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Abstract 

Local adaptation is often studied via 1) multiple common garden experiments comparing 30 

performance of genotypes in different environments and 2) sequencing genotypes from 

multiple locations and characterizing geographic patterns in allele frequency. Both 

approaches aim to characterize the same pattern (local adaptation), yet the 

complementary information from each has not yet been coherently integrated into a 

modeling framework. Here, we develop a genome-wide association model of genotype 35 

interactions with continuous environmental gradients (G×E), i.e. reaction norms. We 

employ an imputation approach to synthesize evidence from common garden and 

genome-environment associations, allowing us to identify loci exhibiting environmental 

clines where alleles are associated with higher fitness in home environments. Simulations 

show our approach can increase power to detect loci causing local adaptation. In a case 40 

study on Arabidopsis thaliana, our approach reveals candidate genes for local adaptation 

based on known involvement in environmental stress response. Most identified SNPs 

exhibited home allele advantage and fitness tradeoffs along climate gradients, suggesting 

selective gradients maintain allelic clines. SNPs exhibiting G×E associations with fitness 

were enriched in genic regions, putative partial selective sweeps, and G×E associations 45 

with an adaptive phenotype (flowering time). We discuss extensions for situations where 

only adaptive phenotypes other than fitness are available. Many types of data may point 

toward the loci underlying G×E and local adaptation; coherent models of diverse data 

provide a principled basis for synthesis.  
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Introduction 50 

Populations commonly exhibit phenotypic differences, often due to local adaptation to 

environment (Leimu & Fischer 2008; Hereford 2009). Local adaptation is defined as a 

genotype-by-environment interaction (G×E) for fitness that favors home genotypes 

(Kawecki & Ebert 2004). Local adaptation has long interested empirical and theoretical 

biologists (Clausen et al. 1940, 1948; Levene 1953; Slatkin 1973). However, little is 55 

known about the genomic basis of local adaptation, such as genetic architecture, major 

molecular mechanisms, and the extent to which genomic divergence among populations 

is driven by local adaptation. Because local adaptation involves organismal responses to 

environmental gradients, understanding the mechanisms of local adaptation has important 

applications in agriculture and biodiversity conservation under climate change (Aitken & 60 

Whitlock 2013; van Oppen et al. 2015; Lasky et al. 2015). Additionally, G×E are 

important in human phenotypes like disease (Anastasi 1958; Hunter 2005; Gage et al. 

2016). Understanding the genomic basis of G×E is an emerging area of biomedical 

research (Thomas 2010; Keller 2014) as are the genomics of local adaptation (reviewed 

by (Des Marais et al. 2013; Manel & Holderegger 2013; Tiffin & Ross-Ibarra 2014; 65 

Adrion et al. 2015; Bragg et al. 2015; Hoban et al. 2016)). 

 A central question in local adaptation is whether selective gradients can maintain 

allelic clines at individual loci, or whether stochastic processes, like limited dispersal, are 

required to explain clines at individual loci causing local adaptation (Mitchell-Olds et al. 

2007; Anderson et al. 2011b). If selective gradients cause rank changes in alleles with the 70 

highest relative fitness at an individual locus, selection may maintain a cline, a pattern 

known as genetic tradeoff or antagonistic pleiotropy (Ågren et al. 2013). Detecting loci 
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that exhibit antagonistic pleiotropy has been challenging, partly due to limited statistical 

power of approaches that conduct multiple tests of significance for opposing fitness 

effects in different environments (Fournier-Level et al. 2011a; ANDERSON et al. 2013).  75 

 Common garden experiments have long been employed to characterize genetic 

variation in phenotypes (Langlet 1971). In particular, reciprocal common gardens at 

multiple positions along environmental gradients are a powerful tool to reveal local 

adaptation (Clausen et al. 1940, 1948). One approach to identifying the loci underlying 

local adaptation is to combine fitness data from multiple common garden experiments 80 

with genomic data (Lowry & Willis 2010; Fournier-Level et al. 2011a; Anderson et al. 

2011a; Ågren et al. 2013). However, common gardens are logistically challenging and it 

is unclear how the typically small spatiotemporal scales of common gardens relate to the 

scales of processes that generate local adaptation in the wild (Weigel & Nordborg 2015). 

 An alternative to discovering genetic and ecological mechanisms of local 85 

adaptation is to study changes in allele frequency along environmental gradients (Hedrick 

et al. 1976; Tiffin & Ross-Ibarra 2014; Adrion et al. 2015; Bragg et al. 2015; Rellstab et 

al. 2015; Hoban et al. 2016). In this approach, known as a genome-environment 

association study, individuals are sequenced from multiple locations along environmental 

gradients. Genetic markers and environmental gradients showing the strongest 90 

correlations are then considered as potentially involved in local adaptation (e.g. Hancock 

et al. 2008, 2011; ECKERT et al. 2010; Turner et al. 2010; Coop et al. 2010; Lasky et al. 

2012; Jones et al. 2012; Fitzpatrick and Keller 2015). A challenge of both traditional 

association studies (genome-phenotype) and genome-environment association studies is 

that the genomic variation is observational and is not experimentally randomized (as 95 
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opposed to linkage mapping with experimental crosses) (Devlin & Roeder 1999; 

Hancock et al. 2008; Kang et al. 2008; Nordborg & Weigel 2008). As a result, many loci 

may show spurious associations with phenotypes or with environment (Price et al. 2010; 

Schoville et al. 2012; Bragg et al. 2015). Spurious associations are particularly 

problematic for environmental gradients that are spatially autocorrelated due to 100 

confounding with population structure (Schaffer & Johnson 1974). A technique for 

dealing with this confounding is to control for putative population structure when testing 

associations (Coop et al. 2010) by controlling for genome-wide (identity-in-state) 

similarity among accessions (Yoder et al. 2014; Lasky et al. 2014).  

Understanding the genomic basis of adaptation may benefit from synthesizing 105 

lines of evidence, for example by combining multiple types of genome scans to 

strengthen the evidence that a locus is under selection (Lasky et al. 2014; Evans et al. 

2014). For example, researchers have identified overlap between outliers for selection 

statistics and markers associated with putatively adaptive phenotypes (Horton et al. 2012) 

or between SNPs associated with phenotypes and those associated with climate gradients  110 

(Berg & Coop 2014). (Lasky et al. 2015) used a Bayesian approach to combine 

associations with phenotype and environment, first calculating climate associations and 

then using each marker’s association to determine the prior probability it was associated 

with G×E for adaptive phenotypes, yielding a posterior. Although combining multiple 

lines of evidence is potentially useful, the quantitative approaches in past studies have 115 

often been ad hoc and lacked reasoned principles. Here we develop a modeling 

framework to conduct genome-wide association scans for G×E while coherently 

synthesizing multiple data types. Existing approaches to genome-wide association studies 
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(GWAS) with G×E (sometimes referred to as genome-wide interaction studies, GWIS) 

have dealt with categorical nominal environments (Murcray et al. 2009; Thomas 2010; 120 

Korte et al. 2012; Gauderman et al. 2013; Marigorta & Gibson 2014), benefiting from the 

statistical convenience of modeling phenotypes in different environments as correlated 

traits (Falconer 1952). Association models have not been applied to G×E along 

continuous environmental gradients, such as modeling SNP associations with reaction 

norms (Jarquín et al. 2014; Tiezzi et al. 2017). Despite the existence of studies where 125 

fitness was measured in multiple common gardens for diverse genotyped accessions 

(Fournier-Level et al. 2011a), studies where linkage mapping was conducted for fitness at 

multiple sites (Ågren et al. 2013), and studies where authors conducted association 

mapping for G×E effects on phenotypes (Li et al. 2014), we found no example of 

association studies of G×E for fitness, which is the basis of local adaptation.  130 

The underlying processes generating local adaptation are the same regardless of 

whether genome-environment associations or common gardens are used for inference. 

Thus it is natural to synthesize these data. Furthermore, by combining datasets into a 

single inferential framework we may increase power and accuracy for detecting causal 

loci. Here, we simultaneously leverage data from multiple common gardens and genome-135 

environment associations. In the remainder, we describe our approach, present test cases 

using simulations and published data on Arabidopsis thaliana (hereafter Arabidopsis), 

and discuss extensions. 

 

Methods   140 

Genome-wide association study of G×E effects on fitness 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2017. ; https://doi.org/10.1101/051110doi: bioRxiv preprint 

https://doi.org/10.1101/051110
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7	

In common garden experiments, environment is often treated as a factor. When more than 

two gardens are conducted, variation among them may be considered in a more general 

fashion. For a given environmental gradient, each common garden may be located along 

the gradient according to its conditions. Describing common gardens as such may be 145 

informative about the specific ecological mechanisms driving selective gradients, taking 

advantage of the ordered nature of gardens’ environments. We leverage multiple common 

garden experiments to identify markers (single nucleotide polymorphisms, SNPs) that 

show the strongest G×E effects, loci where allelic state shows the strongest interaction 

with environment in its association with fitness.  150 

Local adaptation requires a genotype by environment interaction for fitness at the 

whole genome-level. Variation in individual phenotypes from multiple environments can 

be separated into components determined by genotype, environment, and G×E (Yates & 

Cochran 1938; Falconer 1952). To assess this interaction at an individual locus, one can 

assume that the relative fitness of individual i in a single location, wi, satisfies the linear 155 

model  

!" = $ + &'(" + &)*",, + &)×'*",,(" +	/", 

(eqn 1) 

where Gi,l is the genotype of individual i at locus l and Ei is the value of a single 

environmental variable at the location where wi was measured. The βE parameter gives 160 

the effect of environment on fitness and βG gives the effect of genotype on fitness. Our 

primary interest lies in the βG×E parameter, which gives the strength and direction of G×E 

effects; βG×E determines how responses to environmental gradients are mediated by 
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genotype.  The term $ gives the fitness intercept. We assume that the vector of errors, 0, 

can be expressed as 165 

0 = 12 + 3 

where 1 is a diagonal matrix of the environmental values, and  

2 ∼ 56(0, 9)×': 	;)      3 ∼ 56(0, 9=:>).  

 (eqn 2) 

Here 2 and 3 are independent. The matrix K is calculated as the genome-wide identity in 170 

state for each pair of accessions (Kang et al. 2008). Random effects 2 are included 

because a substantial portion of G×E may be associated with population structure (Lasky 

et al. 2015); naively applying standard F-tests to assess the interaction effects can result 

in a dramatic increase in false positive rates. To ameliorate this issue, the random effect v 

represents the genetic background interactions with environment (G×E, magnitude of 175 

their variance determined by 9)×': ), while e represents the independent and identically 

distributed error in the model (variance determined by 9=:). However, it is important to 

note that incorporating random effects may also decrease power when causal loci covary 

with genomic background. 

 180 

Coherent synthesis of common gardens and genome-environment associations via 

imputation 

We now tackle the goal of synthesizing genome-environment associations and G×E 

observed in multiple common gardens, given that both patterns are expected to inform on 

the same process of local adaptation. The challenge in synthesizing these approaches is 185 

that genome-environment associations are purely observational and lack common garden 
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data. However, an implicit assumption in studies of genome-environment associations is 

that local adaptation occurs; if a common garden were conducted at each location where 

genotypes are collected, the home genotype would tend to be most fit. Here, we make this 

assumption of genome-environment association studies explicit. A formal consequence of 190 

this assumption is an (imputed) observation of highest relative fitness for genotypes at 

home, which we combine with observed genomic marker and environment of origin data 

(Figure 1). Next, we scale relative fitness within each common garden so that the 

maximum observed fitness is given a relative fitness of unity, yielding a measure that can 

be directly observed or imputed in each type of study (common garden and genome-195 

environment association). For imputation, we then assume that each genotype collected 

from wild populations is locally adapted at its home and thus has a relative fitness = 1 

(Figure 1). After imputation, we can calculate marker associations with G×E for fitness, 

where each fitness observation arises from either (A) observations on a given genotype 

by common garden combination or (B) imputation on a given genotype collected from its 200 

natural home and subsequently sequenced. 

 

Comparing approaches and fitting models 

We compared four reaction norm approaches to genome-wide G×E association studies in 

addition to a more common approach to genome associations with the home environment 205 

(genome-environment association). In Approach 1, we ignored potential confounding of 

population structure, using least squares to fit the model in eqn 1 where 0 is normal, 

independent, and identically distributed (excluding random effects v), but only including 

observed fitness data from common gardens and. excluding imputed fitness data. In 
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Approach 2, we again used a linear model but included imputed fitness data; these 210 

imputations using information from the ancillary geographic data could possibly reduce 

false positives. In Approach 3, we fit the full mixed-effects model (including random 

effects v), but excluded imputed fitness. In Approach 4, we fit the full mixed-effects 

model while including imputed fitness data. To test a genome-environment association 

approach (Approach 5), we also compared associations between SNPs and home 215 

environments used a mixed-effects model in an approach akin to traditional association 

mapping but where environment is substituted for phenotype (Yoder et al. 2014; Lasky et 

al. 2014). 

To improve computation time for the mixed-model approaches (3 & 4), we used 

the method of (Kang et al. 2010) and first fit the random effects with covariance 220 

determined by kinship, and then fixed these effects while testing the effects of each SNP 

on the phenotype. We included the environmental covariate effect in this initial step, 

following the recommendation of (Kang et al. 2010) for fitting additional non-SNP 

covariates. In other words, we first fit the model: 

!" = $ + &'(" +	/", 225 

 (eqn 3). 

Eqn. 3 is the same as Eqn. 1 but with genetic effects omitted. We obtained parameter 

estimates $, &', 9=:, 9)×': . We then take the variance parameter estimates and use them to 

estimate the remaining slope coefficients in eqn 1 using generalized least squares. 

Because inclusion of the &' term in ordinary least squares regression (Approaches 1-2) 230 

led to poor model fit, we excluded the term from those approaches. We fit the discussed 

mixed-model using Minimum Norm Quadratic Unbiased Estimation, MINQUE (Rao 
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1971; Brown 1976; Reimherr & Nicolae 2016). This approach is equivalent to restricted 

maximum likelihood, REML, but rephrased in a way that more fully exploits the linearity 

of the model, resulting in a flexible framework that can be quickly computed. 235 

 

Simulation 

We used simulations to demonstrate how our imputation technique can improve power to 

identify loci causing G×E for fitness. To assess scenarios with varying strength of local 

adaptation, we tested simulations of varying dispersal distances. (Forester et al. 2016) 240 

previously simulated local adaptation in a square two-dimensional 1024 x 1024 grid-cell 

landscape along a continuous environmental gradient, using the program CDPOP v1.2 

(Landguth & Cushman 2010). (Forester et al. 2016) simulated 5,000 diploid individuals 

with 100 bi-allelic loci, one of which was under selection (99 neutral loci). All loci had a 

0.0005 mutation rate per generation, free recombination, and no physical linkage. The 245 

authors ran 10 Monte Carlo replicates of the simulation for 1,250 generations, using the 

first 250 generations as a burn-in, with no selection imposed, to establish a spatial genetic 

pattern. 

In the simulation, selection changed linearly along an environmental gradient, 

with AA and aa genotypes favored at different ends of the gradient (North and South, Fig. 250 

S1). The selection strength of s=0.10 at extreme ends of the gradient was mediated 

through density-independent mortality determined by an individual’s genotype at the 

selected locus, where AA experienced 0% mortality at the North extreme and s mortality 

at the South extreme, while aa genotypes experienced the opposite selection gradient. Aa 

genotypes experienced uniform selection of s/2 across the gradient.  255 
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Mating pairs of hermaphroditic individuals and dispersal locations of offspring 

were chosen using a random draw from the inverse-square probability function of 

distance, truncated at a distance equal to d, the proportion of a landscape edge. We tested 

three values of d: 0.03, 0.1, and 0.25 (i.e. truncated at 31, 102, and 256 pixels, 

respectively). These three values resulted in strong, moderate, and weak local adaptation, 260 

respectively, with the Pearson’s correlation between selected locus and selective gradient 

equal to 0.28, 0.24, and 0.11, respectively. Individuals near landscape edges were unable 

to disperse or mate with individuals beyond the edge such that boundaries were not 

periodic. 

The number of offspring produced from mating (fitness) was determined from a 265 

Poisson distribution (λ = 4), which produced an excess of individuals each generation, 

maintaining a constant population size of 5,000 individuals at every generation. Carrying 

capacity of the landscape surface was 5,000 individuals, and excess individuals were 

discarded once all 5,000 locations became occupied. 

We sampled 250 individuals randomly from the 5,000 available. We then located 270 

four common gardens at equal intervals along the gradient, encompassing the extremes of 

the selection surface (Fig. S1). For the moderate dispersal and local adaptation scenario, 

we tested the effect of common gardens that sample only half the environmental gradient 

(Fig. S1). For the gardens, we subsampled 100 individuals from the full 250, and then 

averaged fitness for 25 clones of each individual (each with the identical adaptive 275 

genotype of their parent clone) in each common garden using the above parameters for 

selection and fitness. After imputing fitness for the 250 individuals in their home 

environments, we had a total of 650 observations of fitness × location (250 imputed 
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observations from individuals sampled across the landscape + 400 real observations 

arising from 100 clones in each of four common gardens). For both the simulations and 280 

the Arabidopsis case study, we focus on the 1% of SNPs with the lowest p-values and 

their role in local adaptation. In simulations with 100 SNPs, this was equivalent to the 

lowest p-value SNP. To determine false positive rates in simulations, we calculated the 

proportion of simulations for a given scenario where a neutral (as opposed to a causal) 

SNP had the lowest p-value for βG×E.  285 

 

Model extensions 

Two extensions to our approach could increase its generality by treating unobserved 

fitness as a parameter rather than using imputation. First, an alternative would be to treat 

unobserved fitness of a genotype in its home environment as a free parameter. To 290 

constrain estimates of unobserved fitness one could use informative priors, such that the 

prior probability of relative fitness at home for each genotype would be monotonically 

increasing, i.e. local adaptation is the most likely state, but minor maladaptation is 

common. Inferences about unobserved fitness could be further constrained using 

hierarchical models, such that home fitness parameters for multiple genotypes arise from 295 

a common distribution (GELMAN & HILL 2007). Relaxing the assumption of perfect 

local adaptation would also generate less biased, if less precise, parameter estimates for 

βG×E, which are currently conservative because imputation of local adaptation for 

maladapted genotypes will push βG×E toward zero and weaken estimates for selective 

gradients. 300 
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Second, when fitness is not measured, components of fitness (e.g. survival) or 

traits thought to be locally adaptive (e.g. physiological or behavioral) can be measured 

and used to infer the genomic basis of local adaptation. For example, instead of modeling 

SNP×environment associations with fitness, one could model SNP×environment 

associations with components of fitness or adaptive traits measured in common gardens, 305 

and estimate unobserved traits for sequenced genotypes using informative priors. To be 

clear, in our case study of Arabidopsis, we had near but not complete lifetime fitness data 

(missing germination stage). Here we do not fit these model extensions to data, given the 

current computational challenge of fitting many more parameters in a Bayesian 

framework. 310 

 

Case study: local adaptation to climate in Arabidopsis thaliana 

We applied these approaches to published data from studies of Arabidopsis thaliana in its 

native Eurasian range. Fournier-Level et al. (2011) conducted replicated common 

gardens at four sites across Europe: Spain, England, Germany, and Finland (Figure 2). 315 

With these data, (Fournier-Level et al. 2011a; b; Wilczek et al. 2014) showed evidence 

that genotypes are locally adapted to their home temperature and moisture regimes and 

that alleles associated with high fitness in a given garden tended to be found nearer to that 

garden than alternate alleles, suggesting these loci were involved in local adaptation. At 

each site the authors transplanted 157 accessions (59 in the case of Finland) on a date in 320 

the fall matched to germination of local winter-annual natural populations (Fournier-

Level et al. 2011a). The authors calculated survival (out of individuals surviving 

transplant) and average fecundity (where individuals that died before reproducing had 
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fecundity zero) giving an estimate of absolute fitness (excluding the seed to seedling 

transition) (Fournier-Level et al. 2011a). 325 

 These accessions were part of a panel of 1,307 accessions from around the globe 

that were genotyped at ~250k SNPs using a custom Affymetrix SNP tiling array 

(AtSNPtile1), with 214,051 SNPs remaining after quality control (Figure 2) (Horton et al. 

2012). This array was generated by resequencing 19 diverse ecotypes from across the 

range of Arabidopsis (Kim et al. 2007). Of the 1,307 genotyped accessions, we used 330 

1,001 accessions that were georeferenced and likely not contaminant lines (Anastasio et 

al. 2011), in addition to being from the native range in Eurasia (Hoffmann 2002; Lasky et 

al. 2012b), and excluding potentially inaccurate high altitude outliers (i.e. > 2000 m). 

After imputing fitness for accessions in their home environments we had a total of 1,531 

observations of fitness × location (1001 imputed observations + 530 real observations). 335 

We removed from association tests SNPs having minor allele frequency (MAF) below 

0.01, though we also considered a more conservative threshold of MAF = 0.1. 

 We used climate data compiled previously (Lasky et al. 2012b) from published 

global climate datasets (Hijmans et al. 2005; Zomer et al. 2008). Here we focus on four 

climate variables that differ among common gardens, are not strongly correlated, and 340 

may be involved in local adaptation: minimum temperature of the coldest month, average 

monthly minimum temperature in the growing season, coefficient of variation of monthly 

growing season precipitation, and aridity index.  

 

Genome-wide G×E associations  345 
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We separately tested for each SNP’s interaction with each of the four environmental 

variables. For each of the four approaches using common garden data we fit a model for 

each combination of SNP and environmental variable. To characterize the types of 

patterns identified by our approach, we studied variation in the SNPs in the 0.01 lower 

tail of p-values for the hypothesis test that βG×E = 0 (the coefficient for SNP×environment 350 

effects on fitness) for each climate gradient. We considered whether these SNPs showed 

patterns consistent with home genotype advantage via changes in the allele with greatest 

relative fitness along the environmental gradient (i.e. local adaptation via antagonistic 

pleiotropy) versus a pattern where βG×E merely involved changes in fitness difference 

between alleles (such as conditional neutrality or variance changing G×E), the latter of 355 

which cannot stably maintain local adaptation. For these SNPs, we calculated whether the 

direction of allelic differentiation along environmental gradients was consistent with the 

sign of βG×E. For example, if one allele was more common in accessions from warmer 

locations, we assessed whether that same allele showed an increase in relative fitness in 

warmer common gardens.  360 

Next, we assessed whether our model predicted that different alleles were most fit 

in the two common gardens at either extreme of a climate gradient, i.e. whether the SNP 

was associated with rank changes in fitness that are consistent with antagonistic 

pleiotropy. For example, if one allele was estimated to be most fit in the coldest common 

garden, we determined whether a different allele was estimated to be most fit in the 365 

warmest common garden. Furthermore, we also quantified similarity (rank correlation in 

SNP scores and proportion of SNPs common to the strongest 0.01 tail of associations) 

between results from our G×E approach versus those from other recent studies of 
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association with home climate in Arabidopsis (Hancock et al. 2011; Lasky et al. 2012b, 

2014). 370 

 

Enrichment of strong SNP×environment associations across the genome 

We studied whether loci we identified as likely being involved in local adaptation 

exhibited supportive patterns in ancillary datasets. First, to assess whether our association 

approach is capable of identifying the signal of local adaptation rather than spurious 375 

background associations, we tested for enrichment of SNPs in genic versus intergenic 

regions. These tests are based on the hypothesis that loci involved in adaptation are on 

average more likely to be found near genes and linked to genic variation, in comparison 

with loci evolving neutrally (Hancock et al. 2011; Lasky et al. 2012b). For a test statistic, 

we calculated the portion of SNPs in the 0.01 lower p-value tail that were genic versus 380 

intergenic.  

Second, we hypothesized that locally-adaptive alleles may have been subject to 

partial (local) selective sweeps, especially given that much of Arabidopsis’ Eurasian 

range was recently colonized following the last glacial maximum. We tested for an 

enrichment of significant (alpha = 0.05) pairwise haplotype sharing (PHS, (Toomajian et 385 

al. 2006)) in the SNPs (using PHS calculated by Horton et al. 2012) showing the greatest 

evidence of G×E for fitness. We also tested evidence that these SNPs are enriched for 

significant (alpha = 0.05) integrated extended haplotype homozygosity (standardized, 

iHS (Voight et al. 2006)), an additional metric of partial sweeps. We used ancestral SNP 

allele determinations from (Horton et al. 2012) (based on alignment with the Arabidopsis 390 

lyrata genome) and the R package ‘rehh’ to calculate iHS (Gautier et al. 2012).  
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Third, we also studied whether loci we identified were associated with plasticity 

in flowering time, a trait that plays a major role in local adaptation to climate in plants 

(Hall & Willis 2006; Franks et al. 2007; Keller et al. 2012; Lowry et al. 2014). Recently 

(Li et al. 2014) tested the flowering time response of 417 natural accessions to simulated 395 

warming (up to ~4ºC), and then identified SNP associations with changes in flowering 

time across treatments, G×E for flowering time. We tested whether SNPs we identified as 

having SNP×environment interactions for fitness (0.01 lower p-value tail) were enriched 

in nominally significant associations (alpha = 0.05) with G×E for flowering time. 

To generate a null expectation for each enrichment while maintaining a signal of 400 

linkage disequilibrium in the null model, we circularly permuted SNP categories (e.g. as 

genic versus intergenic, having significant iHS or not) along the genome and recalculated 

the test statistics 10,000 times (Hancock et al. 2011; Lasky et al. 2012b). 

 

Results 405 

We compared four approaches to genome-wide G×E association study and one approach 

for genotype-environment association. Approach 1 used only observed (excluding 

imputed) fitness data, but no correction for population structure. Approach 2 used 

observed and imputed fitness data, and no correction for population structure. Approach 3 

fitted the full mixed-effects model, but only including observed fitness data from 410 

common gardens, excluding imputed fitness. Approach 4 fitted the full mixed-effects 

model while including both observed and imputed fitness data. Approach 5 used a mixed 

model of genotype associations with environment (no common garden data). 
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Simulations 415 

Across dispersal scenarios, we found that mixed models decreased false positive rates 

and increased accuracy of inference as to the SNPs driving G×E for fitness (Figure 3). 

When dispersal was highest and local adaptation weakest, all approaches exhibited an 

increase in false positives compared to the moderate dispersal scenario. Among the 

approaches using common garden data (Approaches 1-4), the mixed models generally 420 

had low false positive rates and thus high true positive rates. Based on the low false 

positive rates and low p-values for causal SNPs in Approach 3, common garden data 

were a clear source of statistical power to identify causal SNPs (Figure 3). Including 

imputed data (Approach 4) further reduced false positive rates and resulted in no false 

positives under the two lower dispersal scenarios. Genotype-environment associations 425 

that did not use common garden data (Approach 5) had similarly low false positive rates. 

However, common garden data combined with imputations (Approach 4) yielded 

stronger inference for SNPs driving G×E; causal SNPs had lower p-values (Figure 3, 

median causal SNP p for low, med., high dispersal scenarios: 3.2×10-6, 4.5×10-13, 

7.4×10-7) compared to ignoring common garden data (Approach 5, median causal SNP p 430 

for low, med., high dispersal scenarios: 2.3×10-7, 1.9×10-10, 1.2×10-5). Under a scenario 

of medium dispersal and common gardens that only covered half the gradient, false 

positive rates were elevated for approaches excluding fixed effects (Approaches 1-2) or 

excluding imputations (Approach 3) but not when imputations and random effects were 

included (Approach 4, Figure S4). 435 

 

Case study on Arabidopsis  
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We found that simple linear model tests (Approaches 1-2) of SNP×environment 

interactions were highly enriched in very low p-values (Figure S5) relative to the 

theoretical expectation. After incorporating the kinship×environment random effects (but 440 

excluding imputed fitness observations, Approach 3), we found that SNP×environment 

associations with fitness were closer to the theoretical expectation but still highly 

enriched in low p-values for three climate variables. After incorporating imputed fitness 

observations into the mixed model (Approach 4, right column, Figure S5), we found p-

value distributions hewed closer to the theoretical expectation and were slightly 445 

conservative (under-enriched in low p-values) for two climate variables. These 

approaches tended to identify different SNPs as having the strongest SNP×environment 

associations with fitness (Table S5). 

 Based on the results of our simulations and the p-value distributions noted above, 

we focus the remainder of analyses on results from mixed models with imputed fitness 450 

included (Approach 4). We found that climate variables differed in the importance of 

kinship-climate interaction associations with fitness (proportion of variance in fitness 

explained by random effects v), suggesting that population structure in Arabidopsis is 

more strongly correlated with some climatic axes of local adaptation (G×E for fitness) 

compared to other climate gradients. For growing season minimum temperatures, 455 

kinship×environment interactions explained most of the variation in fitness (R2 =0.78, 

Table 1, row 3). By contrast, kinship×environment interactions for fitness were weaker 

along a gradient in winter minimum temperature (R2 =0.07). 

 Approach 4 tended to identify SNPs where SNP×environment interactions 

favored alleles in climates where they were relatively more common, that is, the sign of 460 
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allelic differences in home climates were mirrored by the sign of fitted mixed model 

SNP×environment associations with relative fitness (Table 1, row 1, and see outlier 

examples in Figure 4). In addition to characterizing SNP×environment associations, we 

tended to identify SNPs where we estimated a rank change in relative fitness for alternate 

alleles along the environmental gradient between the two extreme common gardens 465 

(where the fitted model expectation was that the allele with higher fitness at one extreme 

common garden differed from the allele with higher fitness at the other extreme, Table 1, 

row 2). It appeared that the proportion of SNPs expected to show rank changes in relative 

fitness among the common gardens was related to how much of each climate variable’s 

range was covered by gardens (Table 1, row 4). Thus the common gardens may have 470 

been limited in their ability to capture rank changing of alleles at some loci involved in 

local adaptation to aridity and growing season cold. 

We found non-random, but very weak overlap between the SNPs we identified 

and those outliers in previous analyses (Hancock et al. 2011; Lasky et al. 2012b, 2014). 

When considering mixed model (Lasky et al. 2014) or partial Mantel (Hancock et al. 475 

2011) SNP associations with the same climate variables (genome-environment 

associations with no common garden data), we found significant overlap among the 

previously identified SNPs in the 0.01 lower tail of p-values versus those in the 0.01 tail 

identified here (permutation test, all p<0.05, Table S6). However, rank correlations 

among SNP scores from previous approaches versus our current approach were very 480 

weak (all rho < 0.2, Table S6). 
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SNP×environment associations with fitness are enriched in regions suggestive of local 

adaptation 

To assess whether our approach identified certain types of SNPs, we tested for 485 

enrichment of genic and intergenic regions for SNP×environment effects on fitness 

(again focusing on Approach 4: mixed model including imputations). We found that 

SNP×environment interactions for fitness were significantly enriched in genic regions 

(Table 2; for reference, SNPs identified via Approach 2, including imputation but without 

random effects, were not significantly enriched in genic regions). Additionally, we found 490 

that SNP×environment interactions for fitness were enriched for high pairwise haplotype 

sharing (PHS) and high integrated extended haplotype homozygosity (iHS, Table 2). 

Finally, SNPs associated with G×E for flowering time response to growing temperature 

(Li et al. 2014) tended to also have strong SNP×growing season minimum temperature 

interactions for fitness (p < 0.0002) but not for other climate variables. (Table 2) 495 

Enrichments reported above did not change qualitatively (with respect to statistical 

significance) when we only considered SNPs with MAF > 0.1. 

 

SNP×environment associations with fitness identify genes potentially involved in local 

adaptation  500 

Our approach identified a number of strong candidates for local adaptation at the top of 

lists of SNPs with the strongest SNP×environment associations with relative fitness 

(Tables S1-S4). For example, the top SNP associated with aridity interaction effects on 

fitness (chr. 4, position 11005059) fell within LESION SIMULATING DISEASE 1 

(LSD1), which affects a number of traits in Arabidopsis, including survival and fecundity 505 
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under drought (Wituszyńska et al. 2013; Szechyńska-Hebda et al. 2016) (Figure 4), while 

the third SNP (chr. 2, position 7592008) fell within ATMLO8, MILDEW RESISTANCE 

LOCUS O 8, homologous with barley MLO which controls resistance to the fungal 

pathogen powdery mildew (Büschges et al. 1997). The top SNP associated with winter 

cold interaction effects on fitness (chr. 5, position 7496047) falls within coding region of 510 

WRKY38, involved in the salicylic acid pathway and pathogen defense (Kim et al. 

2008), and was the same locus identified as most strongly associated with multivariate 

climate in Lasky et al. (2012) (Figure 4). The top SNP associated with variability in 

growing season precipitation interaction effects on fitness (chr. 2, position 18504858) 

falls 380 bp from ABA HYPERSENSITIVE GERMINATION 11, AHG11, which 515 

mediates the effect of abscisic acid (ABA), a major hormone of abiotic stress response, 

on germination (Murayama et al. 2012). The fifth highest SNP (and second highest locus) 

associated with growing season cold interaction effects on fitness (chr. 3, position 

8454439) fell within ABERRANT LATERAL ROOT FORMATION 5, ALF5, a gene 

that confers resistance to toxins (Diener et al. 2001) belonging to the MATE gene family, 520 

which play a variety of roles responding to environment (Shoji 2014).  

 
Discussion 

Genetic variation in environmental responses (G×E) is ubiquitous but its genetic and 

physiological basis and role in local adaptation is poorly understood. Replicated common 525 

garden experiments and genome scans for loci exhibiting evidence for local adaptation 

have been important in understanding the genetic basis of G×E and local adaptation 

(Hancock et al. 2008; ECKERT et al. 2010; Turner et al. 2010; Fournier-Level et al. 

2011a; Lasky et al. 2012b; Ågren et al. 2013; Evans et al. 2014; Lasky et al. 2015). 
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However, the complementary information in common gardens and geographic variation 530 

in allele frequency have not been coherently synthesized. Previous association studies of 

G×E have modeled discrete, categorical environmental effects (Murcray et al. 2009; 

Thomas 2010; Korte et al. 2012; Marigorta & Gibson 2014). The modeling of G×E 

across discrete, categorical environments is typically conducted, in part, for mathematical 

convenience, as such a treatment allows the use of models designed for multiple 535 

phenotypes, where the same phenotype in different environments is considered as 

multiple phenotypes (Falconer 1952).  

We demonstrated an approach to association study of G×E for fitness and an 

imputation technique that allowed us to coherently synthesize evidence from common 

gardens and genome-environment associations. Our imputation method relied on making 540 

explicit the implicit assumption of local adaptation that underlies genome-environment 

association studies (Coop et al. 2010; Hancock et al. 2011; Lasky et al. 2012b). Using 

simulation, we demonstrated that this imputation can increase power to identify SNPs 

causing G×E for fitness and local adaptation. Our approach also identified strong 

candidate genes in Arabidopsis associated with SNPs that exhibit fitness tradeoffs along 545 

climate gradients such that locally common alleles had greater relative fitness.  

The relative information on selective and adaptive genetic mechanisms contained 

in the two datasets (common garden, geographical genomic) for a given system will be 

determined by several factors. First, the power of common gardens depends on the range 

of sampled covariates (genotype and environment). We found evidence with both our 550 

simulations and empirical case study that greater coverage of environmental gradients 

can increase power to detect loci under selection by selective gradients. Similarly, power 
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may be enhanced by including in common gardens a range of variation at locally adaptive 

loci using diverse germplasm from across gradients. However, confounding between 

population structure and adaptive loci and alternate mechanisms of local adaptation 555 

across regions suggest that regional stratification in scans for local adaptation may be 

more powerful (e.g. (Horton et al. 2016)). Additionally, the power of common gardens is 

influenced by the match between conditions in gardens and long-term natural selective 

gradients that give rise to local adaptation (Weigel & Nordborg 2015), and the heritability 

of adaptive traits and fitness. The information contained in genome-environment 560 

associations (and hence imputed fitness data here), is influenced by the strength of local 

adaptation in sampled populations (Figure 3), which itself is determined by steepness of 

selective gradients, the level of gene flow, and time populations have had to evolve 

toward equilibrium allele frequencies (Yeaman & Whitlock 2011; Lotterhos & Whitlock 

2014; Forester et al. 2016). It is important to recognize that our simulations covered a 565 

limited range of the parameter space relevant in nature (genetic architecture of local 

adaptation, dimensionality of environmental selective gradients, etc.). Here, populations 

were given time to reach equilibrium (Forester et al. 2016), which likely enhanced the 

power of genotype-environment associations compared to scenarios common in nature 

where populations may still be responding to long-term environmental changes such as 570 

glacial cycles. Apart from information on genetic mechanisms of G×E for fitness, 

common gardens afford a more direct opportunity to study phenotypes under selection, as 

opposed to genotype–environment associations where information on phenotype is 

limited to gene annotations. 
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 Above we described a method of imputation based on the assumption of local 575 

adaptation, i.e. home genotypes had greater fitness than away genotypes. However, local 

adaptation in nature is typically imperfect, such that the optimal genotype for a given 

location might not be the home genotype (Leimu & Fischer 2008; Hereford 2009). Local 

adaptation may not occur due to immigration of maladaptive alleles (Slatkin 1973), 

limited genetic variation (Barton 2001), temporal environmental shifts, and other 580 

processes (Bridle & Vines 2007). Thus our imputation can be considered a heuristic to be 

improved by further development.  

 

Genotype-by-environment interactions in genome-wide association studies 

Recent advances in association models have included explicit modeling of G×E (Murcray 585 

et al. 2009; Thomas 2010; Korte et al. 2012; Marigorta & Gibson 2014; Li et al. 2014; 

Kooperberg et al. 2016; Windle 2016), but to our knowledge there are no published 

genome-wide association studies accounting for SNP interactions with continuous 

environmental gradients (a reaction norm approach, cf. Jarquín et al. 2014; Tiezzi et al. 

2017). By employing a reaction norm approach to G×E (as we did here), models can be 590 

applied to prediction at new sites, which is not possible using correlated trait approaches 

to G×E (Falconer 1952; Korte et al. 2012) where sites are treated as idiosyncratic. Some 

of the aforementioned categorical treatments of SNP×environment interactions were used 

in association studies for human disease. However, many of the environmental variables 

that may mediate genetic risk of disease are continuous in nature, such as exposure to 595 

ultraviolet radiation and tobacco smoke. Future research on local adaptation and human 
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disease may benefit from exchange of approaches given the shared importance across 

disciplines of understanding the genomic basis of G×E. 

 

Case study on Arabidopsis thaliana 600 

Our approach identified many SNPs where allelic variation was associated with rank-

changing relative fitness tradeoffs along climate gradients (e.g. all 214 of the SNPs with 

strongest interaction, i.e. 0.001 quantile, with winter minimum temperature association 

for fitness), loci where selective gradients may stably maintain population differentiation 

(Anderson et al. 2011b; Ågren et al. 2013). Studies of local adaptation genomics often 605 

find limited evidence for loci with antagonistic pleiotropy. A previous study of the 

common garden data used here (Fournier-Level et al. 2011a) found that the SNPs with 

the strongest association with fitness in one common garden were rarely among those 

with the strongest associations in another garden, which the authors interpreted as 

evidence for conditional neutrality. However, the fact that a locus is not among the 610 

strongest associated with fitness at an individual site does not indicate the locus is neutral 

at that site, it may simply be under relatively weaker selection (see Figure S6 for example 

illustration). By contrast with previous approaches that model phenotypes at a single site, 

our model was explicitly focused on detecting alleles with the strongest evidence for 

SNP×climate interactions favoring home alleles. Thus our explicit model of G×E	is	more	615 

likely	to	detect loci with patterns indicative of antagonistic pleiotropy compared with 

approaches that model fitness in a single common garden at a time, approaches that do 

not model G×E.  
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Local adaptation may often involve complex traits governed by many loci. Loci 

exhibiting antagonistic pleiotropy and loci exhibiting G×E but no tradeoffs (variance 620 

changing or conditional neutrality) may both underlie genome-level local adaptation. 

Note that our study, like that of (Fournier-Level et al. 2011a) is based on association 

mapping, which may suffer from identification of more false positives compared with 

linkage mapping approaches (HALL et al. 2010; ANDERSON et al. 2013; Ågren et al. 

2013). Follow-up experimental study of phenotypic effects of variation at individual loci 625 

is required to confirm the results of association mapping (Verslues et al. 2014; 

Broekgaarden et al. 2015). 

 We found evidence that SNP×climate interaction effects on fitness were enriched 

in genic regions, suggesting that our model captured a signal of local adaptation rather 

than population structure. We found that enrichments in genic SNPs only emerged after 630 

using a mixed model to control for the putative effects of population structure (genome-

wide similarity), suggesting that the genic-enriched patterns of divergence we modeled 

were not simply associated with overall patterns of among-population divergence. This 

enrichment is consistent with other findings in Arabidopsis (Hancock et al. 2011; Lasky 

et al. 2012b) and other species ((Coop et al. 2009; Fumagalli et al. 2011; Lasky et al. 635 

2015), but see (Pyhäjärvi et al. 2013)). We do not interpret this enrichment as indicating 

that changes in amino acid sequences are more important than regulatory evolution in 

local adaptation, but rather as supporting the hypothesis that local adaptation is more 

likely to involve sequence evolution near genes as opposed to at locations farther from 

genes, where many intergenic SNPs are found.  640 
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 We found evidence that loci we identified as candidates were enriched in 

evidence for partial selective sweeps (PHS and iHS statistics), suggesting that recent 

sweeps in particular environments are an important mode of local adaptation (Voight et 

al. 2006; Toomajian et al. 2006). These local sweeps may be expected based on the range 

dynamics of Arabidopsis, which has colonized much of its Eurasian range following the 645 

retreat of glaciers (Sharbel et al. 2000), a process that likely involved recent local 

adaptation. It is important to note that extended haplotype patterns suggestive of partial 

sweeps may occur at the shoulders (away from causal loci) of complete sweeps (Schrider 

et al. 2015), thus caution is warranted in attributing our observed PHS and iHS 

enrichment to localized sweeps versus global sweeps at nearby loci. 650 

We	found	significant	overlap	between	SNPs	associated	with	G×E	for	fitness	

along	growing	season	cold	gradients	and	SNPs	associated	with	G×E	for	flowering	

time	across	growing	season	temperature	treatments	(Li	et	al.	2014).	Our	findings	

suggest	that	evolution	of	plasticity	in	flowering	time	is	a	mechanism	of	local	

adaptation	along	growing	season	temperature	gradients	and	that	our	model	has	655 

captured	the	signal	of	this	adaptation.	For	organisms	inhabiting	seasonal	

environments,	timing	of	the	life	cycle	can	have	large	impacts	on	fitness.	Previous	

common	garden	experiments	have	provided	strong	evidence	that	flowering	time	is	a	

central	trait	involved	in	local	adaptation	(Hall & Willis 2006; Franks et al. 2007; 

Keller et al. 2012; Lowry et al. 2014)	with	molecular	study	further	supporting	the	660 

role	of	flowering	time	(Stinchcombe	et	al.	2004;	Caicedo	et	al.	2004;	Shindo	et	al.	

2005;	Lovell	et	al.	2013)	and	the	role	of	plasticity	(Fraser	2013;	Lasky	et	al.	2014)	in	

local	adaptation.	
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Though there was overlap with signal identified by previous approaches using the 

same data (Hancock	et	al.	2011;	Lasky	et	al.	2012b,	2014), overlap was generally 665 

weak, indicating our approach identified distinct loci as causing local adaptation. In our 

case study on Arabidopsis, the SNPs that exhibited the strongest evidence for 

SNP×climate interaction effects on fitness often fell within the coding regions of strong 

candidate genes based on known roles in environmental responses, suggesting our 

approach is a useful for identifying loci underlying local adaptation.  670 

 
  
Conclusions 

Local adaptation to environment involves genotype-by-environment interactions for 

fitness. Genome-wide association studies are a promising approach for identifying the 675 

genomic basis of local adaptation and G×E. Additional approaches like genome-wide 

expression profiling may also be useful for uncovering the genomic basis of local 

adaptation (Des Marais et al. 2013). Future approaches that use a principled basis for 

quantitative synthesis of patterns in multiple data types (Levy Karin et al. 2017) may 

enhance our ability to characterize adaptation in an integrative fashion.  680 
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Table 1. Characterization of patterns in Arabidopsis case study identified by Approach 4 (mixed 
model including imputations) for SNPs in 0.01 lower tail of p-values for SNP×environment 995 
interactions for fitness (first two rows of table) and for kinship×environment interactions for fitness 
(third row). SNPs with home allele advantage are defined as those where the sign of allelic 
differences in home climates were mirrored by the sign of fitted mixed model SNP×environment 
associations with relative fitness. Rank changing SNPs are those where we estimated a rank 
change in relative fitness for alternate alleles along the environmental gradient between the two 1000 
extreme common gardens. The final row gives the proportion of total observed climate gradient 
(among ecotypes) captured by the two most extreme common gardens. 

Statistic Aridity  
CV grow. 
seas. prec.  Min. temp.  

Min. temp. 
grow. seas.  

     Proportion SNP×E with home allele advantage 0.46 0.89 0.92 >0.99 
Proportion SNP×E rank changing 0.31 0.92 >0.99 0.73 

     
Kinship×E R2 for fitness 0.08 0.58 0.07 0.43 

     Proportion climate gradient covered by gardens 0.13 0.65 0.78 0.31 
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Table 2. Permutation tests of enrichment p-values (Approach 4) for various signals suggestive of 
local adaptation to climate in case study on Arabidopsis. For each statistic, we tested for 
enrichment of signal in the SNPs in the 0.01 lower tail of p-values for SNP×environment 
associations with relative fitness. “Genic” tests enrichment of genic versus non-genic SNPs, 
“PHS” and “iHS" test for enrichment with significant (alpha = 0.05) pairwise haplotype sharing and 1010 
standardized integrated extended haplotype homozygosity, respectively. The final row shows 
enrichment with SNPs having significant (alpha = 0.05) associations with change in flowering time 
(G×E) in response to warming during growth. 

Statistic 
Aridity 
enrichment 

CV grow. 
seas. prec. 
enrichment 

Min. temp. 
enrichment 

Min. temp. 
grow. seas. 
enrichment 

     Genic 0.0036 <0.0002 0.0054 0.0006 
PHS 0.0272 0.0122 0.0068 0.0272 
iHS  0.2840 0.0006 0.0020 0.0008 

Flowering time under 
warming, G×E  0.8582 0.0680 0.5844 <0.0002 
 

 1015 
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Figure 1. Illustration of our imputation technique and stereotypical patterns captured by our 
approach for neutral (top panels) and selected (bottom panels) loci. Here we show 
hypothetical data from four common gardens along an environmental gradient (solid circles 
in four vertical streaks in right panels, with small amount of noise added to environmental 1020 
values for visualization) that have fitness scaled to a maximum of 1. We also show 
accessions (or ecotypes) collected in home environments and sequenced (mapped in two-
dimensional geographical space in left panels) having imputed relative fitness of 1 in their 
home environment (environment-of-origin, open circles at top of right panels). The selected 

locus (bottom right panel) in question shows strong G×E for fitness, such that allele B (blue) 1025 
is more fit (observed, solid circles) and more common (imputed, open circles) at the upper 
end (right side) of the environmental gradient while allele b (orange) is more fit and more 
common at the lower end (left side) of the gradient. 
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Figure 2. Data used in case study on Arabidopsis. The location of common gardens, natural 1030 
accessions in common gardens, and all other sequenced natural accessions are shown. 
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Figure 3. Comparison of inferred causal (red) and neutral (black) SNP associations with G×E for 1035 
fitness across three different levels of dispersal and 10 replicate simulations for each level. 
Approaches used (row 1) no imputation and no random effects, (row 2) imputation but no random 
effects, (row 3) mixed models that used only observations from four common gardens, (row 4) 
mixed models combining imputed observations of relative fitness in home environments with 
common garden observations, or (row 5) a genotype-environment association approach. False 1040 
positive rate (FPR) is indicated, calculated as the proportion of simulations where a neutral SNP 
had the lowest p-value. Each simulation had 1 causal SNP and 99 neutral SNPs; plots show 
aggregate distributions for all SNP by simulation combinations (i.e. total of 10 causal and 990 
neutral SNPs). Y-axes show the proportion of SNPs in each category (causal or neutral) falling 
into a given p-value bin. For reference, dashed line indicates a strict Bonferroni cutoff for alpha = 1045 
0.05, –log(0.05/100) = 7.6.  
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Figure 4. Example SNPs with the strongest associations (lowest p-values) with cold winter 1050 
temperatures (A) and aridity (B). Top subpanels show the climate distribution of alleles in home 
genotypes (natural geographic patterns), known as genotype-environment associations. Bottom 
subpanels show relative fitness of alleles in four common gardens, where common gardens’ 
climates determine position on x-axes. Each SNP falls within the coding region of indicated 
genes (WRKY38 and LSD1). Box widths are scaled to relative number of accessions having each 1055 
allele. In both (A) and (B), the allele with the greatest relative fitness in common gardens changes 
along the environmental gradient consistent with change in allele frequency in native accessions 
(i.e. ecotypes).  
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Supporting information 1060 

Tables S1-S4 (attached csv files). List of genes within 1 kb of SNPs in the lower 0.001 

quantile for p-values for SNP×environment interactions for each climate variable, 

including imputed observations and accounting for kinship. 
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Table S5. Rank correlation among SNPs for SNP×environment effect p-values 

comparing three tested approaches (Approaches 2-4) with Arabidopsis.  

Min. temp. growing season 

Random 
effect, no 
imputation 

Random 
effect, 
imputation 

No random effect, including imputation 0.396 -0.001 
Random effect, no imputation 

 
0.041 

   Aridity 
  No random effect, including imputation 0.318 0.008 

Random effect, no imputation 
 

-0.032 

   Min. temp. coldest month 
  No random effect, including imputation -0.021 -0.012 

Random effect, no imputation 
 

0.104 

   CV growing season prec. 
  No random effect, including imputation 0.178 0.090 

Random effect, no imputation 
 

-0.006 
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Table S6. Overlap (one-tailed permutation tests) and rank correlations (Spearman’s rho) 1070 

between our approach (Approach 4, mixed-model with imputation, climate variables give 

row labels at left) and published approaches to identifying SNPs associated with local 

adaptation in Arabidopsis. Citations are given for the original publication of previous 

approaches. For partial Mantel and RDA, we used absolute value of SNP scores to rank 

SNPs. Empty cells indicate climate variables not tested in Hancock et al. (2011). 1075 

Climate var. 

Mixed 
model, 
overlap in 
0.01 tail 
strongest 
associations 

Mixed 
model, rank 
correlation 
between 
associations 

Partial 
Mantel, 
overlap in 
0.01 tail 
strongest 
associations 

Partial 
Mantel, 
rank 
correlation 
between 
associations 

First axis of 
RDA, 
overlap in 
0.01 tail 
strongest 
associations 

First axis of 
RDA, rank 
correlation 
between 
associations 

First axis of 
RDA after 
removing 
spatial 
structure, 
overlap in 
0.01 tail 
strongest 
associations 

First axis of 
RDA after 
removing 
spatial 
structure, 
rank 
correlation 
between 
associations 

 

Lasky et al. 
2014 

Lasky et al. 
2014 

Hancock et 
al. 2011 

Hancock et 
al. 2011 

Lasky et al. 
2012 

Lasky et al. 
2012 

Lasky et al. 
2012 

Lasky et al. 
2012 

         Min. temp. 
growing season <0.0001 0.079 

  
0.0489 -0.093 <0.0001 -0.132 

Aridity <0.0001 0.028 <0.0001 0.065 <0.0001 -0.015 0.1107 0.013 

Min. temp. 
coldest month <0.0001 0.042 0.0128 0.044 <0.0001 -0.213 <0.0001 -0.057 

CV growing 
season prec. <0.0001 0.187 

  
0.9591 -0.028 0.9953 0.030 
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Figure S1. Example outcome of selection on a simulated landscape under moderate 

dispersal (maximum dispersal of 10% of the landscape surface per generation), with 

selective gradient (grayscale background), 250 randomly sampled accessions (small 1080 

circles), and four common gardens (green squares). 100 accessions were simulated in the 

four common gardens (i.e. reciprocal transplant) covering the full gradient (large light 

green squares) and in four gardens covering only half the gradient (smaller dark green 

squares). 
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 1085 
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Figure S2. Example outcome of selection on a simulated landscape under low dispersal 

(maximum dispersal of 3% of the landscape surface per generation), with selective 

gradient (grayscale background), 250 randomly sampled accessions (small circles), and 

four common gardens (green squares). 100 accessions were simulated in the four 1090 

common gardens (i.e. reciprocal transplant) covering the full gradient (large light green 

squares). 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2017. ; https://doi.org/10.1101/051110doi: bioRxiv preprint 

https://doi.org/10.1101/051110
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 59	

 

Figure S3. Example outcome of selection on a simulated landscape under high dispersal 1095 

(maximum of 25% of the landscape surface per generation), with selective gradient 

(grayscale background), 250 randomly sampled accessions (small circles), and four 

common gardens (green squares). 100 accessions were simulated in the four common 

gardens (i.e. reciprocal transplant) covering the full gradient (large light green squares). 

  1100 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2017. ; https://doi.org/10.1101/051110doi: bioRxiv preprint 

https://doi.org/10.1101/051110
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 60	

Figure S4. Comparison of inferred causal (red) and neutral (black) SNP associations with 
G×E for fitness across 10 replicate simulations for moderate dispersal with common 
gardens covering only half the gradient. Approaches used (row 1) no imputation and no 
random effects, (row 2) imputation but no random effects, (row 3) mixed models that 
used only observations from four common gardens, or (row 4) mixed models combining 1105 
imputed observations of relative fitness in home environments with common garden 
observations. False positive rate (FPR) is indicated, calculated as the proportion of 
simulations where a neutral SNP had the lowest p-value. Each simulation had 1 causal 
SNP and 99 neutral SNPs; plots show aggregate distributions for all SNP by simulation 
combinations (i.e. total of 10 causal and 990 neutral SNPs). Y-axes show the proportion 1110 
of SNPs in each category (causal or neutral) falling into a given p-value bin. For 
reference, dashed line indicates a strict Bonferroni cutoff for alpha = 0.05, –log(0.05/100) 
= 7.6.  
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Figure S5. Quantile-quantile plots of p-value distributions for four approaches to 1115 
calculating genome-wide SNP×environment associations with fitness, using published 
data on Arabidopsis thaliana. X-axes show expected –log10(p) and y-axes show observed 
–log10(p). Approaches used (column 1) no imputation and no random effects, (column 2) 
imputation but no random effects, (column 3) mixed models that used only observations 
from four common gardens, or (column 4) mixed models combining imputed 1120 
observations of relative fitness in home environments with common garden observations. 
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Figure S6. Example of fitted effects on fitness of allelic variation at two SNPs (arbitrary 

labeled 1 and 2) across two common gardens (arbitrary labeled x and y). In this scenario, 1125 

both SNPs exhibit antagonistic pleiotropy (rank changing) across the environmental 

gradient. However, each SNP has relatively weaker effects on fitness in one environment. 

A test of whether an individual SNP shows the strongest associations with fitness in an 

individual garden (e.g. SNP 1 at site x) might incorrectly infer conditional neutrality 

because other markers show stronger associations (SNP 2 at site x). 1130 
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