
Membrane state diagrams make

electrophysiological models simple

Robert Law and Stephanie R. Jones

May 4, 2016

Department of Neuroscience
Brown University, Box G
Providence, RI

Abstract

Ion channels are ubiquitous in living systems. Through interactions
with membrane potential, ion channels both control metabolic events and
mediate cell communication. Consequentially, membrane bioelectricity
bears on fields ranging from cancer etiology to computational neuro-
science. Conductance models have proven successful in quantitatively
capturing these dynamics but are often considered difficult, with inter-
pretation relegated to specialists. To facilitate research in membrane dy-
namics, especially in fields where roles for ion channels are just beginning
to be quantified, we must make these models easy to understand.

Here, we show that the membrane differential equation central to con-
ductance models can be understood using simple circular geometry. The
membrane state diagrams we construct are compact, faithful representa-
tions of conductance model state, designed to look like circular “cells” with
currents flowing in and out. Every feature of a membrane state diagram
corresponds to a physiological variable, so that insight taken from a dia-
gram can be translated back to the underlying model. The construction
is elementary: we convert conductances to angles subtended on the circle
and potentials to radii; currents are then areas of the enclosed annular
sectors.

Our method clarifies a powerful but prohibitive modeling approach and
has the potential for widespread use in both electrophysiological research
and pedagogy. We illustrate how membrane state diagrams can augment
traditional methods in the stability analysis of voltage equilibria and in
depicting the Hodgkin-Huxley action potential, and we use the diagrams
to infer the possibility of nontrivial fixed-voltage channel population dy-
namics by visual inspection rather than linear algebra.
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1 Introduction

It is difficult to overstate the importance of ion channels in biology. They
are nearly universally present at the threshold of living systems from the vi-
ral capsid [12, 48] to the mammalian cell membrane [36]. As mechanical [43],
chemical [38], light [44], and temperature receptors [7], they constitute perhaps
the largest part of cell sensoria. Ion channels form gap junctions [14], gate
synaptic action [24, 11], and through direct ionic signaling [32] are essential
mediators of communication among even bacterial populations. Voltage-gated
ion channels are not only responsible for the neural action potential [18, 20] and
muscular contraction [37, 13, 23, 2]: they also play crucial roles in the cell cycle
and development, while abnormalities in ion channel expression are implicated
in cancer [4, 31, 10]. Indeed, the mitotic mechanism itself is the target of a
transduction pathway directly controlled by membrane potential [49]. Even the
fertilization process [45, 46] depends on ion channel population and membrane
voltage dynamics. Of all the topics in the life sciences, perhaps only genetics
and proteomics can rival this functional span.

Conductance-based modeling is an extremely powerful technique for study-
ing membrane dynamics used widely in neurophysiology (where it was originally
developed in [18, 20, 19]), as well as computational neuroscience [15, 21] and
cardiology [35]. This mathematical formalism has existed for over 60 years,
and it is remarkable that models of ion channel dynamics are not nearly as
commonplace as, for instance, genetic models. With notable exceptions [10],
though, the functional importance of bioelectricity has traditionally been cir-
cumscribed to “excitable” tissue readily capable of generating action potentials,
namely neurons and myocytes. A much larger variety of cells are now known to
be excitable: action potentials occur in bacterial cells [25] and a wide variety of
mammalian cell types (reviewed in [3]).

Moreover, even so-called “nonexcitable” tissues that do not typically generate
action potentials have been shown to exhibit nontrivial dynamical phenomena
like multiple stable membrane potentials [1]. Conductance modeling has re-
cently been used to show that these “voltage memories” can be mediated by
taxon-specific classes of ion channels [8, 26], and that when combined with gap
junction models, these dynamics can generate rich spatial patterning of volt-
age in tissue [9]. We can expect that as this approach matures, interest in
conductance models will only grow.

A major obstacle in applying these models is their mathematical overhead.
At the center of the conductance model formalism is a differential equation
(Equation 1) describing how the membrane voltage changes as currents cross
the membrane. These currents are themselves governed by the evolving conduc-
tances of ion channels, which open and close according to their own dynamical
rules (and are typically ascribed their own differential equations), as well as the
reversal potential, which captures thermal and electrical contributions to ion
flow. Biophysically, this approach is quite natural. However, differential equa-
tions are far from a standard tool in biology, and it has been our experience
that even computational neuroscientists can find conductance models difficult
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to master.
Our goal here is to render conductance models simple enough that they

may be used and understood with little mathematical background beyond a
familiarity with circular geometry. To that end we present in Section 2 a visu-
alization method called a membrane state diagram, which captures a great
deal of quantitative information about ion channel populations and electrical
variables, all while carrying the appearance and intuitive ease of a circular cell
with currents flowing in and out. Our construction relies on an elementary corre-
spondence between the sector area formula for an annulus (Equation 4) and the
formula relating current, membrane voltage, reversal potential, and conductance
(Equation 2). A membrane state diagram is a faithful geometric representation
of conductance model state at any point in time: voltages are radii, angles are
conductances, and areas are currents. Because of this correspondence, intuition
gained by examining membrane state diagrams can be mapped precisely back
to mathematical models.

The reader is urged to compare these diagrams to the standard textbook
treatment of conductance models involving circuit diagrams (Figure 1a) and
heuristic depictions of ion concentration gradients (exemplified by Figure 1b).
To illustrate the utility of membrane state diagrams, we examine in Section 3.1
voltage perturbations about equilibria in a model with two channel populations,
where the method was first applied [26] as traditional visualization methods
proved insufficient for linking channel state to dynamics. In Section 3.2, we
depict several phases of an action potential in the classical Hodgkin-Huxley
squid giant axon model. Finally, in Section 3.3 we pictorially demonstrate the
possibility of nontrivial dynamics (e.g. oscillations) in ionic currents occurring
when voltage is held fixed, and then construct a model for generating those
dynamics.

2 Methods

Before introducing membrane state diagrams, we will begin with a brief treat-
ment of conductance models. More detailed treatments may be found in [17, 6,
21]. The reader already familiar with these models may skip to Section 2.2, but
should note our approach dispenses with finer points of channel activation and
inactivation, simply referring to channels as “open” when conducting ions and
“closed” when not conducting ions.

The diagrams can be applied without reference to the underlying theory.
Once the membrane state diagram’s geometry is understood (angles represent-
ing channel populations, radii representing membrane and reversal potentials,
areas representing currents), one can extrapolate dynamics knowing only one
additional fact: that a net outward current leads to an increasing membrane
voltage, while a net inward current leads to a decreasing membrane voltage.

Python and MATLAB functions for generating membrane state diagrams are
documented and linked to in the Appendix, and videos depicting the dynamics
of state variables can be found in the Supplementary Materials.
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2.1 Conductance models
A conductance model treats a patch of membrane as a parallel electrical circuit
(Figure 1a) consisting of a capacitor (the membrane surface, which collects free
charge) and one or more transmembrane currents (ions crossing the membrane).
With Q representing charge and V representing voltage, the capacitance is de-
fined as C = Q/V , or the amount of charge separated by the membrane for each
unit of voltage across it. If we assume the capacitance is constant, we can rear-
range variables and differentiate with respect to time, yielding C

dV

dt

= dQ

dt

= I.
In other words the membrane voltage changes if and only if charges rearrange
across the membrane, which itself forms a current.

Assuming this current crosses the membrane through ion channels (and is not
instead bound, as occurs especially in the case of calcium; see Discussion), we
use Kirchoff’s current law (

P
I = 0) to obtain the following ordinary differential

equation:

�C dV

dt

=
X

I

i

(1)

where i indexes a channel, and I

i

is a transmembrane current through that
channel. Equation 1 is simply a statement about charge conservation: an ion
that crosses the membrane then collects on its surface, which changes the voltage
according to the capacitance. When the current is zero, for instance, we see that
dV/dt = 0; the voltage does not change because no net charge is accumulating
on the membrane.

If we make a standard assumption that current flows according to Ohm’s
law (see, however, [6, Ch. 2]), each current can then be written as

I

i

= g

i

· (V � E

i

) (2)

where g

i

is the channel’s conductance and E

i

its associated reversal potential.
We will now examine the conductance and potential contributions to the current
in turn.

2.1.1 Conductances

A channel conductance g
i

describes how permeable that channel population is to
the ions it conducts. These conductances rise as channels open and fall as they
close. The maximal conductance for channel type i, denoted ḡ

i

, grows linearly
with the number of i- channels in the membrane, and g

i

= ḡ

i

corresponds to all
these channels being open. Conversely, g

i

= 0 when all i- channels are closed.
As ion channels are governed by thermodynamic rules, a given channel will only
have a probability of being open. The normalized variable p

i

= g

i

/ḡ

i

corresponds
to the proportion of open channels to total channels of that type.

An important class of channels, the leak channels, do not normally close,
so g

leak

= ḡ

leak

. Generally, though, a wide range of factors may determine
whether any given channel changes its state. Ligand-gated channels open or
close when particular molecules (e.g. hormones) bind to them, while voltage-
gated channels change their state due to the membrane voltage itself. Opsins,
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(a) Electrical circuit diagram for a conductance model

(b) Diagram representing electrical and diffusive concentra-

tion gradients.

Figure 1: Traditional methods of depicting membrane dynamics do not
allow for the accurate visualization of membrane state. (a) captures
the model structure but does not depict state, while (b) partially cap-
tures state but cannot be mapped accurately to a model. (a) is from
[39], (b) is from https://en.wikipedia.org/wiki/Membrane_potential#/
media/File:Basis_of_Membrane_Potential2.png;author:Synaptidude;
http://creativecommons.org/licenses/by/3.0/

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2016. ; https://doi.org/10.1101/051839doi: bioRxiv preprint 

https://doi.org/10.1101/051839
http://creativecommons.org/licenses/by/4.0/


including the channelrhodopsin family [27, 5], open or close when exposed to
light. The way a channel responds to a driving factor may be simple (e.g.
“persistent” channels that open monotonically with increasing voltage) or it
may be complex - for instance, sodium channels responsible for neural action
potentials [20] first open and then close nearly as rapidly.

2.1.2 Reversal potentials

For a given population of ion channels, the reversal or Nernst-Goldman potential
[29, 16] is the membrane voltage at which the electrical and thermal diffusion
gradients balance so that no net current crosses that channel population. The
reversal potential condenses all temperature, concentration, and charge informa-
tion into a single constant with units of voltage: without this simplification, it
would be necessary to model ions, including their temperature-dependent rates
of diffusion and their electrical interactions individually. Instead, the reversal
potential can be treated as a bias or battery, driving current across the mem-
brane unless it is exactly counterbalanced by the membrane potential. The net
effect is this: an ion channel’s current drives the membrane voltage toward its
own reversal potential. The magnitude of this drive at any point in time is as-
sumed proportional to the difference V �E: the larger the imbalance of charge,
the greater the electrical force and the larger the driven current.

To see this principle in action, we can examine a model with a single popu-
lation of leak channels (we depict this using membrane state diagrams in Sup-
plementary Video 1), with

�C dV

dt

= ḡ(V � E) (3)

. Whenever V < E, dV

dt

is positive, so voltage increases toward E. If V > E,
the voltage drops, again toward E.

It is important to note that reversal potentials are associated to channels,
not ions. Although we often assume that a channel conducts only one ion, many
channels, for instance the HCN family [28], conduct more than one. A second
important point is that unless ion concentrations are very low (as is the case
in calcium in mammals), the amount of charge that crosses a membrane during
even an action potential is typically so small that it has a negligible effect on
the reversal (see e.g. [17]).

2.2 Equivalence of currents to annular sector areas
The key observation underlying our method is that the equation for an current
across an ion channel (Equation 1) has the same form as the annular sector area
formula:

2A = ✓ · (R2 � r

2) (4)

where R � r. We will exploit this equivalence to generate a diagram in the form
of a circular “cell” about which these sectors represent currents. This requires
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Figure 2: Angular representation of channel populations in a two-channel system
with ḡ

leak

= 1
2 ḡNa

, p
Na

= 0.4 and p

leak

= 1. Viewing the circle as comprised
of ion channels, the population of leak channels comprises one third of the
total conductance and the population of leak channels comprises two thirds
after normalization by 2⇡P

i
ḡi

(see main text). The open sodium channels g are
represented as a subangle of the total sodium channels ḡ.

only a small amount of shoehorning in converting conductances to angles and
voltages to radii.

2.2.1 Representing conductances as angles

If one imagines a cell’s surface as a circle covered by ion channels, membrane
conductances appear naturally as angles. A cell with 600 sodium and 400 leak
channels, for instance, could be seen as having sodium channels on 3/5 of its
surface and leak channels on the remaining 2/5. This geometrization does not
map precisely to Equation 2, as a single open sodium channel is unlikely to
have the same conductance as a single open leak channel. We may retain this
intuition, though, and let each ion channel population occupy a fraction of the
circle corresponding to that population’s contribution ḡ

i

to the total possible
membrane conductance G =

P
i

ḡ

i

.
We will associate the angles ✓

i

= 2⇡ gi

G

with the number of open channels and
✓̄

i

= 2⇡ ḡi

G

with the total number of channels of type i (Figure 2). For ease of
notation, we suppress the normalization constant and refer to these angles as g

i

and ḡ

i

instead of ✓
i

and ✓̄

i

. In a membrane state diagram, channel populations
correspond to fractions of the “cell’s” surface, and currents will “flow through”
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a subangle representing the open subpopulation. This transformation “forgets”
the total possible conductance G; we will remark further on this normalization
in the discussion.

2.2.2 Representing potentials as radii

Having associated angles to conductances, it remains to associate radii with
potentials. The amount of current that flows through each population of open
channels is proportional to the magnitude of the potential difference V � E

(Equation 2), and the inward or outward direction of the current corresponds
to its sign, where positive indicates current inflow and negative current outflow.
In order to match Equation 4, it is the square root of a potential that we will
associate to its radius in the diagram.

The reader may at first object to the possibility of negative arguments to
the square root function, but note that we are free to “re-reference” V and E,
shifting them to be nonnegative through V  V + V

shift

and E  E + V

shift

.
This does not affect the current, as first,

V � E = (V + V

shift

)� (E + V

shift

) (5)

and second, although we do not unpack the conductances g

i

here, these too
must be invariant to voltage shift (in voltage-gated channels the half-voltage
V1/2 plays a similar role to the reversal potential in Equation 5).

Because each current has V as a common variable, we set the radius of our
“cell” to

p
V . Each current then flows either inward or outward depending on

whether V is larger or smaller than E

i

, so each radius
p
E

i

is either inside the
cell (again, representing inward current flow) or outside the cell (representing
outward current flow). Thus, in Equation 4, R will be the greater, and r the
lesser, of

p
V and

p
E

i

. In this way, outward electrical drive is represented as
pointing outward from the “cell’s” surface while inward drive points inward.

2.3 Membrane state diagrams
Each conductance angle and its associated voltage/reversal potential radii now
bound an annular sector (shaded areas in Figure 3) oriented either outward (if
V < E; negative current; Figure 3a) or inward (if V > E; positive current);
Figure 3b). Each sector’s area is A = |Ii|

2 , although we will again suppress the
constant factor.

Assembling all these sectors into a disk, we now have a diagram (Figure
4) that simultaneously represents all membrane currents, ion channel conduc-
tances, reversal potentials, and membrane voltage while maintaining a strict
correspondence with the mathematical model. In a membrane state diagram,
currents are represented by areas of annular sectors that have radii correspond-
ing to (square roots of) membrane voltage and reversal potential, while the
sector angles are representative of channel populations.

To infer membrane voltage dynamics from a membrane state diagram, note
that a positive total transmembrane current (i.e. the right hand side of Equation
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Figure 3: Schematic for the geometric representation of current across a channel
population as an annular sector. As in Figure 2, each channel population in-
dexed by i subtends an angle ḡ

i

, and the subpopulation of open channels spans
the enclosed angle g

i

. A) An outward current I

i

(grey shading) has magnitude
proportional to the area of the annular sector with inner radius

p
V , outer ra-

dius
p
E

i

(blue), and angle g

i

. B) An inward current; same as (A) but as the
membrane voltage is larger than the reversal potential,

p
E

i

(blue) is the inner
radius and

p
V the outer radius. Factors of 2⇡P

i
ḡi

and 1
2 are suppressed in con-

ductance and current representations, respectively, and voltage variables have
been shifted to be nonnegative; see main text. (A) is modified from [26]).
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Figure 4: Membrane state diagram with same channel configuration as Figure
2. Here, E

leak

is 0mV and E

Na

is 100mV.

1) implies a negative dV

dt

. Thus, if the net current represented by the summed
shaded areas is outward, the voltage increases and the ’cell’ grows. Alternately,
if it points inward, the voltage will decrease, and the ’cell’ shrinks. At zero
net current (inward and outward balance), the voltage does not change. For
instance, a cell with only leak channels (Equation 3; see also Supplementary
Video 1) is seen to always evolve toward its reversal. Membrane state diagrams
also make it easy to see, for instance, that unless an external current is applied,
the membrane potential is bounded between the highest and lowest reversals,
and that synaptic inhibition by GABA

A

, which opens chloride channels, is
excitatory whenever the membrane potential is below the chloride reversal.

Because membrane state diagrams are faithful representations of conduc-
tance models, they contain only the information already expressed in the mem-
brane differential equation (Eq. 2). However, because the diagrammatic ap-
proach offers an integrated depiction of a large number of variables, it can clarify
known model behaviors and lead to intuition about nontrivial phenomena that
may not be easily inferred through examination of the equations.

We proceed with several more detailed examples to further illustrate the
method.
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3 Examples

3.1 Perturbations about equilibria in fast channel systems
Law and Levin [26] constructed and simulated conductance models of mam-
malian cells and amphibian embryos expressing a variety of ion channel com-
binations, first applying membrane state diagrams to graphically examine a
stable voltage equilibrium in a fast voltage-gated sodium channel [40, 33] model
with a leak current in mammals (cf. [21]) . Fast channels have the property
that the membrane voltage determines a unique channel conductance (i.e. the
kinematics of the channel variables are rapid enough that they effectively reach
their voltage-dependent equilibria instantly), so that at a given voltage, a sys-
tem comprised only of fast channels has a uniquely determined membrane state
diagram.

Here, we apply our method to visualize behavior around all three equilbria
(two stable, one unstable) in this model. The conductance model for this system
is:

�C dV

dt

= p

Na

ḡ

Na

(V � E

Na

) + ḡ

leak

(V � E

leak

)

where E

Na

= 60mV and E

leak

= �67mV . The fraction of open channels is
a sigmoidal function of voltage:

p

Na

=
1

1 + e

�0.157(V+17.0)

We overexpress the sodium channels relative to the leak channels, letting
ḡ

Na

= 10 · ḡ
leak

. The model’s phase portrait (expressing dV/dt vs. V and
whose zero-crossings are voltage equilibria); top panel of Figure 5) shows stable
equilibria near �67mV and 50mV , and an unstable equilibrium near �40mV .

The phase portrait method (see e.g. [42, 21]) is indispensible for determining
equilibria and allows for easy verification of stability (black curve in Figure 5;
top panel). However, even after plotting the contributions of each ion channel
individually (red and blue curves in Figure 5; top panel) it is difficult to see
from a mechanistic perspective why these equilibria are stable. This issue is
readily clarified by examining the membrane state diagrams at and near each
of the three equilibria (Figure 5; bottom panel).

We can immediately see that the stable equilibrium at -67mV occurs nearly
precisely at the leak reversal because almost all sodium channels are closed; this
cell is then effectively equivalent to a cell with only a leak channel. In contrast,
the other stable equilibrium at 50mV occurs near the sodium reversal because
sodium channels are open and overexpressed relative to the leak channels (cf.
[26]), making the equilibrium nearly equivalent to that of a sodium-only sys-
tem. The unstable equilibrium near -40mV occurs where few sodium channels
are open (small blue annular sector); a positive voltage perturbation opens more
of these channels (blue annular sector increases in area), drawing the voltage to-
ward the sodium reversal, while a negative perturbation closes sodium channels
(blue sector decreases in area) and draws the voltage toward the leak reversal.
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Figure 5: Top: Phase portrait for the mammalian fast sodium + leak model.
Black is dV

dt

for the model; blue and red are the sodium and leak current con-
tributions to dV

dt

, respectively. Bottom: membrane state diagrams at indicated
voltages. Blue and red indicate the respective currents. The direction of voltage
evolution is shown with black arrows, and the sign of dV/dt at each depicted
voltage is indicated below each diagram (0 indicates a fixed point in voltage).
Parts of this figure are modified from [26].
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In this example, membrane state diagrams allow us to easily view features
obscured in traditional analysis. The relative contributions of each channel
population to the total current can be quickly read from the diagrams, and
stability of each equilibrium can be both assessed graphically (stability means
outward total current on the left and inward total current on the right) and
linked to a particular ion channel configuration.

3.2 Hodgkin-Huxley system
We next use membrane state diagrams to visualize the channel dynamics un-
derlying action potentials in a single-compartment Hodgkin-Huxley model axon
[19], a conductance model obeying Equation 1 but with several nonlinear gating
variables describing the kinetics of sodium and potassium channels. The sodium
and potassium channels have conductances given by

g

Na

= ḡ

Na

m

3
h

g

K

= ḡ

K

n

4

while the gating variables m,n, h 3 x have dynamics governed by

⌧

x

(V )ẋ = x1(V )� x

⌧

x

is a voltage-dependent time “constant” for channel gating kinematics and
x1 is the equilibrium state, where ⌧

x

is Gaussian in V and x1 follows a Boltz-
mann function of voltage (see e.g. [21]; details may be found in the code linked
in the Appendix).

Figure 6 shows the relative contribution of each ion channel at three phases
of a simulated action potential. In this simulation, the action potential was
initiated by setting V (0) to �35mV , above the threshold for action potential
generation. Supplementary Video 2 depicts the membrane state over the entire
course of an action potential. We see, for instance, that due to the rapid inac-
tivation, at no point does the sodium channel population approach its maximal
conductance.

It is also seen clearly here that while the rapid rising phase of the action
potential is caused by open sodium channels far from the sodium reversal, which
establishes a large outward current, the falling phase is much slower due to a
near balance of sodium and potassium currents. The leak current, expressed
at dramatically lower levels than the other channels, plays very little role until
the potassium channels close, and it finally overwhelms the potassium current
in the recovery phase. To make a more general point, currents generated from
small populations may be irresolvable visually in a membrane state diagram, but
that this also reflects a negligible contribution to the overall current. Membrane
state diagrams allow for these relative contributions to be assessed at a glance.

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2016. ; https://doi.org/10.1101/051839doi: bioRxiv preprint 

https://doi.org/10.1101/051839
http://creativecommons.org/licenses/by/4.0/


Figure 6: Top: Voltage evolution over time (not to be confused with the phase
portrait in Figure 5) of an action potential in a Hodgkin-Huxley system. Bot-
tom: Membrane state diagrams for this system at three points along the voltage
trajectory: 0.5 ms (rising phase; left), 2.0 ms (falling phase; center), and 3.0 ms
(recovery phase; right). Blue: sodium current. Red: potassium current. Green:
leak current. Note that the sodium current is largest during the rising phase,
and the potassium current in the falling phase. Due to its underexpression com-
pared to the other ion channels, the leak current is negligible until nearly all the
sodium and potassium channels are closed. A similar action potential is shown
in Supplementary Video 2.
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I
i

I
j

Figure 7: Membrane state diagram schematizing nontrivial channel population
dynamics at a fixed voltage. Here, the outward current I

i

is precisely balanced
by an inward current I

j

= �I
i

at two time points (indicated by light and dark
shading). Channels may open and close arbitrarily as long as they do so in
proportion.

3.3 Channel dynamics under fixed voltage
Our third example shows how the formal correspondence between membrane
state diagrams and conductance models may be leveraged to translate visual
intuition into precise mathematical statements. Recall that when inward and
outward currents are balanced (i.e. the net current is zero), the membrane
potential does not change. A natural question to ask is, “Does fixed membrane
voltage necessarily imply that all other system variables approach fixed points
as well?”

In fact, this is not the case, and we can see easily (Figure 7) the possibility
of ion channels “conspiring” to maintain zero net current, and therefore a fixed
voltage, while undergoing complex dynamics of their own. For this to occur, it
is merely required that changes in conductance (and/or in reversal potential, if
concentrations are low) leading to an increase in current across one channel are
balanced by changes leading to a decrease in current across other channels.

In other words, we have used the membrane state diagram to observe entirely
graphically that the fixed-voltage condition is a linear constraint on (nonlinear)
channel configuration and reversal potential dynamics:

X

i

E
i

g

i

= 0

where E
i

= V

⇤ � E

i

. This is of course easily verified by setting dV

dt

= 0
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and V = V

⇤ in Equation 1. This may occur in the two channel case where the
voltage lies between the two reversal potentials and the channels open and close
in phase.

Surprisingly, although it is quite easy to see that fixed-voltage oscillatory dy-
namics may exist, it is not entirely trivial to explicitly construct such a system.
We do so here in the three channel case, although it remains to be seen whether
these or similar dynamics occur in nature. Here, two channels will have outward
currents and are reciprocally coupled to one another, forming a simple harmonic
oscillator, while the third channel is an (inward) leak channel. We make the
following assumptions. The outward populations have gating variables x with
zero conductance when x = x

⇤. We let m

⇤ = n

⇤ = 1
2 . g1 = ḡ1(n � n

⇤)2 and
g2 = ḡ2(m � m

⇤)2. The shift is necessary to assure positivity of the gating
variables, but an underlying mechanism may be conceptualized roughly as one
where the channel is closed at 0 or 2 activated gates but open when 1 gate is
activated, and where the number of activated gates tends to synchronize in the
population.

We then have

�C dV

dt

= ḡ1(n� n

⇤)2(V �E1) + ḡ2(m�m

⇤)2(V �E2) + ḡ

leak

(V �E

leak

) (6)

We assume ḡ1E1 = ḡ2E2 = �4ḡ
leak

E
leak

. At steady-state voltage, Equation
6 becomes:

(n� 1

2
)2 + (m� 1

2
)2 = (

1

2
)2 (7)

which is a circle of radius 1/2 centered at n = 1/2,m = 1/2. Assume
reciprocal coupling of the form:

ṅ = k1(m�
1

2
) (8)

ṁ = �k2(n�
1

2
)

and let k1 = k2, concluding that if m(0), n(0) lie on the circle defined by
Equation 7 and ṁ(0) and ṅ(0) lie tangent to it, the channel populations will
oscillate at fixed voltage V

⇤. While these oscillations are not stable to perturba-
tions, a stable version can be constructed by using the Hopf oscillator equations
(see e.g [34]) in place of System 8.

This example has shown that one can use visual inferences from membrane
state diagrams to suggest processes that are not immediately evident in the
conductance model formalism. These processes can then themselves be mapped
back to equations, allowing for visual intuition to guide model development.
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4 Discussion

4.1 Summary
Membrane state diagrams form a snapshot of ion channel configurations and
currents at fixed time, allowing the viewer to simultaneously examine the con-
tribution of ion channel population states and electrochemical potentials in gen-
erating membrane currents. We have applied this method to visualize channel
dynamics during voltage perturbations near equilibria in fast channel systems,
to detail the Hodgkin-Huxley action potential, and to make inferences about
oscillating channel dynamics at fixed voltage.

4.2 Comparison with other approaches
While our method is not intended as a substitute for standard dynamical sys-
tems methods like phase portraits, it does augment these methods well when
geometric intuition must be tied back to membrane state (e.g. Section 3.1).
Membrane state diagrams were designed, rather, as a substitute for two text-
book approaches: “cartoon” diagrams such as Figure 1b, which are suitably
“biological” but cannot be used to make dynamical inferences, and circuit dia-
grams (Figure 1a), which schematically represent the biophysics but do not lend
themselves to visual intuition.

When compared to bar-graph, tabular, or time series slice representations
of current, membrane state diagrams may suffer from the “pie chart problem”
[47]: it is typically more difficult to compare the areas of two pie chart sectors
than to compare the same information displayed in a bar graph or table. None
of these alternative methods, though, can simultaneously quantify conductance,
distance from reversal potential, and current as well as the relationships among
these quantities. Furthermore, to infer whether cell voltage is increasing or
decreasing, the viewer must judge whether the total inward or outward currents
are represented by larger areas. Spence and Lewandowsky [41] have found that
when sums must be compared, pie charts afford more accurate comparisons
than bar graphs, although it is not known whether this result would carry from
circular sectors to annular sectors. In cases where it is difficult to judge whether
the inward or outward current is greater, we recommend adjoining a bar graph
representing the summed inward and outward currents next to a membrane
state diagram.

4.3 Limitations and extensions
Due to the faithful correspondence of variables, the primary limitations of mem-
brane state diagrams are limitations of conductance models themselves. One
notable complication arising in these models is their treatment of calcium in
typical mammalian intracellular concentrations1. Nonlinearities arising from

1
This problem should not arise in e.g. amphibian embyros as the intracellular calcium

concentration is quite high (see for instance [26]).
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calcium depletion and buffering can be mollified by directly modeling ion con-
centrations and then treating the calcium reversal as a variable. Similarly,
voltage fixed points a la Section 3.1 may be “stable” only insomuch as the re-
versal potentials can be treated as constant. However, a 1:1 sodium/chloride
leak exchange is clearly shown in the rightmost equilibrium in Figure 5, and at
long timescales, these too must be treated by modeling concentrations directly.
Membrane state diagrams do not keep track of these concentration variables,
but may aid in visualizing their effect on reversal potentials.

However, because the diagrams are quite minimal and require no labeling in-
trinsically, they can be augmented to include additional information. As shown
in Figures 5 and 7, arrows can indicate the direction of conductance changes
or make the direction of voltage evolution more evident. When depicting a
fast channel as in Section 3.1, the function g

i

(
p
V ) can be plotted radially as

a guide, and finer channel properties (e.g. inactivation and deinactivation) of
subpopulations could be indicated through, for instance, shading of the circle.

Any current modeled using Equation 2, for instance, a synaptic current,
can be included in a membrane state diagram, but injected currents may also
be depicted by recasting them as a conductance g

I

and reversal E
I

. However,
the same injected current applied at two different voltages will not correspond
to the same E

I

(and/or g

I

)! Care must also be taken in setting V

shift

to
ensure that inward applied currents do not “overflow” the diagram. Alternately,
applied inward currents might be assigned to the center of the circle. Again,
this depends on a choice of V

shift

that avoids overlapping currents. Although
designed for biological contexts, membrane state diagrams can also be applied
to represent current flow and voltage evolution in any parallel RC circuit with
variable resistors, provided that the resistance of each element has a known
lower bound (otherwise ḡ

i

may be infinite).

4.4 Diagramming multiple cells and compartments
As constructed, membrane state diagrams describe “point cells”, single-compartment
models with an isopotential surface and no spatial variation in channel expres-
sion [39]. They can, however, be used in a network context. The method may
be particularly suited to depicting currents cylindrically for representing models
that include axonal or dendritic processes (for instance, [22]), provided that the
axial conductances are included in each segment.

When representing multiple cells or compartments, though, recall that the
normalization procedure “forgets” a scale factor C/G. This means that two
cells with identical membrane state diagrams need not actually have identical
dynamics; however, their respective dV/dt will vary only by this scale factor.
Given that cells appear to homeostatically regulate to maintain relative, but
not absolute ḡ

i

(see e.g. [30]), it may be the case that this scale factor is largely
irrelevant for computation.
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4.5 Conclusions
We expect that membrane state diagrams should prove particularly useful as a
pedagogical tool. Once a student understands that an individual channel cur-
rent tends to draw the membrane voltage toward its own reversal potential, the
diagrams can be introduced to show conductance models in their full complex-
ity with very little additional conceptual overhead. Membrane state diagrams,
though, can facilitate insight into conductance models even among experts, and
we anticipate that this technique will prove widely useful in the study of cellu-
lar physiology where it can complement or supplant traditional approaches to
visualizing membrane biophysics.
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Appendix

The visualization method has been implemented in MATLAB and in Python,
and it may be downloaded from https://bitbucket.org/nosimpler/msdiagram/.
It consists of one main function:

msdiagram takes vector arguments gbar, p, E, scalar arguments V and
offset, and in the Python case a matplotlib axis ax, returning that axis with
a plot geometrically depicting the currents. Here, gbar is a vector of channel
maximal conductances, p is a vector of channel open probabilities (for example,
for the sodium channel in the Hodgkin-Huxley model, p = m

3
h), E is a vector

of channel reversal potentials, V is the membrane voltage, and offset provides
an additional shift in the voltage for ease of visualization (V

shift

is computed
such that min(V,E) = 0, and offset replaces 0 with a positive value). Code for
generating movies depicting the Hodgkin-Huxley action potential may be found
in the MATLAB version.
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