range of collagen fiber alignment for elliptical cells with 

polarized contraction is much larger than that for spherical cells with diagonal contraction.  A 

phase diagram showing the range of force transmission as a function of cell shape and polarization 

and matrix properties is presented. Our results are in good agreement with recent experiments, and 

highlight the factors that influence long-range force transmission, in particular tension-driven 

alignment of fibers. Our work has important relevance to biological processes including 

development, cancer metastasis and wound healing, suggesting conditions whereby cells 

communicate over long distances. 

1. Introduction 

Cells in fibrous matrices sense and respond to mechanical forces over distances many times their 

diameter. Although cells cultured on polyacrylamide gels fail to sense substrate stiffness or the 

presence of other cells beyond a distance of about 20-25m (1–3), long-range force sensing (250–

1000m) between cells in fibrous gels has been appreciated for decades. Stopak and Harris and 

later Miron-Mendoza et al. placed fibroblast explants into collagen gels and observed collagen 

realignment parallel to the connecting axes between explants, with translocation of collagen fibrils 

towards the explants, shortening of the axes, and fibroblast migration across the newly-aligned 

collagen fibril bridges (4, 5). Others have shown that single cells as well as cell colonies are able 

to align and compact collagen fibers over long distances (6, 7) and that these aligned fibers are 

required for long-range cell-cell interactions (7, 8). More recently, Winer et al. showed that single 

cells in fibrin gels were able to stiffen the gels both locally and globally (9). 
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Long-range force transmission has significant relevance in normal physiology and 

pathophysiology over a range of length scales. At the level of single cells, mechanically-based 

cell-cell communication over long distances regulates patterning, including both tube formation 

and the detachment of cells from multicellular aggregates (7, 9, 10). At the tissue level, long-range 

force transmission may drive the development of tendons, ligaments, and muscle (4); it has the 

potential to mediate other large-scale architectural rearrangements typical of developmental 

processes as well (11). Long-distance force transmission between groups of cells, or cells and the 

matrix, may also mediate tissue-scale rearrangements in pathological settings such as pulmonary 

fibrosis and liver cirrhosis (12, 13). There are some experimental data implicating it in cancer 

metastasis (7, 14, 15), although other work suggests caveats to these findings (16). 

Previous studies attempting to explain the mechanism of long-range force transmission have 

implicated applied strain and the presence of a fibrous network (6). While some investigators 

suggest that the strain-hardening properties of fibrous materials could explain long-range 

mechanical communication (9, 17) more recent evidence (8, 18) suggests that the fibrous nature 

of the ECM, specifically the presence of cross-linked fibers (primarily collagen) is critical in order 

for force to be transmitted over scales that are 10-20 times the diameters of the cells. Ma et al. used 

microscopy images to develop finite element models that included fibers that bridge pairs of 

interacting cells in a collagen matrix (8). They found that including discrete fibers along with a 

non-linear strain hardening matrix leads to long range transmission of forces, with the fibers 

carrying most of the loads and non-linear and isotropic matrix mechanics playing a relatively 

minor role. In other words, the fibrous nature of the collagen matrix, rather than a non-linear 

response to force, determined the extent of force transmission. It should be noted that since the 

fiber distribution in the model of Ma et al. was obtained from experiments, the model cannot 

predict how an initially random fiber network under strain yields reinforcing fibrous structures in 

response to forces from contractile cells. Multi-scale finite element models, where discrete fiber 

networks are employed to determine forces at nodes, have also been used to study force 

transmission in fibrous gels (18). It has also been observed that the shapes of cells play a crucial 

role in the transmission of forces. Fabry and coworkers reported that invasive tumor cells are 

elongated and spindle shaped compared to their non-invasive counterparts and they observed 

through displacements of beads in the matrices that force transmission is much longer ranged in 

the former than in the latter case (19). Elongated cells have also been found to be polarized (i.e. 

the forces they exert are aligned with their long axes). Although these and other studies (20, 21) 

have considered the role of individual cell and matrix elements in force transmission, none have 

addressed in an integrated way the impact of fiber realignment, the shape of the cells, the 

anisotropy and the magnitude of the contractile forces and the mechanical properties of fibrous 

gels on the long-range nature of force transmission. 

In this work we develop a new non-linear and anisotropic constitutive description of fibrous 

materials that accounts for the long-range force transmission. We incorporate the fact that these 

fibrous materials stiffen preferentially along the directions of tensile principal stretches. We start 

from random and isotropic distributions of fibers, and from there study how mechanical anisotropy 

evolves as loads are applied. We have developed a finite element implementation of this 

constitutive law and have used it to study interactions of cells in 3D matrices and on fibrous 

substrates. In the case of simple cell geometries (spheres, ellipsoids, polarized vs. non polarized), 

we solve for the stress fields by analytic methods. Thus, we describe here an approach to 

systematically determine the role of fiber alignment, non-linear elasticity of fibers, cell shape, and 
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polarization of contraction in long-range force transmission. We show that collagen fiber 

alignment is critical and that anisotropy in cell shape and contraction result in significantly greater 

collagen alignment and force transmission.  

2. A New Constitutive Law for Fibrous Matrices 

We first developed a new constitutive law to explain the behavior of fibrous matrices and to serve 

as the foundation for further simulations examining the impact of cells and their contractility on 

these matrices. To start, we carried out discrete fiber simulations (see Appendix A). We assume 

that when a fibrous matrix undergoes stretch, there are two families of fibers: the set of fibers that 

align with the direction of the maximum principal stretch as the material is loaded (fibers colored 

red in Fig. 1b) and the set of fibers that do not align with the applied load and thus display an 

isotropic mechanical response. When we plot stress vs. strain for such collagen networks (Fig. 1c), 

we find that there is a “knee” in the curve representing strain stiffening. This “knee,” which 

according to our simulations requires the presence of the two families of fibers, is in good accord 

with experimental data (experiment, Ref (22) and Fig. 1d). For strains below a typical threshold 

(typically 5-10%, depending on collagen concentration and crosslinking), the network shows a 

nearly isotropic response, without stiffening. Beyond this threshold, there is a transition to a 

stiffening response that is concomitant with the formation of aligned fibers in the direction of 

maximum tensile stretch. With increased loading, the numbers of these highly aligned fibers 

increase, leading to the observed stiffening and to the alignment shown in insets in Fig. 1a and Fig. 

1b.  
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Figure 1: (a)-(b) Discrete fiber simulations of a random fiber network before (a) and after (b) shear 

deformation (50% shear strain). Insets show that the initial random distributions of fibers (a) develop a peak 

close to the 45° orientation (b), which coincides with the direction of maximum principle stretch. Fibers 

(with axial strain > 1%) that reorient along the tensile loading axis are colored in red. The white arrow in 

(b) indicates the direction of principle tensile stretch. (c) The stress-strain curves of collagen I under uniaxial 

deformation derived experimentally [Ref (22)] (black) are in good accord with those predicted from our 

constitutive law (red). The “knee” indicates strain stiffening at strains around 10%. The material parameters 
that provide the best fit to the experimental data are  𝜆𝑐 = 1.1,𝜒 = (1 + 𝜈)(1 − 2𝜈)𝐸𝑓/(1 − 𝜈)𝐸𝑏 =

8.5, 𝑚 = 10, 𝐸𝑏 = 2kPa, 𝜈 = 0.3. (d) Stress-strain curves under uniaxial tension (black) and shear (red) 

deformations from discrete fiber simulations and from our constitutive law. The material parameters that 

provide the best fit to the discrete simulations are  𝜆𝑐 = 1.05,𝜒 = 0.17, 𝑚 = 1.4, 𝐸𝑏 = 10kPa, 𝜈 = 0.49. 

To capture the presence of these two distinct families of aligned and isotropic fibers  when 

developing our constitutive law, we assume that the overall energy density 𝑊  of the collagen 

network consists of two contributions(23), 

𝑊 = 𝑊𝑏 +𝑊𝑓                                                                                                                           

𝑊𝑏 =
𝜇

2
(𝐼1̅ − 3) +

𝜅

2
(𝐽 − 1)2                                                                                                                    (1) 
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𝑊𝑓 =∑𝑓(𝜆𝑎)

3

𝑎=1

 

Here the first term 𝑊𝑏(𝐼1̅, 𝐽) captures the isotropic response, which we describe using the neo-

Hookean hyperelastic model, where 𝜅 and 𝜇 are initial bulk and shear moduli, respectively and 𝑊𝑓  

is the contribution from the aligned fibers. In the above equation, 𝐹𝑖𝑗 = 𝜕𝑥𝑖/𝜕𝑋𝑗 is the deformation 

gradient tensor, where X and x labeled the reference and deformed coordinates respectively and 

𝑪 = 𝑭𝑻𝑭 and 𝑩 = 𝑭𝑭𝑻 are the right and left Cauchy–Green deformation tensor, respectively. The 

invariants 𝐽, 𝑪 and 𝑩 can be defined as (23),  

 𝐽 = det (𝑭)                          𝑪 = ∑ 𝜆𝑎
2

3

𝑎=1

𝑵𝒂⨂𝑵𝒂                           𝑩 =∑ 𝜆𝑎
2 𝒏𝒂⨂𝒏𝒂

3

𝑎=1

                       (2) 

where 𝜆1, 𝜆2, 𝜆3 are the principle stretches, 𝐼1̅ is the first invariant of the deviatoric part of 𝑪 and 

𝑵𝒂  and 𝒏𝐚  are the unit vectors in the principle stretch orientations in the reference state and 

deformed state, respectively. The functional form 𝑓(𝜆𝑎) is chosen such that the system stiffens 

only in the direction of tensile principal stretches (beyond a critical value of tensile stretch as 

observed in experiments and discrete fiber simulations). This is accomplished by decomposing the 

Cauchy stress (true stress), 𝝈, into isotropic (𝝈𝒃) and fibrous contributions (𝝈𝒇) (23),  

𝝈 = 2𝑭 ∙ (𝜕𝑊/𝜕𝑪) ∙ 𝑭𝑇/𝐽, 

𝝈 = 𝝈𝒃 + 𝝈𝒇                        

𝝈𝒃 = 𝜅(𝐽 − 1)𝑰 + 𝜇dev(𝑩̅)/𝐽                                                                                                                   (3)                                                                        

𝝈𝒇 =
1

𝐽
∑  

𝜕𝑓(𝜆𝑎)

𝜕𝜆𝑎
𝜆𝑎(𝒏𝒂⨂𝒏𝒂),

3

𝑎=1

 

where 𝑰 is the identity tensor and 𝑩̅ = 𝑩/𝐽2/3 is the left modified Cauchy–Green tensor.  The 
principal components of the filamentous contribution can be obtained from 

𝜕𝑓(𝜆𝑎)

𝜕𝜆𝑎
=

{
  
 

  
 

0,                                                                 𝜆𝑎 < 𝜆1

 
𝐸𝑓(𝜆2 − 𝜆1) (

𝜆𝑎 − 𝜆1
𝜆2 − 𝜆1

)
𝑛+1

𝑛 + 1
,                          𝜆1 ≤ 𝜆𝑎 < 𝜆2

𝐸𝑓 [
𝜆2 − 𝜆1
𝑛 + 1

+
(1 + 𝜆𝑎 − 𝜆2)

𝑚+1 − 1

𝑚 + 1
],       𝜆𝑎 ≥ 𝜆2,

                                         (4) 

chosen such that the principal stresses vanish below the critical (tensile) principal stretch, 𝜆𝑐  and 

show a stiffened response characterized by the modulus 𝐸𝑓  and a strain hardening exponent, 𝑚. In 

order to ensure that the derivative of the stress-strain curve is continuous near the transition point, 

a smooth interpolation function is used between (𝜆𝑐 − 𝜆𝑡/2, 𝜆𝑐 + 𝜆𝑡/2), where the transition width, 

𝜆𝑡 = 0.25𝜆𝑐 , transition exponent 𝑛 = 5, and we have defined 𝜆1 = 𝜆𝑐 − 𝜆𝑡/2, 𝜆2 = 𝜆𝑐 + 𝜆𝑡/2. 

The functional form 𝑓(𝜆𝑎) which leads to Eq. 4 is provided in Appendix B. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2016. ; https://doi.org/10.1101/048579doi: bioRxiv preprint 

http://en.wikipedia.org/wiki/Deviatoric
https://doi.org/10.1101/048579
http://creativecommons.org/licenses/by-nc/4.0/


Biophysical basis for the constitutive law: The strain energy function and the stresses we propose 

depend on two parameters (the initial bulk and shear moduli) for the isotropic response and three 

parameters (the critical stretch, 𝜆𝑐, the initial modulus of the fibrous phase, 𝐸𝑓  and the strain 

hardening exponent of the fibrous phase, 𝑚) for the anisotropic response. We have determined 
these parameters for collagen networks by comparing the stress-strain curves for uniaxial and shear 

deformation from discrete network simulations with our constitutive model (Fig. 1d). The 

biophysical basis that underlies the constitutive law that we have postulated is the presence of two 

families of fibers, clearly evident from the discrete fiber simulations: the first family (red in Fig. 

1) is aligned with the principal axes (shown by the white arrow in Fig. 1) and are in a state of 

tension while the second family of fibers (black, in compression) provide an isotropic background 

stress that opposes alignment. The stress at any material point is the sum of the stresses from these 

two components (Eq. 3). The degree of the interaction between the two families of fibers is 

determined by the parameter 𝐸𝑓/𝐸𝑏– when this ratio is large, the isotropic part provides little 

resistance to alignment. A systematic study of the range of force transmission as a function of this 

parameter is given below. With the two families of fibers, our model captures the key features of 

the response of a collagen network to force, in particular the knee and the subsequent hardening 

response.  

3. Results 

Having developed a constitutive law, we use it in analytical calculations and finite element 

simulations to study the impact of the material parameters of the isotropic and fibrous components 

of the matrix, the shape of cells and the polarization of cell contractile forces on force transmission 

in fibrous matrices. We have simulated cells on fibrous as well as linear and non-linear substrates 

to identify the key factors that allow for long range force transmission in fibrous matrices. All 

simulations were carried out using the finite element package Abaqus (24) by implementing the 

material model of the new fibrous constitutive law in a user material subroutine (details of the 

implementation are given in Appendix B). The numerical simulations were performed in a finite 

deformation setting (i.e. the effect of geometry changes on force balance and rigid body rotations 

are explicitly taken into account). 

3.1 Force transmission in 3D matrices depends on the fibrous components and the 

magnitude of the contractile strains 

To determine the impact of the fibrous component of the matrix on force transmission, we consider 

matrices that are linearly elastic, hyperelastic (neo-Hookean) and fibrous (characterized by the 

constitutive law Eq. 4).  We consider the case of a spherical cell or contractile explant of radius 𝑅 

in a 3D matrix contracting isotropically and inwardly by an amount 𝑢0  (contractile strain = 𝑢0/𝑅). 
In our calculations, we apply the boundary condition on the radial displacement (= 𝑢0) at the cell-
matrix interface and determine the elastic fields in the matrix by applying both symmetry (or 

periodic) and fixed (all displacements and rotations vanish) conditions at the top and bottom 

surfaces of the matrix located at a distance 𝐿 ~ 10𝑅 from the center of the cell. In the case of the 

linearly elastic material, the scaled displacement fields (𝑢/𝑢0) are independent of the magnitude 

of the contractile strain, 𝑢0 , whereas this is not the case for non-linear materials. For both the neo-
Hookean and the isotropic response of the fibrous material, the material parameters are chosen 

such that the Young’s moduli and Poisson ratios are the same as that of the linear elastic material  

at small strains. 
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We find that the displacement fields decay rapidly within a distance on the order of the cell 

diameter in non-fibrous materials (Fig. 2a-black, blue and green curves), while the displacement 

fields are long ranged in the fibrous matrix (Fig. 2a- red and orange curves). The range of 

interaction in the fibrous matrix is more than 20× the radius of the cell as evidenced by the fact 
that the boundary condition (periodic vs. fixed) has an impact on the displacement fields; the cells 

in this case are able to feel its periodic image since the displacement field does not completely 

vanish at the boundaries. 

 

Figure 2: Displacement and force profiles in 3D linearly elastic, neo-Hookean and fibrous matrices with a 
spherical and isotropically contracting cell (radius = R). (a)-(b) Normalized radial displacement 𝑢(𝑋)/𝑢(𝑅) 
and force 𝐹(𝑋)/𝐹(𝑅) as functions of the normalized distance 𝑋/𝑅 (the boundaries are located at a distance 

𝐿 =  100𝑅) from the center. We have chosen the critical stretch, 𝜆𝑐 = 1, fibrous modulus 𝜒 = 50 and the 

strain stiffening parameter 𝑚 =  0 for the fibrous matrix; (c)-(f) Contour plot of normalized radial 

displacement 𝑢(𝑋)/𝑢(𝑅) for fibrous matrices with  𝜒 = 50 and 𝑚 =  30, 𝐸𝑏 = 2kPa and Poisson’s ratio 

𝜈 = 0.3 (same as 𝐸𝑏  and 𝜈 for linear matrices). For neohookean matrices  𝜇/𝐸𝑏 = 1/2(1 + 𝜈) , 𝜅/𝐸𝑏 =
1/3(1 − 2𝜈). 
 

To gain further insight into the range of elastic fields, we plotted the total force 𝐹(𝑋) =
𝜎(𝑋)4𝜋𝑋2, normalized by the force at the cell-matrix interface, in Fig. 2b. We find that the decay 

of the total force in strain-hardening hyperelastic matrices is more rapid than in the case of the 

linearly elastic material, whereas the transmission of force is very long ranged in fibrous matrices. 

In Appendix C, we have derived a closed form expression for the decay of the force distribution 

as a function of the material parameters of the fibrous phase. These analytical calculations and the 
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simulations in Fig. 2(c-f) clearly show that the fibrous components and not the isotropic strain-

hardening response lead to long-range force transmission. 

3.2 Force transmission in 3D matrices depends on the shape of cells or explants and cell 

polarization 

Next, we consider the effect of shape and contraction anisotropy on force transmission in elastic 

and fibrous matrices. Unlike prior work that focused on the role of shape and cell polarization in 

linear elastic materials (25, 26), here we consider fibrous materials described by the constitutive 

laws derived in Sec. 2. We model elongated cells as prolate spheroids described by the shape, 

(𝑥/𝑎)2  (𝑦/𝑎)2+ (𝑧/𝑏)2 = 1 . Here 𝑎  and 𝑏 represent the length of the semi-minor and semi-

major axes of the prolate spheroid, respectively. The polarization of active forces is modeled by 

assuming that the contractile strains (determined by molecular motors and regulation of adhesion 

sites) along the long axis of the spheroid, 𝜀𝑏 are greater than the strain along the short axis, 𝜀𝑎. In 

order to compare shapes with different aspect ratios, 𝛼 = 1 − 𝑎/𝑏 and strain polarizations, 𝛽 =

(1 −
1−𝜀𝑏

1−𝜀𝑎
) /(1 −

𝑉1

𝑉0
), we assume that the volume of the cells prior to  (𝑉0 = 4𝜋𝑎

2𝑏/3 = 4𝜋𝑅3/3) 

and after contraction (𝑉1 = 4𝜋(1 − 𝜀𝑎)
2(1 − 𝜀𝑏)𝑅

3) are the same in all cases. Note that 𝛼 = 0 

corresponds to a sphere, while 𝛼~1  is a highly elongated prolate spheroid. Similarly , 𝛽 = 0 

corresponds to isotropic contraction, while 𝛽 = 1 represents a fully polarized cell (Fig. 3(a-d)). 

Here 𝑅 is the radius of the sphere as 𝛼 = 0. The above definitions also provide a definition for the 

size of a cell 𝑅 = 𝑎2/3𝑏1/3, which is the geometric mean of the lengths of the semi-major and 
semi-minor axes of the elongated cell (which can be considerably shorter than the length of the 

semi-major axis for a highly elongated cell).  
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Figure 3: The influence of shape and contraction anisotropies (𝛼 and 𝛽, respectively) of contractile cells on 

distance 𝑋𝑡/𝑅 over which forces are transmitted (measured by the extent of aligned fibrous regions in the 

matrices): (a)-(d) Contour plots of aligned (colored) and isotropic (white) regions for the 4 cases with  𝛼 =
1, 2/3, and 𝛽 = 0,1 . Colors (from blue to red) represent maximum principle stretches (1.04-1.1); (e) 

Contour plots of 𝑋𝑡/𝑅 as function of shape anisotropy 𝛼 and contraction anisotropy 𝛽. Colors (from blue 

to red) represent 𝑋𝑡/𝑅 (4 − 20); (f) Normalized transmission distance 𝑋𝑡/𝑅 vs volume contraction for the 

4 cases in (a)-(d). Yellow ellipsoids with red arrows indicate contractile cells with different values of 𝛼 

and 𝛽. Material parameters for the fibrous matrix are 𝜆𝑐 = 1.04, 𝜒 = 50,𝑚 =  30. The volume contraction 

is 55% for all the cases (a-d). The matrix size is 20 × the contractile cell radius (𝐿/𝑅 =  20) and the 

symmetry boundary conditions are applied at all boundaries. 

The effect of shape and contraction and shape anisotropies on the range of force transmission in 

fibrous matrices is shown in Fig. 3 (a-d). Here the colored regions represent the extent of the 

aligned fibrous region, where the fibers are aligned with the tensile principal axis of strain tensor. 

We find that while shape and contraction anisotropy leads to an increase in the extent of the fibrous 

region, the effect is significantly amplified when both these factors are present simultaneously. We 

can understand this by noting that both shape and contraction anisotropy lead to concentration of 

tensile strains along the long axes of the cells. However, this effect is considerably magnified when 

the shape is elongated and the cell is polarized; significant concentration of tensile stresses in this 

case (Fig. 3d) leads to formation of extended regions where fibers are aligned. A heat map of the 

range of force transmission as a function of these parameters is given in Fig. 3e, for the case where 

the volume contraction is 1 − 𝑉1/𝑉0 = 55%. We find that the extent of the fibrous region can be 

as high as 20× the characteristic size of the fully polarized cells for 𝛼 =  2/3, as has been observed 
by several groups (8, 18). The influence of the magnitude of volume contraction of the cell on the 

range of force transmission is plotted in Fig. 3f – our simulations show that range of force 

transmission generally increases with increase in overall contractile strain, although the effect is 

much more pronounced in elongated and polarized cells on account of the stress concentration 

effects discussed above. Thus, our analytical calculations and simulations collectively show that, 

in addition to the fibrous components of the matrix, elongated cells and polarized contraction leads 

to long-range force transmission. 

3.3 Long-range transmission in 3D matrices varies with the stiffness and strain-hardening 

exponent of the fibrous component and the critical strain for fiber formation 

We show in this section that in the material model that we have developed, the relative 

contributions of the fibrous and isotropic strain-hardening components to the overall mechanical 

response depends on three parameters: the ratio of the initial elastic moduli of the two 

components, 𝐸𝑓/𝐸𝑏 , the strain hardening exponent of the fibrous phase, m, and the critical strain 

for the onset of the fibrous response. A more pronounced fibrous response is obtained when 𝐸𝑓/𝐸𝑏  

and m are large and when the critical stretch, 𝜆𝑐  is small (leading to an early transition to the 

aligned fiber phase). The extent of the aligned fibrous region that surrounds an elongated (𝛼 =
2/3) and fully polarized (𝛽 = 1) cell is shown in Fig. 4(a-d) as a function of the material 
parameters that characterize the fibrous phase. The simulations show that the range of force 

transmission increases with increasing modulus and the strain hardening exponent of the fibrous 

phase and with decreasing values of the critical strain for transitioning to the fibrous phase. These 

parameters are determined by the density of fibers, the numbers of crosslinkers per fiber and the 

porosity of the fibrous gels as discussed in Sec. 2. 
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Figure 4: The influence of material parameters of fibrous matrices on the transmission distance 𝑋𝑡/𝑅: (a)-

(d) Contour plots of aligned (colored) and isotropic (gray) regions for the 4 cases with 𝜆𝑐 = 1.02 − 1.04,  

𝜒 = 10 − 50 and 𝑚 = 0 − 30. Colors represent maximum principle stretch (1.04 − 1.1) (increasing from 

blue to red). (e) Normalized transmission distance 𝑋𝑡/𝑅 vs volume contraction for the 4 cases in (a)-(d). 

Shape and contraction anisotropies are 𝛼 = 2/3 and 𝛽 = 1 and the volume contraction is 55% for all the 

cases.  The matrix size is 20 × the contractile cell radius (𝐿/𝑅 =  20 ) and the symmetry boundary 

conditions are applied all boundaries. 

3.4 Cells sense farther into fibrous substrates than into linear and strain hardening 

substrates 

Recent work has demonstrated that fibroblasts sense deeper into collagen and fibrin gels 

(typically > 65 𝜇𝑚) than they do into polyacrylamide gels (characteristic sensing distances of <
5 𝜇𝑚) (18). In order to determine the characteristics of these gels responsible for characteristic 
sensing distances, we carried out calculations to determine cell sensing distance as a function of 

the thickness of gels constrained on one of the sides by a rigid (glass) substrate. Following earlier 

work (1), we assume the cell is circular and that it contracts radially inwards by pulling on the cell-

substrate boundary. We apply displacement boundary conditions to this boundary (radial 

displacement 𝑢(𝑅)/𝑅 = 0.2) and the bottom surface is clamped to the underlying glass substrate. 

All other surfaces are free of any traction. As in earlier work (1), we find that in both linear elastic 

and non-linear strain-hardening materials, the sensing distance is close to the radius of the cell, R. 

Increasing the gel thickness 𝐻 by a factor of 5 from 2/3 𝑅 to 10/3𝑅 has very little impact on the 
spatial profiles of the displacement fields. On the other hand, cells are able to sense much deeper 

into fibrous gels as evidenced by the slower decay of the displacement fields of cells on thicker 

substrates. Our results for the sensing distances (Fig. 5g) show that cells on fibrous gels can sense 

up to 8× their radii compared to 1.8× the radii on strain-hardening substrates.  
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Figure 5: Mechanosensing distances for contractile cells on linear, neo-Hookean and fibrous substrates with 

thickness 𝐻 = 2/3 − 10/3𝑅 , where R is the radius of the cell: (a)-(f) Contour plots of the normalized radial 
displacement 𝑢(𝑋)/𝑢0 (𝑢0  = 𝑢 (R)) with normalized thickness 𝐻/𝑅 = 2/3 (a)-(c) and 𝐻/𝑅 = 10/3 (d)-

(f). (g) Normalized radial displacement 𝑢(𝑋)/𝑢0 on the substrate surface as a function of the normalized 

distance  𝑋/𝑅 . (h) Normalized force transmission distance 𝑋𝑐/𝑅  as a function of the normalized 

thickness 𝐻/𝑅 (chosen with the criterion that the displacement fields decay by 90%, or 𝑢(𝑋𝑐)/𝑢0 = 0.1). 

Circle (black), square (blue) and triangle (red) indicate linear, neo-Hookean and fibrous substrates, 

respectively. Material parameters for the fibrous matrix are 𝜆𝑐 = 1.02, 𝜒 = 50,𝑚 =  30. The substrate 

radius is 10 × the cell radius (𝐿/𝑅 =  10) and the bottom boundary is clamped.  

3.5 Cells sense other cells located at distances ~20 times their size in fibrous 3D matrices  

Interactions between pairs of cells play a key role in cell clustering during morphogenesis as well 

in pathological processes such as fibrosis, wound healing and metastasis. Based on our results 

(above) regarding the elastic fields of cells in different types of matrices, it is reasonable to guess 

that cell-cell interactions are significant when their separations are of the order of twice the sensing 

distance of a single cell. We verified this hypothesis by explicitly simulating the interactions 

between two cells in 3D fibrous and non-fibrous matrices as well as on substrates. The clear role 

of fibrous matrices in mediating cell-cell interactions is shown in Fig. 6 where significant overlap 

and alignment of strain-fields are observed for pairs of cells located in fibrous matrices at a distance 

of 10× their size. There is no overlap of strain fields for cells on non-fibrous substrates. Using 
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these simulations, we confirm that cell-cell interactions become significant when cell spacing is 

twice the sensing distance, which is in agreement with the result in Fig. 6. Color represents the 

normalized radial displacement (0 − 1) (increasing from blue to red). The geometry and boundary 
conditions of (b) and (e) are same as those in Fig 2f and Fig 5f, respectively. Our simulations also 

clearly show the formation of collagen lines observed experimentally between pairs of cells (4, 5); 

we find that that the alignment of fibers coincides with the line that connects the centers of the two 

contractile cells both in 3D matrices and on substrates (Fig. 6c and 6e). Thus, we find that fibrous 

but not neo-Hookean matrices enable cells to form collagen lines and interact mechanically with 

other cells at long range. 

 

Figure 6: Interactions of pairs of contractile cells in neo-Hookean and fibrous matrices : (a-b) Contour 

plots of maximum principle strain in 3D matrices; (c) Vector plots of maximum principle strain (which 

coincides with the orientation of the collagen lines)  in a 3D fibrous matrix; (d-e) Contour plots of 

maximum principle strain on 3D substrates. Colors (from blue to red) represent maximum principle strain 

(0.04-0.1). Lengths of red lines represent the magnitude of the maximum principle strain (0.04-1) and 

their orientations show the directions of fiber alignment. For the fibrous matrices, colored and gray 

regions represent aligned fibrous and isotropic regions, respectively. We have chosen 𝜆𝑐 = 1.04, 𝜒 = 50, 

𝑚 =  30 for the fibrous material.  

4. Summary and Discussion 
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In summary, we have developed a new constitutive law for fibrous matrices that predicts the 

following key cell behaviors:  

1. Both shape and contraction anisotropy are important for long-range force transmission. 

These features of cells lead to stress concentration at the poles, which in turn leads to fiber 

alignment. Elongated prolate spheroidal cells with polarized contraction are able to sense 

the mechanical environment over much larger distances than spherical cells exhibiting 

diagonal contraction. 

2. Tension-driven fiber alignment plays a crucial role in mechanosensing: small critical 

stretch for fiber alignment (𝜆𝑐), large fiber stiffness (𝜒), and fiber strain hardening behavior 

(𝑚) enable long-range interactions.  

3. Cells in 3D fibrous matrices and cells on 2D fibrous substrates sense rigid boundaries and 

other cells over relatively long distances compared to cells in and on linear and strain-

hardening isotropic materials. The range of force transmission increases with increasing 

contractility for cells in fibrous matrices while increasing contractility of cells cannot lead 

to enhancement of mechanosensing distances in linear and strain-hardening materials.   

4. Cells in 3D fibrous matrices sense rigid boundaries over 10 × their diameters and other 

cells over 20 × their diameters. Cells on 2D fibrous substrates sense radial rigid boundaries 

up to 8 × their radii and thicknesses up to 3.5 ×their radii. Sensing distances can be further 

enhanced by increasing cell elongation, polarization and contractility.  

These findings are highly relevant biologically. They suggest that the presence of a fibrous matrix, 

as well as the material properties of that matrix, determine the nature of the mechanical interactions 

between groups of cells and between cells and boundaries in a range of settings including 

development, cancer metastases, and wound healing and fibrosis. This is consistent with the 

experimental observation that increased collagen cross-linking is associated with many of these 

processes, and suggests that studying the impact of other matrix proteins on fibrous collagen 

matrices may yield important insights into normal biology and pathology. Similarly, elongated cell 

shape and polarized cell contractility enhance long-range mechanical interactions; our results are 

consistent with experimental observations that cells involved in many of these processes are 

elongated and contractile (and may have undergone an epithelial to mesenchymal transition). 

Derivation of the constitutive law: The constitutive law for fibrous matrices we have proposed is 

non-linear with respect to the orientation and the magnitudes of the principal strains. The direction 

of the stiffened fibrous response coincides with the principal orientations whose principal strains 

are above a critical threshold. As we show below, these two features are critical to capture the key 

features of long-range force transmission observed in experiments. In this regard, the detailed form 

of the constitutive law of the matrix is not crucial as along as it captures the orientational anisotropy 

and stiffening that naturally arises along the principal directions upon loading. We have verified 

this idea by studying force transmission in matrices (Fig. 7) with other functional forms of response 

(Appendix D), but those retain the general features of anisotropic stiffening that coincides with the 

principal strain orientations.  In particular, our constitutive law shares some common features with 

modified Cauchy-Green deformation tensors (23, 27), but there are some crucial differences that 

are essential to obtaining long range force transmission. In this previously-published work, the 

collagen network is modeled as a hyperelastic material reinforced by two families of fibers whose 
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orientations depend on the directions of principal stress (Appendix D). Note, however that unlike 

our formulation, their constitutive laws are based on the invariants of the modified Cauchy-Green 

deformation tensor. As we show in Appendix E, long-range force transmission cannot be observed 

when modified Cauchy-Green deformation tensors are used. We have therefore modified the 

constitutive law where we use the principal stretches, which are the eigenvalues of the Cauchy-

Green deformation. We have, however, retained the feature that collagen fibers form only along 

those directions where the stretches are tensile. In essence, the law previously proposed relies on 

the deviatoric components of the dyadic 𝒏𝒊⨂𝒏𝒊 (𝒏𝒊 being the principal stretch), which as we show 
in Appendix E cannot give long-range force transmission since an incompressible material is 

similar to an isotropic material without tension-driven alignment of collagen fibers (Eq. C10 in 

Appendix C). 

 

Figure 7: Force transmission for the material with strain energy function similar to that given in Ref. (23, 

27) (𝐸𝑏 , 𝜈 = 0.3, 𝜒 = 0.25, 𝐶𝑘2 = 500). (a) Blue and red curve represents bulk and fibrous contribution to 
the stress, respectively. (b) Contour plot of normalized radial displacement 𝑢(𝑋)/𝑢(𝑅) in fibrous 

matrices (which is similar to the result in Fig. 2f). (c). Contour plot of normalized radial displacement 

𝑢(𝑋)/𝑢(𝑅) on a fibrous substrate, which is similar to the result in Fig. 5f. Colors (from blue to red) 

represent the normalized radial displacement (0 − 1). The geometry and boundary conditions for (b) and 

(c) are same as in Fig. 2f and Fig. 5f, respectively. 

Sensing of thickness and lateral boundaries by cells on substrates: Our results are consistent with 

published experimental data on cell sensing distances. Both computational modeling (1, 2) and 

experimental observations (3, 28, 29) suggest that cells cultured on polyacrylamide (PA) gels 

(linear elasticity) cannot sense nearby cells beyond one cell length apart (<40 μm) (1) and substrate 

thickness beyond half a cell length away (<20 μm) (2).  In contrast to cells on PA gels, human 
mesenchymal stem cells (hMSCs) and 3T3 fibroblasts on fibrin gels were shown to sense and 

respond to mechanical signals up to five cell lengths away (9), consistent with the results shown 

in Fig. 5f and 5g. Leong et al. studied the role of collagen I gel thickness on the fate of hMSCs and 

found that the mechanosensing distance for these cells is about 130 μm, which corresponds to 

approximately 4.3× cell radii, also in agreement with our work. Recently, Rudnicki et al. designed 
sloped collagen and fibrin gel cultures to investigate thickness sensing. They found human lung 

fibroblast (HLF) and 3T3 fibroblast cell areas gradually decrease as gel thickness increases from 

0 to 150μm, with spreading affected on gels as thick as 150 μm (18). Since the spreading radius 

in the case of the 150 μm thick gel is 20 μm, the mechanosensing distance for substrate thickness 

is 7.5× cell radii (18). While these multiscale simulations suggest sensing distances of 3.7× cell 

radii (sensing distance of 50 μm for a cell radius of 13.4 μm), our results show that cells sense 
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boundaries up to 3.5 × their radii on fibrous substrates compared to 1.8× their radii on strain-
hardening substrates (Fig. 5h). Thus, our work provides a good estimate for sensing distances on 

fibrous substrates. While most of the experimental work has focused on thickness sensing, recently 

Mohammadi et al. developed a model system to examine sensing of lateral boundaries in floating 

thin collagen gels populated with 3T3 fibroblasts (30).  They found that cell-induced deformation 

fields extended to, and were resisted by, the grid boundaries 250 μm away (30) suggesting a 

sensing distance for lateral rigid boundaries of about 8 × cell radii.  These results are consistent 
with our calculations in Fig. 5g that show that both lateral and thickness sensing distances are 

similar in magnitude.  

Mechanosensing in 3D gels: Our results are consistent with published experimental work on the 

importance of cell shape, cell contractility, contractile strains, and local fiber alignment on long-

range force transmission. Gjorevsk and Nelson examined the strain fields around engineered 3D 

epithelial tissues in collagen I gels. They found that linear elasticity cannot explain the long-ranged 

nature of the strain fields but reported that mechanical heterogeneities caused by stiffening near 

the poles of elongated contractile epithelial tissues can explain the decay  of strain fields (31). Our 

results clearly show that long-range displacement fields within matrices can be captured by 

tension-driven local fiber alignment, and that heterogeneities result from the anisotropic shape of 

the cell domain and the anisotropic contraction of cells (Fig 3). Cell contractility results in 

reorganization of the ECM to provide contact guidance that facilitates 3D migration and invasion 

(4, 5, 32). The fiber alignments observed between nearby cells in 3D matrices (4, 5, 32) are clearly 

shown in our FEM simulations (Fig 6c and 6e). Experimental work has shown that treatment of 

cells to abolish actomyosin contractility leads to dissolution of the collagen lines, in agreement 

with our results that show that the magnitude of contractile strains play an important role in 

determining the range of force transmission. Recent experiments on mammary acini in collagen 

gels show that they can interconnect by forming long collagen lines up to around 10 × acini size 
(7). Guo et al. find that these lines and interactions are initiated by traction forces created by the 

cells and not by diffusive factors (10).  They also found collagen-density dependent transmission 

of force up to 10 × cell radii for interacting acini. Our results show that cells in 3D fibrous matrices 

can sense the radial rigid boundaries up to 10 × their diameters and the other cells up to 20 × their 
diameters (Figs. 3 and 6), which is in very good agreement with these experiments.  Furthermore, 

Ma et al. suggest that the fibrous nature of the ECM leads to reorganization of the collagen fibers 

leading to areas of higher fiber density near the cells over relatively long distances (10 cell-

diameters) (8). The mechanism whereby this reorganization proceeds (starting from a random 

network) is discussed in our work. 

Koch et al. studied the effect of anisotropic cell shape and contractility on the range of force 

transmission in invasive and non-invasive cancer cells (19). They found that both lung and breast 

carcinoma cells were significantly elongated compared to the non-invasive cells, which were 

observed to have rounder shapes. Cell shape anisotropy was accompanied by a larger sensing 

distance, suggesting that directionality of traction forces is important for cancer cell invasion, 

consistent with our results (Fig. 3).  

In sum, we present a new constitutive law that describes the behavior of cells in matrices. All of 

the parameters for our constitutive law can be obtained either from experiments or from fiber 

simulations as have been done in Fig. 1. Our findings are relevant to a variety of normal and 

pathological processes and, importantly, as highlighted in detail above, are consistent with an 
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extensive body of experimental work. We hope that this work will inspire further experiments 

where the mechanical properties of the ECM are tuned by varying the fiber density and degree of 

crosslinking to validate our predictions.  
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APPENDIX A:  Discrete fiber simulations 

We developed a finite element based 2D discrete fiber model that captures all aspects of network 

mechanics including non-affine stiffening, fiber alignment and bending-stretching transitions 

following our earlier work on crosslinked biopolymer networks (33). The 2D random fiber 

networks representing collagen gels are created with linear elastic fibers and rigid crosslinks (Fig. 

1a). Fibers are uniformly distributed in the computational domain and a crosslink is formed when 

two fibers intersect. Collagen fibers have diameter in the range of few 100 nanometers to few 

microns and moduli of few 100 kPa (34–36). As the persistence length of collagen fibers is in the 

range of few microns, these fibers are typically modeled as linear elastic. Fibers are modeled using 

shear flexible Timoshenko beam elements in the finite element package, ABAQUS (24). Collagen 

gel considered in experiments is converted into a computational network (with equivalent fiber 

density) using the approach of Stein, Andrew M., et al (37). For the given concentration and 

volume of the gel, fiber radius is given by 

𝑟 = √
𝑉𝑔𝜌𝑐𝑣𝑐

𝜋𝐿𝑇𝑜𝑡
 

where 𝑉𝑔 (𝜇𝑚
3)is the volume of the gel, 𝜌𝑐(= 1− 5 𝑚𝑔/𝑚𝑙) is the mass density of collagen, 

𝑣𝑐 = 0.73 𝑚𝑙/𝑔  is the specific volume of collagen, 𝑟 (𝜇𝑚) is the radius of the fibers and 

𝐿𝑇𝑜𝑡 (𝜇𝑚) is the total length of collagen in the gel. The 3D variables converted into equivalent the 

2D ones by transforming quantities per unit volume to quantities per unit area. Fiber radius is 

assumed to be 250 𝑛𝑚 and from the above relation, the total length of fiber in the gel is calculated 
for varying collagen concentrations. The fibers have both flexural and stretching rigidities and the 

crosslinks are assumed to be rigid (38). A parametric study for various collagen concentrations 

(2, 3, 4 𝑎𝑛𝑑 5 𝑚𝑔/𝑚𝑙), simulating simple shear deformation shows good agreement with the 
experimentally observed strain sweep results (39). Increasing gel concentration reduces the 

collagen mesh size (distance between two crosslinks) leading to a stiffer response. The reduction 

in the length of the fiber between the crosslinks affects the bending characteristics and leads to an 

increase in the initial stiffness and a decrease the knee strain.   

APPENDIX B: Finite element implementation of the fibrous constitutive law 

All simulations were performed in a finite deformation setting. The matrices are modeled using 4-

node bilinear axisymmetric quadrilateral elements. The axisymmetric constitutive law, the 

equilibrium condition, 𝜕𝜎𝑖𝑗/𝜕𝑑𝑥𝑗 =  0 , and the boundary conditions constitute a well-posed 

boundary value problem. We implemented the constitutive equation in a user material model in 

the finite element package ABAQUS (24). The tangent modulus tensor in the material description 

𝑪𝑺𝑪, the tangent modulus tensor for the convected rate of the Kirchhoff stress 𝑪𝝉𝑪, the tangent 

modulus tensor for the Jaumann rate of the Kirchhoff stress 𝑪𝝉𝑱, and the material Jacobin 𝑪𝑴𝑱 
(needed for the user material model) can be expressed as (23, 40) 

𝐶𝑚𝑛𝑝𝑞
𝑆𝐶 = 4

𝜕2𝑊

𝜕𝐶𝑛𝑚𝜕𝐶𝑝𝑞
 

𝐶𝑖𝑗𝑘𝑙
𝜏𝐶 = 𝐹𝑖𝑚𝐹𝑗𝑛𝐹𝑘𝑝𝐹𝑙𝑞𝐶𝑚𝑛𝑝𝑞

𝑆𝐶                                                                                                                      (B1) 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2016. ; https://doi.org/10.1101/048579doi: bioRxiv preprint 

https://doi.org/10.1101/048579
http://creativecommons.org/licenses/by-nc/4.0/


𝐶
𝑖𝑗𝑘𝑙
𝜏𝐽

= 𝐶𝑖𝑗𝑘𝑙
𝜏𝐶 + 𝛿𝑖𝑘𝜏𝑗𝑙 + 𝜏𝑖𝑘𝛿𝑗𝑙 

𝐶
𝑖𝑗𝑘𝑙
𝑀𝐽 = 𝐶

𝑖𝑗𝑘𝑙
𝜏𝐽 /𝐽  

Here the second Piola–Kirchhoff stress 𝝉 = 𝝈/𝐽,  

𝐶
𝑖𝑗𝑘𝑙
𝑀𝐽 = 𝐶𝑖𝑗𝑘𝑙

𝑏 + 𝐶
𝑖𝑗𝑘𝑙
𝑓                                                                                                                                                                                                                                                  

𝐶𝑖𝑗𝑘𝑙
𝑏 =

𝜇

𝐽
(
1

2
(𝛿𝑖𝑘𝐵̅𝑗𝑙 + 𝐵̅𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙 𝐵̅𝑗𝑘 + 𝐵̅𝑖𝑙𝛿𝑗𝑘) −

2

3
𝛿𝑖𝑗 𝐵̅𝑘𝑙 −

2

3
𝐵̅𝑖𝑗𝛿𝑘𝑙 +

2

9
𝛿𝑖𝑗𝛿𝑘𝑙 𝐵̅𝑚𝑚)

+ 𝜅(2𝐽 − 1)𝛿𝑖𝑗𝛿𝑘𝑙                                                                                                          (B2)  

 𝑪𝒇 =
1

𝐽
∑

 
𝜕

𝜕𝜆𝑎
(
𝜕𝑓(𝜆𝑎)

𝜕𝜆𝑎

1

𝜆𝑎
) 𝜆𝑎

3𝒏𝒂⨂𝒏𝒂⨂𝒏𝒂⨂𝒏𝒂

3

𝑎=1

+ ∑
𝜎𝑏𝜆𝑎

2 − 𝜎𝑎𝜆𝑏
2

𝜆𝑏
2 − 𝜆𝑎

2 (𝒏𝒂⨂𝒏𝒃⨂𝒏𝒂⨂𝒏𝒃 +𝒏𝒂⨂𝒏𝒃⨂𝒏𝒃⨂𝒏𝒂) 

3

𝑎,𝑏=1
𝑎≠𝑏

+ 𝑰⨂̅𝝈𝒇 +𝝈𝒇⨂̅𝑰 

Here we have adopted the abbreviations (𝐴⨂𝐵)𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑗𝐵𝑘𝑙 and (𝐴⨂̅𝐵)𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑘𝐵𝑗𝑙. We define 

𝜎𝑎 =
1

𝐽

𝜕𝑓(𝜆𝑎)

𝜕𝜆𝑎
𝜆𝑎                                                                                                                                      (B3) 

If λb → λa, 
σbλa

2−σaλb
2

λb
2−λa

2  gives us 0/0 and must be determined using the limiting conditions (23),  

lim
λb→λa

σ𝑏𝜆𝑎
2
− σ𝑎𝜆𝑏

2

𝜆𝑏
2 − 𝜆𝑎

2 =
1

2

𝑑σ𝑎
𝑑𝜆𝑎

𝜆𝑎 − σ𝑎                                                                                                (B4) 

Integrating Eq. 4, the energy function 𝑓(𝜆𝑎) can be expressed as, 

𝑓(𝜆𝑎) =

{
 
 
 
 

 
 
 
 
0,                                                                                                                         𝜆𝑎 < 𝜆1

𝐸𝑓(
𝜆𝑎 − 𝜆1
λt )𝑛(𝜆𝑎 − 𝜆1)

2

8(1 + 𝑛)(2 + 𝑛)
,                                                                     𝜆1 ≤ 𝜆𝑎 < 𝜆2  

𝐸𝑓

[
 
 
 
 −

1

2 + 3𝑚 +𝑚2 −
𝜆𝑎

1 + 𝑚
+
(1 + 𝜆𝑎 − 𝜆2)

2+𝑚

(1 +𝑚)(2 +𝑚)
+

𝜆2
1 +𝑚

+
(𝜆𝑎 − 𝜆2)(𝜆2 − 𝜆1)

1 + 𝑛
+
4(𝜆2 − 𝜆𝑐)

2

2 + 3𝑛 + 𝑛2 ]
 
 
 
 

,          𝜆𝑎 ≥ 𝜆2

    (B5) 

The second derivative of Eq. 4 can be expressed as, 
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𝜕2𝑓(𝜆𝑎)

𝜕𝜆𝑎
2 =

{
 
 

 
 0,                                                  𝜆𝑎 < 𝜆1

𝐸𝑓 (
𝜆𝑎 − 𝜆1
𝜆2 − 𝜆1

)
𝑛

,                    𝜆1 ≤ 𝜆𝑎 < 𝜆2

𝐸𝑓(1 + 𝜆𝑎 − 𝜆2)
𝑚 ,                   𝜆𝑎 ≥ 𝜆2

                                                                     (B6) 

Here 𝜆1 = 𝜆𝑐 − 𝜆𝑡/2, 𝜆2 = 𝜆𝑐 + 𝜆𝑡/2. 

APPENDIX C: Analytical linear solution for the spherically symmetric case  

We further introduce Green-Lagrange strain tensor  𝜺 = (𝑪 − 𝑰)/2.  For infinitesimal strains 𝜺 
with |𝜀𝒊𝒋| ≪ 1,  

𝐽 = 1 + tr(𝜺)  

𝑩̅ = 𝑰 + 2𝜺                                                                                                                                                  (C1) 

𝜆𝑎 = (1+ 2𝜀𝑎)
1/2 = 1+ 𝜀𝑎 

Substituting Eq. C1 into Eq. 2 

𝜺 =∑ 𝜀𝑎𝒏𝐚⨂𝒏𝐚

3

𝑎=1

                                                                                                                                     (C2) 

The fiber energy function in Eq. 1 can also be expressed as 𝑓(𝜆𝑎) = 𝑈(𝜀𝑎),  

𝜕𝑓(𝜆𝑎)

𝜕𝜆𝑎
=
𝜕𝑈(𝜀𝑎)

𝜕𝜀𝑎

𝜕𝜀𝑎
𝜆𝑎

=
𝜕𝑈(𝜀𝑎)

𝜕𝜀𝑎
                                                                                                         (C3) 

Substituting Eq. C3 into Eq.3, we get 

𝜎 = 𝜎𝑏 + 𝜎𝑓 ,                       

𝛔𝒃 = 𝜅 tr(𝜺)𝑰 + 2𝜇 dev(𝜺),                                                                                                                    (C4) 

𝝈𝒇 =∑
𝜕𝑈(𝜀𝑎)

𝜕𝜀𝑎
𝒏𝒂⨂𝒏𝒂

3

𝑎=1

 

For linear bulk and fibrous response (λc = 1 and m = 0 in Eq. 4), Eq. C4 can be rewritten as, 

𝜎 = 𝜎𝑏 + 𝜎𝑓                        

𝛔𝒃 =
𝐸𝑏

3(1 − 2𝜈)
 tr(𝜺)𝑰 +

𝐸𝑏
1 + 𝜈

 dev(𝜺)                                                                                              (C5) 

𝛔𝐟 =∑𝐸𝑓

3

𝑎=1

𝒏𝒂⨂𝒏𝒂 . 
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For infinitesimal strains, we have the geometric relations, 

𝜀𝑟 =
𝑑𝑢

𝑑𝑟
,                        𝜀𝜃 = 𝜀𝜑 =  

𝑢

𝑟
,                         𝐽 = 1,                                                             (C6) 

Here 𝑢 is the radial displacement and the constitutive law Eq. C5 can be rewritten as, 

𝜎𝑟 =
𝐸𝑏

(1 − 2𝜈)(1 + 𝜈)
[(1 − 𝜈)

𝑑𝑢

𝑑𝑟
+ 2𝜈

𝑢

𝑟
] + 𝐸𝑓

𝑑𝑢

𝑑𝑟
                                                                       (C7) 

𝜎𝜃 = 𝜎𝜑 =
𝐸𝑏

(1 − 2𝜈)(1 + 𝜈)
(
𝑢

𝑟
+ 𝜈

𝑑𝑢

𝑑𝑟
)    

The condition for mechanical equilibrium 
𝑑𝜎𝑟

𝑑𝑟
+
2

𝑟
(𝜎𝑟 − 𝜎𝜃) = 0 can then be written as,  

[1 +
(1 + 𝜈)(1 − 2𝜈)

(1 − 𝜈)

𝐸𝑓

𝐸𝑏
] (
𝑑2𝑢

𝑑𝑟2
+
2

𝑟

𝑑𝑢

𝑑𝑟
) − 2

𝑢

𝑟2
= 0                                                                                  (C8) 

The boundary condition is  

𝑢(𝑟0) = 𝑢0, 𝑢(∞) = 0                                                                                                                            (C9)     

The solution is     

𝑢(𝑟)/𝑢0 = (𝑟0/𝑟)
𝑛                                                                                                                                 (C10)   

𝜎𝑟(𝑟)/𝜎𝑟(𝑟0) = (𝑟0/𝑟)
𝑛+1 

Here  𝑛 =
1

2
(√

9+𝜒

1+𝜒
+ 1)  and   𝜒 =

(1+𝜈)(1−2𝜈)

(1−𝜈)

𝐸𝑓

𝐸𝑏
     

The strains and stresses can then be expressed as                                                                                                                                                                                       

𝜀𝑟 = 𝑛
𝑢0
𝑟0
(
𝑟0
𝑟
)𝑛+1                                                                                                                                   (C11) 

𝜀𝜃 = 𝜀𝜑(𝑟) = −
𝑢0
𝑟0
(
𝑟0
𝑟
)𝑛+1 

𝜎𝑟 = {
𝐸𝑏

(1 + 𝜈)(1 − 2𝜈)
[(1 − 𝜈)𝑛 − 2𝜈] + 𝑛𝐸𝑓 }

𝑢0
𝑟0
(
𝑟0
𝑟
)𝑛+1 

𝜎𝜃 = 𝜎𝜑 =
𝐸𝑏

(1 + 𝜈)(1 − 2𝜈)
[𝜈𝑛 − 1]

𝑢0
𝑟0
(
𝑟0
𝑟
)𝑛+1  

In the limit of strong fibrous response, 𝐸𝑓/𝐸𝑏 ≫ 1, we find that the exponent 𝑛 → 1, whereas for 

an isotropic material for which 𝐸𝑓/𝐸𝑏 ≪ 1,  we find that 𝑛 → 2 . Thus, stresses decay less 

precipitously, leading to an increased zone of influence in fibrous materials. This result is also 
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consistent with theoretical estimates by Sander (41), who considered a less general case, 𝐸𝑓/𝐸𝑏 ≫

1,  without including the effect of the Poisson’s ratio, 𝜈.  

APPENDIX D:  Strain energy function with the modified right Cauchy–Green tensor 

Holzapfel et al. (23, 27) developed a constitutive law to describe the mechanical response of 

arterial tissue with a strain energy function 

𝑊𝑓 = 𝑊𝑏(𝐼1̅, 𝐽) + 𝑊𝑓̅̅ ̅̅ (𝑪̅) = 𝑊𝑏(𝐼1̅, 𝐽) + ∑ 𝑓𝑖(𝐼𝑖̅)
𝑖=4,6

                                                                          (D1) 

𝑓 = {
0, 𝐼𝑖̅ < 1

𝑘1

2𝑘2
{exp[𝑘2(𝐼𝑖̅ − 1)

2] − 1}, 𝐼𝑖̅ ≥ 1,
                                                                                                         

where the first term 𝑊𝑏  represents the isotropic bulk response of the matrix (same as our model) 

and the second term 𝑊𝑓̅̅ ̅̅  represents anisotropic stiffening due to two families of reinforcing 

collagen fibers that evolve during loading. The modified right Cauchy–Green tensor is 𝑪̅ =
𝑪/𝐽2/3. 𝐼1̅, 𝐼4̅ and 𝐼6̅  are the modified invariants of 𝑪̅, which represent the squares of the 
stretches along the two families of fibers, 

 

𝐼1̅ = tr(𝑪̅)                                𝐼4̅ = 𝑵𝟒𝑪̅𝑵𝟒                                      𝐼6̅  = 𝑵𝟔𝑪̅𝑵𝟔                              (D2) 

where 𝑵𝟒 and 𝑵𝟔 are the unit vectors along the fibers in the reference configuration. Then, the 
Cauchy stress has the form, 

𝝈 = 𝝈𝒃 + 𝝈𝒇 = 𝝈𝒃 + ∑ 2
𝜕𝑓𝑖(𝐼𝑖̅)

𝜕𝐼𝑖̅
dev(𝒏𝒊⨂𝒏𝒊

𝑖=4,6

)                                                                              (D3) 

where 𝒏𝟒 = 𝑭𝑵𝟒  and 𝒏𝟔 = 𝑭𝑵𝟔 are the fiber vectors in the current configuration: 

𝒏𝟒 = 𝑭𝑵𝟒 ,                              𝒏𝟔 = 𝑭𝑵𝟔                                                                                                  (D4)  

An iterative procedure starting with an arbitrary configuration of the fibers is implemented to find 

the fiber vectors in the reference and current configurations, 𝑵𝟒  and 𝒏𝟒 . By considering this 
constitutive law for the case of spherically-symmetric contractile strain, we show in Appendix E 

that this constitutive law cannot show long-range transmission of forces. 

To enable the long range formation in fibrous media, the above strain energy function for collagen 

fiber alignment can be modified by using a Cauchy-Green deformation tensor instead of a modified 

Cauchy-Green deformation tensor. Denoting the principal stretches by 𝜆𝑎, we retain the functional 

form of the function, 𝑓(𝜆𝑎) , such that it vanishes when the principal stretches are negative to get 

𝑓(𝜆𝑎) = {

0, 𝜆𝑎 < 1
𝐶𝑘1
2𝐶𝑘2

[exp(𝐶𝑘2(𝜆𝑎
2 − 1)2) − 1], 𝜆𝑎 ≥ 1

                                                                          (D5) 
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𝜕𝑓(𝜆𝑎)

𝜕𝜆𝑎
= {

0, 𝜆𝑎 < 1

2𝐶𝑘1exp(𝐶𝑘2(𝜆𝑎
2 − 1)2)(𝜆𝑎

2 − 1)𝜆𝑎 , 𝜆𝑎 ≥ 1
                                                             (D6) 

𝜕2𝑓(𝜆𝑖)

𝜕𝜆𝑎
2 = {

0, 𝜆𝑎 < 1

2𝐶𝑘1exp(𝐶𝑘2(𝜆𝑎
2 − 1)2)[4𝐶𝑘2𝜆𝑎

6 − 8𝐶𝑘2𝜆𝑎
4 + (3 + 4𝐶𝑘2)𝜆𝑎

2 − 1], 𝜆𝑎 ≥ 1
  (D7) 

Here 𝐶𝑘1 and 𝐶𝑘1 are the parameters for initial stiffness and strain-hardening. Note that 𝐼𝑖̅  in the 

original form is replaced with 𝐼𝑖. We set χ = (1 + 𝜈)(1 − 2𝜈)𝐶𝑘1/(1 − 𝜈)𝐸𝑏 = 0.2 and 𝐶𝑘2 =
500 in our numerical simulations (Fig. 7).  

APPENDIX E:  Analytical solution for the constitutive law with the modified right Cauchy–

Green tensor 

Consider the special case of a spherical cell with isotropic contraction embedded in a fibrous 

matrix. As in the case of linear analysis in Appendix B, the deviatoric constitutive law in Eq. D3 

can be rewritten for infinitesimal strains, 

𝛔𝒃 = 𝜅 tr(𝜺) 𝑰 + 2𝜇𝐞 + ∑
𝜕𝑈(𝑒𝑖)

𝜕𝑒𝑖
dev(𝒏𝒊⨂𝒏𝒊

𝑖=4,6

)                                                                           (E1) 

Here the fiber energy function can be express as 𝑓(𝐼𝑖) = 𝑈(𝑒𝑖) with 𝐼𝑖 = 1 + 2𝑒𝑖 . For spherical 

symmetry, the deviatoric strain  er =
2

3
(𝜀𝑟 − 𝜀𝜃) ≥ 0 and e𝜃 = e𝜑 =

1

3
(𝜀𝜃 − 𝜀𝑟) ≤ 0, so Eq. E1 

can be rewritten as, 

𝜎𝑟 =
𝐸𝑏

3(1 − 2𝜈)
(𝜀𝑟 + 2𝜀𝜃) +

2

3
[
𝐸𝑏

(1 + 𝜈)
+ 𝐸𝑓](𝜀𝑟 − 𝜀𝜃)                                                              (E2)  

σ𝜃 =
𝐸𝑏

3(1 − 2𝜈)
(𝜀𝑟 + 2𝜀𝜃)  −

1

3
[

𝐸𝑏
(1 + 𝜈)

+ 𝐸𝑓](𝜀𝑟 − 𝜀𝜃) 

Using the relations 𝜀𝑟 =
𝑑𝑢

𝑑𝑟
, 𝜀𝜃 = 𝜀𝜑 =

𝑢

𝑟
                                                                                            (E3) 

and the condition for mechanical equilibrium, 

𝑑𝜎𝑟

𝑑𝑟
+
2

𝑟
(𝜎𝑟 − 𝜎𝜃) = 0                                                                                                                               (E4)  

we get     

𝑑2𝑢

𝑑𝑟2
+
2

𝑟

𝑑𝑢

𝑑𝑟
− 2

𝑢

𝑟2
= 0                                                                                                                            (E5) 

From boundary conditions: 𝑢(𝑟0) = 𝑢0, 𝑢(∞) = 0, the solution of Eq. E5 is  

𝑢(𝑟)/𝑢0 = (𝑟0/ 𝑟)2                                                                                                                                  (E6) 

𝜎𝑟(𝑟)/ 𝜎𝑟(𝑟0) =  (𝑟0/ 𝑟)3 

Comparing this with Eq. C 10, we find that the constitutive law of Holzapfel et al. (23, 27) does 

not show long range force transmission.  
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