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Abstract

Models of the spread of disease in a population often make the simplifying assumption

that the population is homogeneously mixed, or is divided into homogeneously mixed com-

partments. However, human populations have complex structures formed by social contacts,

which can have a significant influence on the rate of epidemic spread. Contact network mod-

els capture this structure by explicitly representing each contact which could possibly lead

to a transmission. We developed a method based on kernel approximate Bayesian compu-

tation (kernel-ABC) for estimating structural parameters of the contact network underlying

an observed viral phylogeny. The method combines adaptive sequential Monte Carlo for

ABC, Gillespie simulation for propagating epidemics though networks, and a kernel-based

tree similarity score. We used the method to fit the Barabási-Albert network model to simu-

lated transmission trees, and also applied it to viral phylogenies estimated from five published

HIV sequence datasets. On simulated data, we found that the preferential attachment power

and the number of infected nodes in the network can often be accurately estimated. On the

other hand, the mean degree of the network, as well as the total number of nodes, were not

estimable with kernel-ABC. We observed substantial heterogeneity in the parameter estimates

on real datasets, with point estimates for the preferential attachment power ranging from 0.06

to 1.05. These results underscore the importance of considering contact structures when per-

forming phylodynamic inference. Our method offers the potential to quantitatively investigate

the contact network structure underlying viral epidemics.
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Introduction

When an infectious disease spreads through a population, transmissions are generally more

likely to occur between certain pairs of individuals. Such pairs must have a particular mode

of contact with one another, which varies with the mode of transmission of the disease. For

airborne pathogens, physical proximity may be sufficient, while for sexually transmitted dis-

eases, sexual or in some cases blood-to-blood contact is required. The population together with

the set of links between individuals along which transmission can occur is called the contact

network [26, 34]. The structure of the contact network underlying an epidemic can profoundly

impact the speed and pattern of the epidemic’s expansion. Network structure can influence

the prevalence trajectory [39, 33] and epidemic threshold [2], in turn affecting the estimates

of quantities such as effective population size [18]. From a public health perspective, contact

networks have been explored as tools for curtailing epidemic spread, by way of interventions

targeted to well-connected nodes [59]. True contact networks are a challenging type of data to

collect, requiring extensive epidemiological investigation [60].

Viral sequence data, on the other hand, has become relatively inexpensive and straightfor-

ward to collect on a population level. Due to the high mutation rate of RNA viruses, epidemi-

ological processes impact the course of viral evolution, thereby shaping the inter-host viral

phylogeny [14]. The term “phylodynamics” was coined to describe this interaction, as well

as the growing family of inference methods to estimate epidemiological parameters from viral

phylogenies [20]. These methods have revealed diverse properties of local viral outbreaks,

from basic reproductive number [51], to the degree of clustering [23], to the elevated transmis-

sion risk during acute infection [57]. On the other hand, although sophisticated methods have

been developed for fitting complex population genetic models to phylogenies [56, 45], infer-

ence of structural network parameters has to date been limited. However, it has been shown

that network structure has a tangible impact on phylogeny shape [28, 9, 18, 46, 54], suggesting

that such statistical inference might be possible [60].

Survey-based studies of sexual networks [8, 30, 47] have found that these networks tend to

have a degree distribution which follows a power law [although there has been some disagree-

ment, see 22]. That is, the number of nodes of degree k is proportional to k−γ for some constant

γ . These networks are also referred to as “scale-free” [1]. One process by which scale-free

networks can be generated is preferential attachment, where nodes with a high number of con-

tacts attract new connections at an elevated rate. The first contact network model incorporating

preferential attachment was introduced by Barabási and Albert [1], and is now referred to as

the Barabási-Albert (BA) model. Under this model, networks are formed by iteratively adding

nodes with m new edges each. In the most commonly studied formulation, these new edges are

joined to existing nodes of degree k with probability proportional to k, so that nodes of high
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degree tend to attract more connections. Barabási and Albert suggested an extension where the

probability of attaching to a node of degree k is kα for some non-negative constant α , and we

use this extension in this work.

Previous work offers precedent for the possibility of statistical inference of structural net-

work parameters. Britton and O’Neill [5] develop a Bayesian approach to estimate the edge

density in an Erdős-Rényi network [16] given observed infection dates, and optionally recovery

dates. Their approach was later extended by Groendyke, Welch, and Hunter [21] and applied

to a much larger data set of 188 individuals. Volz and Meyers [58] and Volz [55] developed dif-

ferential equations describing the spread of a susceptible-infected (SI) epidemic on static and

dynamic contact networks with several degree distributions, which could in principle be used

for inference if observed incidence trajectories were available. Brown et al. [6] analysed the

degree distribution of an approximate transmission network, estimated based on genetic simi-

larity and estimated times of infection, relating 60% of HIV-infected men who have sex with

men (MSM) in the United Kingdom. The transmission network is a subgraph of the contact

network which includes only those edges which have already led to a new infection. The au-

thors found that a Waring distribution, which is produced by a more sophisticated preferential

attachment model, was a good fit to their estimated network.

Standard methods of model fitting involve calculation of the likelihood of observed data

under the model. In maximum likelihood estimation, a quantity proportional to the likelihood

is optimized, often through a standard multi-dimensional numerical optimization procedure.

Bayesian methods integrate prior information by optimizing the posterior probability instead.

To avoid calculation of a normalizing constant, Bayesian inference is often performed using

Markov chain Monte Carlo (MCMC), which uses likelihood ratios in which the normalizing

constants cancel out. Unfortunately, it is generally difficult to explicitly calculate the likelihood

of an observed transmission tree under a contact network model, even up to a normalizing

constant. To do so, it would be necessary to integrate over all possible networks, and also over

all possible labellings of the internal nodes of the transmission tree. While it is not known

(to us) whether such integration is tractable, a simpler alternative is offered by likelihood-free

methods, namely approximate Bayesian computation (ABC) [53, 3]. ABC leverages the fact

that, although calculating the likelihood may be impractical, generating simulated datasets

according to a model is often straightforward. If our model fits the data well, the simulated

data it produces should be similar to the observed data. More formally, if D is the observed

data, the posterior distribution f (θ | D) on model parameters θ is replaced as the target of

statistical inference by f (θ | ρ(D̂,D) < ε), where ρ is a distance function, D̂ is a simulated

dataset according to θ , and ε is a small tolerance [52]. In the specific case when ρ is a kernel

function, the approach is known as kernel-ABC [35, 41].

Here, we develop a method using kernel-ABC to estimate the parameters of contact net-
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work models from observed phylogenetic data. The distance function we use is the tree kernel

developed by Poon et al. [42], which computes a weighted dot product of the trees’ repre-

sentations in the space of all possible subset trees. We apply the method to investigate the

parameters of the BA network model on a variety of simulated and real datasets. Our results

show that some network parameters can be inferred with reasonable accuracy, while others

have a minimal detectable impact on tree shape and therefore cannot be estimated accurately.

We also find that these parameters can vary considerably between real epidemics from different

settings.

Methods

Netabc: phylogenetic inference of contact network parameters with
kernel-ABC

We have developed a kernel-ABC-based method to perform statistical inference of contact

network parameters from a transmission tree estimated from an observed viral phylogeny. We

implemented the adaptive sequential Monte Carlo (SMC) algorithm for ABC developed by Del

Moral, Doucet, and Jasra [12]. The SMC algorithm keeps track of a population of parameter

“particles”, which are initially sampled from the parameters’ joint prior distribution. Several

datasets are simulated under the model of interest for each of the particles. In this case, the

datasets are transmission trees, which are generated by a two-step process. First, a contact

network is simulated according to the network model being fit. Second, a transmission tree is

simulated over that network with a Gillespie simulation algorithm [17], in the same fashion as

several previous studies [e.g. 46, 28]. The particles are weighted according to the similarity

between their associated simulated trees and the observed tree. To quantify this similarity,

we used the tree kernel developed by Poon et al. [42]. Particles are iteratively perturbed by

applying a Metropolis-Hastings kernel and, if the move is accepted, simulating new datasets

under the new parameters. When a particle’s weight drops to zero, because its simulated

trees are too dissimilar to the observed tree, the particle is dropped from the population, and

eventually replaced by a resampled particle with a higher weight. As the algorithm progresses,

the population converges to a Monte Carlo approximation of the ABC target distribution, which

is assumed to approximate the desired posterior [12, 52]. A computer program implementing

our method is freely available at https://github.com/rmcclosk/netabc (last accessed

April 26, 2016).

To check that our implementation of Gillespie simulation was correct, we reproduced Fig-

ure 1A of Leventhal et al. [28] (our fig. S1), which plots the unbalancedness of transmis-
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sion trees simulated over four network models at various levels of pathogen transmissibility.

Our implementation of adaptive ABC-SMC was tested by applying it to the same mixture of

Gaussians used by Del Moral, Doucet, and Jasra to demonstrate their method (originally used

by Sisson, Fan, and Tanaka [49]). We were able to obtain a close approximation to the function

(see fig. S2), and attained the stopping condition used by the authors in a comparable number

of steps.

Nodes in our networks followed simple SI dynamics, meaning that they became infected

at a rate proportional to their number of infected neighbours, and never recovered. For all

analyses, the transmission trees’ branch lengths were scaled by dividing by their mean. We

used the igraph library’s implementation of the BA model [10] to generate the graphs. The

analyses were run on Westgrid (https://www.westgrid.ca/) and a local computer cluster.

Kernel classifiers

We used the phylogenetic kernel developed by Poon et al. [42] to test whether the parameters

of the BA model had an effect on tree shape. 100 networks were simulated under each of three

different values of α: 0.5, 1.0, and 1.5 (300 networks total). The other parameters were fixed

to the following values: N = 5000, I = 1000, and m = 2. A transmission tree with 500 tips

was simulated over each network (300 transmission trees total). The 300 trees were compared

pairwise with the tree kernel to form a 300×300 kernel matrix. The kernel meta-parameters λ

(the “decay factor”), and σ (the “radial basis function variance”) [see 42], were set to 0.3 and

4 respectively. We constructed a kSVR classifier for α using the kernlab package [62], and

evaluated its accuracy with 1000 two-fold cross-validations.

Three similar experiments were performed for the other BA model parameters (one exper-

iment per parameter). m was varied between 2, 3, and 4; I between 500, 1000, and 2000; and

N between 3000, 5000, and 8000. The parameters not being tested were fixed at the values

N = 5000, I = 1000, m = 2, and α = 1. Thus, we performed a total of four kSVR cross-

validations, one for each of the BA model parameters α , I, m, and N. We repeated these four

cross-validations with different values of λ (0.2, 0.3, and 0.4) and σ (2−3, 2−2, . . . , 23), as well

as on trees with differing numbers of tips (100, 500, and 1000) and in epidemics of differing

size (500, 1000, and 2000). The combination of the number of sampled individuals (i.e. the

number of tips) and the epidemic size (i.e. I) will be referred to as an “epidemic scenario”.

When evaluating the classifier for I, we did not consider trees with 1000 tips, because one of

the tested I values was 500, and the number of tips cannot be larger than I.

For each of the four parameters, we also tested a linear regression against Sackin’s in-

dex [48] and an ordinary SVR based on the normalized lineages-through-time (nLTT) statis-

tic [24].
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ABC simulations

We simulated three transmission trees, each with 500 tips, under every element of the Cartesian

product of these parameter values: N = 5000, I = {1000, 2000}, m = {2, 3, 4}, and α =

{0.0, 0.5, 1, 1.5}. This produced a total of 24 parameter combinations × three trees per

combination = 72 trees total. The adaptive ABC algorithm was applied to each tree with these

priors: m∼DiscreteUniform(1, 5), α ∼Uniform(0, 2), and (N, I) jointly uniform on the region

{500≤ N ≤ 15000, 500≤ I ≤ 5000, I ≤ N}. Proposals for α , N, and I were Gaussian, while

proposals for m were Poisson. Following Del Moral, Doucet, and Jasra [12] and Beaumont

et al. [4], the variance of all proposals was equal to the empirical variance of the particles.

The algorithm was run with 1000 particles, 5 simulated datasets per particle, and the “qual-

ity” parameter controlling the decay rate of the tolerance ε set to 0.95. We used the same

stopping criterion as Del Moral, Doucet, and Jasra, namely when the MCMC acceptance rate

dropped below 1.5%. Point estimates for the parameters were obtained by taking the highest

point of an estimated kernel density on the final set of particles, calculated using the den-

sity function with the default parameters in R. Highest posterior density (HPD) intervals were

calculated with the HPDinterval function from the R package coda [40].

Two further analyses were performed to address potential sources of error. To evaluate

the effect of model misspecification in the case of heterogeneity among nodes, we generated

a network where half the nodes were attached with power α = 0.5, and the other half with

power α = 1.5. The other parameters for this network were N = 5000, I = 1000, and m = 2. To

investigate the effects of potential sampling bias, we simulated a transmission tree where the

tips were sampled in a peer-driven fashion, rather than at random. That is, the probability to

sample a node was twice as high if any of that node’s network peers had already been sampled.

The parameters of this network were N = 5000, I = 2000, m = 2, and α = 0.5.

Investigation of published data

We applied our kernel-ABC method to several published HIV datasets. Because the BA model

generates networks with a single connected component, we specifically searched for datasets

which originated from existing clusters, either phylogenetically or geographically defined.

Characteristics of the datasets we investigated are given in table 1.

We downloaded all sequences associated with each study from GenBank. For the Novitsky

et al. [38] data, each sequence was aligned pairwise to the HXB2 reference sequence (Genbank

accession number K03455) and the hypervariable regions were clipped out with BioPython

version 1.66+ [7]. Sequences were multiply aligned using MUSCLE version 3.8.31 [15], and

alignments were manually inspected with Seaview version 4.4.2 [19]. Phylogenies were con-
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Reference Sequences (n) Location Risk group Gene
Wang et al. [59] 173 Beijing, China MSM pol

Cuevas et al. [11] 287 Basque Country, Spain mixed pol
Novitsky et al. [37]

180 Mochudi, Botswana HET env
Novitsky et al. [38]

Li et al. [29] 280 Shanghai, China MSM pol
Niculescu et al. [36] 136 Romania IDU pol

Table 1: Characteristics of published datasets investigated with kernel-ABC. Acronyms: MSM,
men who have sex with men; IDU, injection drug users; HET, heterosexual. The Novitsky et al.
[37] and Novitsky et al. [38] data was sampled from a primarily heterosexual risk environment, but
did not explicitly exclude other risk groups.

structed from the nucleotide alignments by approximate maximum likelihood using FastTree2

version 2.1.7 [44] with the generalized time-reversible model. Transmission trees were esti-

mated by rooting and time-scaling the phylogenies by root-to-tip regression, using a modified

version of Path-O-Gen (distributed as part of BEAST [13]) as described previously [41].

Two of the datasets [29, 38] were initially much larger than the others, containing 1265 and

1299 sequences respectively. To ensure that the analyses were comparable, we reduced these

to a number of sequences similar to the smaller datasets. For the Li et al. [29] data, we detected

a cluster of size 280 using a patristic distance cutoff of 0.02 as described previously [43]. Only

sequences within this cluster were carried forward. For the Novitsky et al. [38] data, no large

clusters were detected using the same cutoff, so we analysed a subtree of size 180 chosen

arbitrarily.

For all datasets, we used the priors α ∼ Uniform(0, 2) and N and I jointly uniform on the

region {n≤N ≤ 10000, n≤ I ≤ 10000, I ≤N}, where n is the number of tips in the tree. Since

the value m = 1 produces networks with no cycles, which we considered fairly implausible,

we ran one analysis with the prior m ∼ DiscreteUniform(1, 5), and one with the prior m ∼
DiscreteUniform(2, 5). The other parameters to the SMC algorithm were the same as used for

the simulation experiments.

Results

Kernel classifiers

We investigated the parameters of the BA network model [1]. In addition to m and α (see

Introduction), we considered N, which denotes the total number of nodes in the network, and

I, which is the number of infected nodes at which to stop the simulation and sample the trans-
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mission tree. To examine the effect of these parameters on tree shape, we simulated trans-

mission trees under different parameter values, calculated pairwise tree kernel scores between

them, and attempted to classify the trees using a kernel support vector machine (kSVR). We

also tested classifiers based on Sackin’s index [48] and the normalized lineages-through-time

(nLTT) statistic [24]. Accuracy of the kSVRs varied based on the parameter being tested (fig. 1,

left). Classifiers based on two other tree statistics, the nLTT and Sackin’s index, generally ex-

hibited worse performance than the tree kernel, although the magnitude of the disparity varied

between the parameters (fig. 1, centre and right). The results were largely robust to variations

in the tree kernel meta-parameters λ and σ (figs. S3 to S6).

When classifying α , the kernel-SVR classifier had an average R2 of 0.92, compared to

0.56 for the nLTT-based SVR, and 0.75 for the linear regression against Sackin’s index. There

was little variation about the mean for different tree and epidemic sizes. No classifier could

accurately identify the m parameter in any epidemic scenario, with average R2 values of 0.12

for kSVR, 0.01 for the nLTT, and 0.06 for Sackin’s index. Again, there was little variation in

accuracy between epidemic scenarios, although the accuracy of the kSVR was slightly higher

on 1000-tip trees (fig. 1, left).

The accuracy of classifiers for I varied significantly with the number of tips in the tree.

For 100-tip trees, the average R2 values were 0.7, 0.55, and 0.02 for the tree kernel, nLTT, and

Sackin’s index respectively. For 500-tip trees, the values increased to 0.93, 0.83, and 0.07.

Finally, the performance of classifiers for N depended heavily on the epidemic scenario. The

R2 of the kSVR classifier ranged from 0.08 for the smallest epidemic and smallest sample

size, to 0.82 for the largest. Likewise, R2 for the nLTT-based SVR ranged from 0.01 to 0.54.

Sackin’s index did not accurately classify N in any scenario, with an average R2 of 0.03 and

little variation between scenarios.

ABC simulations

Figure 2 shows maximum a posteriori (MAP) point estimates of the BA model parameters

obtained with kernel-ABC on simulated data. The estimates shown correspond only to the

simulations where the m parameter was set to 2, however the results for m = 3 and m = 4 were

similar (figs. S7 and S8). Average boundaries of 95% HPD intervals are given in table 2.

The accuracy of the parameter estimates obtained with kernel-ABC paralleled the results

from the kSVR classifier. Of the four parameters, α was the most accurately estimated, with

point estimates having a median [IQR] absolute error of 0.08 [0.05 - 0.17]. The errors when the

true value of α was zero were significantly greater than those for the other values (Wilcoxon

rank-sum test, p = 0.0078). Errors in estimating α also varied with the true value of m just at

the threshold of statistical significance (p = 0.05), but did not vary across the true values of
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Figure 1: Cross-validation accuracy of kernel-SVR classifier (left), SVR classifier using nLTT
(centre), and linear regression using Sackin’s index (right) for BA model parameters. Kernel meta-
parameters were set to λ = 0.3 and σ = 4. Each point was calculated based on 300 simulated
transmission trees over networks with three different values of the parameter being tested. Vertical
lines are empirical 95% confidence intervals based on 1000 two-fold cross-validations.

N or I (both one-way ANOVA). Estimates for I were relatively accurate, with point estimate

errors of 395 [207 - 683] individuals. These errors were significantly higher when the true

value of α was at least 1 (Wilcoxon rank-sum test, p = 0.0077) and when the true value of I

was 2000 (p < 10−5). The true value of m did not affect the estimates of I (one-way ANOVA).

The m parameter was estimated correctly in only 27 % of simulations, barely better than

random guessing. The true values of the other parameters did not significantly affect the es-

timates of m (both one-way ANOVA). Finally, the total number of nodes N was consistently

over-estimated by about a factor of two (error 5987 [2060 - 7999] individuals). No parameters

influenced the accuracy of the N estimates (all one-way ANOVA).

The dispersion of the ABC approximation to the posterior also varied between the pa-

rameters, with narrower HPD intervals for the parameters with more accurate point estimates

(table 2). Figure 3 shows the distributions for for one simulation. Equivalent plots for one

replicate simulation with each studied parameter combination can be found in figs. S18 to S41.

HPD intervals around α and I were often narrow relative to the region of nonzero prior density,

whereas the intervals for m and N were more widely dispersed.

To test the effect of model misspecification, we simulated one network where the nodes

exhibited heterogeneous preferential attachment power (half 0.5, the other half 1.5), with m = 2,

N = 5000, and I = 1000. The MAP [95% HPD] estimates for each parameter were: α , 1.1 [0.6

- 1.16]; I, 1116 [662 - 4455]; m, 3 [1 - 5]; N, 12657 [3590- 14977]. The approximate posterior

distributions for this simulation are shown in fig. S10. To test the effect of sampling bias,

we sampled one transmission tree in a peer-driven fashion, where the probability to sample a
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Parameter True value Mean point
estimate

Mean HPD
lower bound

Mean HPD
upper bound

α 0.0 0.22 0.01 0.86
0.5 0.46 0.04 0.85
1.0 0.97 0.47 1.08
1.5 1.47 1.19 1.80

I 1000 1249.03 672.78 2689.20
2000 2731.20 1118.07 4022.96

m 2 2.54 2.00 5.00
3 2.96 2.04 4.96
4 3.42 1.88 5.00

N 5000 9886.89 2810.69 14738.94

Table 2: Average maximum a posteriori point estimates and 95% highest posterior density (HPD)
interval widths for BA model parameter estimates obtained with kernel-ABC. Three transmission
trees were simulated under each combination of the listed parameter values, and the parameters
were estimated with kernel-ABC without training.

node was twice as high if one of its peers had already been sampled. The parameters for this

experiment were N = 5000, m = 2, α = 0.5, and I = 2000. The estimated values were α , 0.23

[0.02 - 0.64]; I, 2407 [1419 - 3838]; m, 3 [2 - 5]; N, 8716 [2741 - 14615]. The approximate

posterior distributions are shown in fig. S11. Both of these results were in line with estimates

obtained on other simulated datasets (table 2), although the estimate of peer-driven sampling

for α was somewhat lower than typical.

Real data

We applied kernel-ABC to five published HIV datasets (table 1), and found substantial het-

erogeneity among the parameter estimates (figs. 4 and S12). Plots of the marginal posterior

distributions for each dataset are shown in figs. S13 to S17. Two of the datasets [36, 59] had

estimated α values near unity for the prior allowing m = 1 (MAP estimates [95% HPD] 1.05

[0.04 - 1.27] and 0.84 [0.01 - 1.02] respectively). The MAP estimates did not change appre-

ciably when m = 1 was disallowed by the prior, although the credible interval of the Niculescu

et al. [36] data was narrower (0.04 - 1.27). When m = 1 was permitted, the Li et al. [29] and

Cuevas et al. [11] both had low estimated α values (0.06 [0.01 - 0.73] and 0.19 [0.01 - 0.8]).

However, the MAP estimates increased when m = 1 was not permitted, although the HPD in-

tervals remained roughly the same (0.78 [0.02 - 0.94] and 0.59 [0.07 - 0.95]). The Novitsky

et al. [38] data had a fairly low estimated α for both priors on m (0.32 for m ≥ 1; 0.39 for

m ≥ 2). However, the confidence interval was much wider when m = 1 was allowed ([0.04 -
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1.62] for m≥ 1 vs. 0 - 0.73 for m≥ 2).

For all the datasets except Novitsky et al., estimated values of I were below 2000 when

m= 1 was allowed, with relatively narrow HPD intervals compared to the nonzero prior density

region (Cuevas et al., 482 [293 - 2111]; Niculescu et al., 307 [136 - 2822]; Li et al., 1183 [413 -

2897]; Wang et al., 719 [176 - 2114]). The Novitsky et al. data was the outlier, with a very high

estimated I, and HPD interval spanning almost the entire prior region (7409 [187 - 8819]). The

I estimates and HPD intervals were generally robust to the choice of prior on m, with slightly

narrower HPD intervals (compare figs. 4 and S12).

The MAP estimate of m was equal to 1 for all but the Novitsky et al. data, when this value

was allowed. However, the upper bound of the HPD interval was different for each dataset

(Niculescu et al., 5; Wang et al., 4; Li et al., 1; Cuevas et al., 2). When m = 1 was disallowed,

the MAP for all datasets was either 2 or 3, with HPD intervals spanning the entire prior region.

The estimates for the total number of nodes N were largely uninformative for all samples, with

almost all MAP estimates greater than 7500 and HPD intervals spanning almost the entire

nonzero prior density region. The only exception was the Li et al. data, for which the MAP

estimate was lower (6973) when m = 1 was allowed.
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Figure 2: Point estimates of BA model parameters obtained by running kernel-ABC on simulated
phylogenies without training, for simulations with m = 2. Dotted lines indicate true values, and
limits of the y-axes are regions of uniform prior density. (A) Estimates for α and I against their
true values in simulations. (B) Estimates for m and N, which were held fixed in these simulations,
against true values of α .
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Figure 3: Marginal posterior distributions of BA model parameters estimated with kernel-ABC for
a single simulated transmission tree. Dotted lines and shaded polygon indicate true values.
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Discussion

Contact networks can have a strong influence on epidemic progression, and are potentially

useful as a public health tool [59, 32]. Despite this, few methods exist for investigating contact

network parameters in a phylodynamic framework [although see 21, 55, 6, 28, for related

work]. Kernel-ABC is a model-agnostic method which can be used to investigate any quantity

that affects tree shape [41]. In this work, we developed a kernel-ABC-based method to infer

the parameters of a contact network model. The method is general, and could be applied to

any model from which contact networks can be simulated. We demonstrated the method on

the BA model, which is a simple preferential attachment model giving rise to the power law

degree distributions commonly observed in real-world networks.

By training a kernel-SVR classifier, we found that the α and I parameters, representing

preferential attachment power and number of infected nodes, had a strong influence on tree

shape. This was reflected in the relative accuracy of the kernel-ABC estimates of these pa-

rameters. The total number of nodes N had a weak influence on tree shape, which was most

prominent when the epidemic size I and number of sampled tips were both large. The m param-

eter, representing the number of edges created in the network per vertex, did not produce much

variation in tree shape, resulting in in both poorly performing classifiers and uninformative

kernel-ABC estimates.

N was almost always significantly over-estimated using kernel-ABC. Since the prior on N

and I is jointly uniform on a non-rectangular region (I ≤ N), there is more prior mass on high

N values. In retrospect, it is unreasonable to expect good estimation of N, because adding

more nodes to a BA network does not change the edge density or overall shape. This can be

illustrated by imagining that we add a small number of nodes to a network after the epidemic

simulation has already been completed. It is possible that none of these new nodes attains

a connection to any infected node. Thus, running the simulation again on the new, larger

network could produce the exact same transmission tree as before. We note also that our

accurate estimates of I may have been influenced by this prior, which places more mass on

low I values. However, the MAP estimate of I was very high for the Novitsky et al. [37] and

Novitsky et al. [38] data, suggesting that a strong enough signal in the data can overcome the

prior.

As noted by Lintusaari et al. [31], uniform priors on model parameters may translate to

highly informative priors on quantities of interest. We observed a non-linear relationship be-

tween the preferential attachment power α and the power law exponent γ (fig. S9). Therefore,

placing a uniform prior on α between 0 and 2 is equivalent to placing an informative prior that

γ is close to 2. Therefore, if we were primarily interested in γ rather than α , a more sensible

choice of prior might have a shape informed by fig. S9 and be bounded above by approxi-
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mately α = 1.5. This would uniformly bound γ in the region 2≤ γ ≤ 4 commonly reported in

the network literature [30, 47, 8, 6]. We note however that Jones and Handcock [25] estimated

γ values greater than four for some datasets, in one case as high as 17, indicating that a wider

range of permitted γ values may be warranted.

Our investigation of published HIV datasets indicated heterogeneity in the contact network

structures underlying several distinct local epidemics. When interpreting these results, we cau-

tion that the BA model is quite simple and most likely misspecified for these data. In particular,

the average degree of a node in the network is equal to 2m, and therefore is constrained to be

a multiple of 2. Furthermore, we considered the case m = 1, where the network has no cy-

cles, to be implausible and therefore assigned it zero prior probability in one set of analyses.

This forced the average degree to be at least four, which may be unrealistically high for sexual

networks. The fact that the estimated values of α differed substantially for three datasets de-

pending on whether or not m = 1 was allowed by the prior is further evidence of this potential

misspecification. However, we note that for two of the datasets, the estimated values of α did

not change much between priors, and the estimates of I were robust to the choice of prior for all

datasets studied. More sophisticated models, for example models incorporating heterogeneity

in node behaviour, are likely to provide a better fit to these data.

With respect to the preferential attachment power α , the five datasets analysed fell into

three categories (fig. 4). First, we estimated a preferential attachment power close to 1, in-

dicating linear preferential attachment, for the outbreaks studied by Niculescu et al. [36] and

Wang et al. [59]. These values were robust to specifying different priors for m. Both studies

were of populations in which we would expect a high degree of epidemiological relatedness:

Niculescu et al. [36] studied a recent outbreak among Romanian injection drug users (IDU),

while Wang et al. sampled acutely infected MSM in Beijing, China. Both these are contexts

in which we would expect some of the assumptions of the BA model, such as a connected

network, relatively high mean degree, and preferential attachment dynamics, to hold.

The remaining three datasets (Cuevas et al. [11], Novitsky et al. [38], and Li et al. [29])

had estimated values of α below 0.5 when m = 1 was included in the prior, but these were not

robust to changing the prior to exclude m = 1. For the Cuevas et al. data, model misspecifi-

cation is likely partially responsible. While the authors found that a large proportion of the

samples were epidemiologically linked, these were mainly in small local clusters rather than

the single large component postulated by the BA model. In addition, the mixed risk groups

in the dataset would be unlikely to significantly interact, further weakening any global pref-

erential attachment dynamics. The dataset studied by Novitsky et al. [38] originated from a

densely sampled population where the predominant risk factor was believed to be heterosex-

ual exposure. Although the MAP estimate of α was almost unchanged when the value m = 1

was excluded from the prior, the confidence interval shrank significantly. For both priors, the
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estimated prevalence was extremely high, in fact higher than the estimated HIV prevalence

in the sampled region. The authors indicated that the source of the samples was a town in

close proximity to the country’s capital city, and suggested that there may have been a high

degree of migration and partner interchange between the two locations. It is possible that the

contact network underlying the subtree we investigated includes a much larger group based in

the capital city, which would explain the high estimate of I. There is no clear explanation for

the discrepancy between the two priors for the Li et al. [29] data, as the subset we analyzed

formed a phylogenetic cluster and therefore was a good candidate for the BA model. However,

nearly all the posterior density was assigned to m = 1 when this value was allowed, indicating

that the network was more likely to have an acyclic tree structure.

In addition to the aforementioned possibility of misspecification, additional modelling as-

sumptions include the network being connected and static, all transmission rates being equal,

no removal after infection, identical behaviour of all nodes, and random sampling. The last two

were addressed with small-scale experiments. We simulated a network where some nodes ex-

hibited a higher attachment power than others, and found that the estimated attachment power

was simply the average of the two values. This indicated that, although we could characterize

the network in aggregate, the estimated parameters could not be said to apply to any individual

node. The effect of biased sampling was investigated by analysing a transmission tree which

had been sampled in a peer-driven fashion. The results were roughly in line with those for

random sampling, however the estimated value of α was lower than the average for randomly-

sampled trees. Further experiments would be necessary to fully explore the impact of these

assumptions on the method’s accuracy. However, despite these issues, we felt it was best to

demonstrate the method first on a simple model. It is possible to use this framework to fit more

complex models which address some of these issues, such as one incorporating heterogeneous

node behaviour, which may prove a fruitful avenue for future investigations.

Our method has a number of caveats, perhaps the most significant being that it takes a

transmission tree as input. In reality, true transmission trees are not available and must be

approximated, often by way of a viral phylogeny. Although this has been demonstrated to be

a fair approximation [e.g. 27], and is frequently used in practice [e.g. 50], the topologies of a

viral phylogeny and transmission tree can differ significantly [61] due to within-host evolution

and the sampling process. In addition, the ABC-SMC algorithm is computationally intensive,

taking about a day when run on 20 cores in parallel with the settings we described in the

methods. Nevertheless, our method is potentially useful to epidemiological researchers inter-

ested in the general characteristics of the network structure underlying disease outbreaks. This

work, and previous work by our group [41], has demonstrated that kernel-ABC is a broadly

applicable and effective framework in which to perform phylodynamic inference.
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