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Abstract 1 

Background 2 

Psychiatric disorders are multigenic diseases with complex etiology contributing 3 

significantly to human morbidity and mortality. Although clinically distinct, several 4 

disorders share many symptoms suggesting common underlying molecular changes 5 

exist that may implicate important regulators of pathogenesis and new therapeutic 6 

targets. 7 

Results 8 

We compared molecular signatures across brain regions and disorders in the 9 

transcriptomes of postmortem human brain samples. We performed RNA sequencing 10 

on tissue from the anterior cingulate cortex, dorsolateral prefrontal cortex, and nucleus 11 

accumbens from three groups of 24 patients each diagnosed with schizophrenia, bipolar 12 

disorder, or major depressive disorder, and from 24 control subjects, and validated the 13 

results in an independent cohort. The most significant disease differences were in the 14 

anterior cingulate cortex of schizophrenia samples compared to controls. Transcriptional 15 

changes were assessed in an independent cohort, revealing the transcription factor 16 

EGR1 as significantly down regulated in both cohorts and as a potential regulator of 17 

broader transcription changes observed in schizophrenia patients. Additionally, broad 18 

down regulation of genes specific to neurons and concordant up regulation of genes 19 

specific to astrocytes was observed in SZ and BPD patients relative to controls. We also 20 

assessed the biochemical consequences of gene expression changes with untargeted 21 

metabolomic profiling and identified disruption of GABA levels in schizophrenia patients.  22 
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Conclusions 1 

We provide a comprehensive post-mortem transcriptome profile of three psychiatric 2 

disorders across three brain regions. We highlight a high-confidence set of 3 

independently validated genes differentially expressed between schizophrenia and 4 

control patients in the anterior cingulate cortex and integrate transcriptional changes 5 

with untargeted metabolite profiling. 6 

Keywords 7 

Schizophrenia, Bipolar Disorder, Major Depressive Disorder, RNA sequencing, 8 

metabolomics, EGR1 9 

Background 10 

Schizophrenia (SZ), bipolar disorder (BPD), and major depressive disorder (MDD) are 11 

multigenic diseases with complex etiology and are large sources of morbidity and 12 

mortality in the population. All three disorders are associated with high rates of suicide, 13 

with ~90% of the ~41,000 people who commit suicide each year in the U.S. having a 14 

diagnosable psychiatric disorder [1]. Notably, while clinically distinct, these disorders 15 

also share many symptoms, including psychosis, suicidal ideation, sleep disturbances 16 

and cognitive deficits [2–4]. This phenotypic overlap suggests potential common genetic 17 

etiology, which is supported by recent large-scale genome-wide association studies [5–18 

8]. However, this overlap has not been fully characterized with functional genomic 19 

approaches. Current therapies for these psychiatric disorders are ineffective in many 20 

patients and often only treat a subset of an individual patient’s symptoms [9]. 21 

Approaches targeting the underlying molecular pathologies within and across these 22 
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types of disorders are necessary to address the immense burden of psychiatric disease 1 

around the world and improve care for the millions of people diagnosed with these 2 

conditions. 3 

Previous studies [10–14] analyzed brain tissue with RNA sequencing (RNA-seq) in SZ 4 

and BPD, and identified altered expression of GABA-related genes in the superior 5 

temporal gyrus and hippocampus, as well as differentially expressed genes related to 6 

neuroplasticity and mammalian circadian rhythms. Our study focused on the anterior 7 

cingulate cortex (AnCg), dorsolateral prefrontal cortex (DLPFC), and nucleus 8 

accumbens (nAcc), regions which are often associated with mood alterations, cognition, 9 

impulse control, motivation, reward, and pleasure – all behaviors known to be altered in 10 

psychiatric disorders [15,16]. To assess gene expression changes associated with 11 

psychiatric disease in these three brain regions, we performed RNA-seq on macro-12 

dissected post-mortem tissues in four well-documented cohorts of 24 patients each with 13 

SZ, BPD, MDD and 24 controls (CTL) (96 individuals total). Additionally, we conducted 14 

metabolomic profiling of AnCg tissue from the same subjects. RNA-seq analysis 15 

revealed common expression profiles in SZ and BPD patients supporting the notion that 16 

these disorders share a common molecular signature. Transcriptional changes were 17 

most pronounced in the AnCg with SZ and BPD exhibiting strongly correlated 18 

differences from CTL samples. Differentially expressed genes were associated with cell-19 

type composition with BPD and SZ samples showing decreased expression of neuron-20 

specific genes. We validated this result with RNA-seq data from an independent cohort 21 

of 35 cases each of SZ, BPD, and CTL post-mortem cingulate cortex samples from the 22 

Stanley Neuropathology Consortium Integrative Database (SNCID; 23 
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http://sncid.stanleyresearch.org) Array Collection. We present a set of validated genes 1 

differentially expressed between SZ and CTL patients, perform an integrated analysis of 2 

metabolic pathway disruptions, and highlight a role for the transcription factor, EGR1, 3 

whose down-regulation in SZ patients may drive a large portion of observed 4 

transcription changes. 5 

Methods 6 

See Supplemental Methods for additional detail. 7 

Patient Sample Collection and Preparation 8 

Sample collection, including human subject recruitment and characterization, tissue 9 

dissection, and RNA extraction, was described previously [17,18] as part of the Brain 10 

Donor Program at the University of California, Irvine, Department of Psychiatry and 11 

Human Behavior (Pritzker Neuropsychiatric Disorders Research Consortium) under IRB 12 

approval. In brief, coronal slices of the brain were rapidly frozen on aluminum plates that 13 

were previously frozen to -120oC and dissected as described previously [19]. All 14 

samples were diagnosed by psychological autopsy, which included collection and 15 

analyses of medical and psychiatric records, toxicology, medical examiners’ reports, 16 

and 141-item family interviews. Agonal state scores were assigned based on a 17 

previously published scale [20]. Controls were selected based upon absence of severe 18 

psychiatric disturbance and mental illness within first-degree relatives. 19 

We obtained fastq files from RNA-seq experiments for our validation cohort from the 20 

Stanley Neuropathology Consortium Integrative Database (SNCID; 21 

http://sncid.stanleyresearch.org) Array Collection comprising 35 cases each of SZ, BPD, 22 
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and CTL of post-mortem cingulate cortex with permission on June 30, 2015.  For our 1 

analysis, we included the 27 SZ, 26 CTL, and 25 BPD SNCID samples that were 2 

successfully downloaded and represented unique samples. SNCID RNA-seq 3 

methodology and data processing are described in detail in a previous publication that 4 

makes use of the data [10]. 5 

RNA-seq and Data Processing 6 

To extract nucleic acid, 20 mg of post-mortem brain tissue was homogenized in Qiagen 7 

RLT buffer + 1% BME using an MP FastPrep-24 and Lysing Matrix D beads for three 8 

rounds of 45 seconds at 6.5 m/s (FastPrep homogenizer, lysing matrix D, MP Bio). Total 9 

RNA was isolated from 350 μL tissue homogenate using the Norgen Animal Tissue 10 

RNA Purification Kit (Norgen Biotek Corporation). We made RNA-seq libraries from 250 11 

ng total RNA using polyA selection (Dynabeads mRNA DIRECT kit, Life Technologies) 12 

and transposase-based non-stranded library construction (Tn-RNA-seq) as described 13 

previously [21]. To mitigate potentially confounding batch affects in sample preparation 14 

we randomly assigned samples from all brain regions and disorders into batches of 24 15 

samples. We used KAPA to quantitate the library concentrations and pooled 4 samples 16 

in order to achieve equal concentration of the four libraries in each lane. Pools were 17 

determined by random from the 291 samples. Samples were also randomly selected for 18 

pooling in an effort to limit potentially confounding sequencing batch effects. The pooled 19 

libraries were sequenced on an Illumina HiSeq 2000 sequencing machine using paired-20 

end 50 bp reads and a 6 bp index read, resulting in an average of 48.2 million reads per 21 

library. To quantify the expression of each gene in both Pritzker and SNCID datasets, 22 

RNA-seq reads were processed with aRNApipe v1.1 using default settings [22]. Briefly, 23 
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reads were aligned and counted with STAR v2.4.2a to all genes annotated in 1 

GRCh37_E75 [23]. All alignment quality metrics were obtained from the picard tools 2 

module (http://broadinstitute.github.io/picard/) available in aRNApipe. Genes expressed 3 

from the X and Y chromosomes were omitted from the study.  4 

Quantitative PCR (qPCR) was performed on 10 SZ and 10 CTL patients to validate 5 

EGR1 RNA-seq measurements. RNA was extracted as described above from tissue 6 

lysates a second time. Reverse transcription was performed on 250ng of input RNA with 7 

the Applied Biosystems high capacity cDNA reverse transcription kit. Validated Taqman 8 

assays for EGR1 (Hs00152928_m1) and the housekeeper genes GAPDH 9 

(Hs02758991_g1) and ACTB (Hs01060665_g1) were used for qPCR. cDNA was 10 

diluted by a factor of 10 before use as input for the Taqman assay. The qPCR 11 

reaction was performed on an Applied Biosystems Quant Studio 6 Flex system 12 

using the recommended amplification protocol for Taqman assays. 13 

Sequencing Data Analysis 14 

All data analysis in R was performed with version 3.1.2.   15 

Differential Expression Analysis and Normalization 16 

To examine gene expression changes, we employed the R package DESeq2 [24] 17 

(version 1.6.3), using default settings, but employing likelihood ratio test (LRT) 18 

hypothesis testing, and removing non-convergent genes from subsequent analysis. 19 

Genes differentially expressed between each disorder and CTL samples, by brain 20 

region, were identified with DESeq2 (adjusted p-value<0.05), including age, brain pH, 21 

PMI, and percentage of reads uniquely aligned (PRUA) as covariates (Full Model: 22 
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~Age+PMI+pH+PRUA+Disorder, Reduced Model: ~ Age+PMI+pH+PRUA). For 1 

downstream heatmap visualization, PCA, and cell-type analysis, genes underwent a 2 

log-like normalization using DESeq2’s varianceStabilizingTransformation function and 3 

were corrected for PRUA by computing residuals to a linear model regressing PRUA on 4 

normalized gene expression level with the R lm function unless otherwise specified.   5 

DESeq2’s default independent filtering method was used to remove genes with an 6 

insufficient expression level from further analysis. 7 

PCA and Hierarchical Clustering 8 

PCA analysis was performed in R on normalized data using the prcomp() command.  9 

Hierarchical clustering of normalized gene expression data was done in R with the 10 

hclust command (method=”ward”, distance=”Euclidean”) 11 

Pathway Enrichment Analysis 12 

Pathway analysis was conducted using the web-based tool LRPath [25] using all GO 13 

term annotations, adjusting to gene read count with RNA-Enrich, including directionality 14 

and limiting maximum GO term size to 500 genes. GO term visualization was performed 15 

using the Cytoscape Enrichment Map plug-in [26]. The Genesetfile (.gmt) GO 16 

annotations from February 1, 2017 were downloaded from 17 

http://download.baderlab.org/EM_Genesets/. The LRPath output was parsed and used 18 

as an enrichment file with all upregulated pathways colored red and all downregulated 19 

pathways colored blue, regardless of degree of upregulation. Mapping parameters 20 

were; p-value cutoff = 0.005, FDR cutoff = 0.1 and Jaccard coefficient > 0.3. Resulting 21 

networks were exported as PDFs. Summary terms were added to the plot based on the 22 

GO terms in those clusters. In order to assess overlap between significant GO terms in 23 
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our analysis and the GWAS study described by the Psychiatric Genomics Consortium, 1 

we downloaded the p-values reported for Schizophrenia hits from their Supplemental 2 

Table 4, which contained 424 significant GO terms. We used a chi-squared test to 3 

assess significant overlap between the two groups. Our Supplemental Table 5 reports 4 

the p-values measured in SZ based on this study along with those calculated in our 5 

analysis. 6 

EGR1 ChIP-seq peak analysis 7 

Narrow peak bed files filtered to optimal IDR peaks were obtained from the ENCODE 8 

data portal (www.encodeproject.org) for EGR1 ChIP-seq data in GM12878, H1-hESC, 9 

and K562 cell lines (ENCODE file IDs: ENCFF002CIV, ENCFF002CGW, 10 

ENCFF002CLV). Consensus EGR1 peaks were identified by intersecting peaks from all 11 

three cell lines, which resulted in a final list of 4,121 peaks common to all cell lines 12 

(minimum overlap of 1 bp). The distance from each annotated transcription start site 13 

(TSS) to the nearest consensus EGR1 peak was computed based on TSSs annotated 14 

in the ENSEMBL gene transfer format (GTF) file from the Ensembl data release 75 15 

(GRCh37_E75). 16 

Cell-Specific Enrichment Analysis 17 

Sets of genes uniquely expressed by several brain cell-types were obtained from figure 18 

1B in Darmanis et. al [27]. An index for each cell-type was created by calculating the 19 

median normalized expression value for each set of cell-type associated genes. Index 20 

values were compared across patient clusters by non-parametric rank sum tests and 21 

spearman correlation with top principal components. To validate our method, we 22 

calculated cell-type specific indices from an independent cohort of previously published 23 
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purified brain cells [28,29]. FPKM-normalized gene expression data was obtained from 1 

supplemental table 4 of Zhang et. al. (2014) and cell-type indexes were calculated as 2 

described above. To examine index performance in mixed cell populations, we obtained 3 

fastq files for neuron and astrocyte-purified brain samples from GEO accession 4 

GSE73721 and generated raw count files as described above. We next mixed 5 

expression profiles in silico by performing random down-sampling of neuron and 6 

astrocyte count levels and summing the results such that mixed populations containing 7 

specific proportions of counts from neuron- and astrocyte-purified tissue were 8 

generated. For example, to generate an 80/20 neuron to astrocyte mixture, neuron and 9 

astrocyte count columns (which started at an equivalent number of 5,759,178 aligned 10 

reads) were randomly down-sampled to 4,607,342 and 1,151,836 counts respectively 11 

and summed across each gene to result in a proportionately mixed population of 12 

aligned count data simulating heterogeneous tissue. Then we calculated a 13 

neuron/astrocyte index ratio capable of predicting the in silico mixing weights. Briefly, 14 

we assumed index values for mixed cell populations were directly proportional to mixing 15 

weights of their respective purified tissue, thus the predicted cell proportion for a given 16 

cell type was simply calculated as: 17 

predicted cell proportion = observed index value/purified tissue index value 18 

To insure cell-type predictive power was unique to indices derived from Darmanis et. al 19 

genes, we generated indices from 10,000 randomly sampled gene sets of equivalent 20 

size and examined their performance in predicting in silico mixing weights.  Mean 21 

squared prediction errors (MSE) were calculated for each of the 10,000 null indices and 22 

compared to the MSE of Darmanis et. al.-derived indices.  23 
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Cell type deconvolution analysis was confirmed using a previously published algorithm 1 

implemented in the R package deconRNAseq [30]. The “datasets” input to the 2 

deconRNAseq function was a normalized count matrix of all AnCg brain samples and 3 

the “signatures” input consisted of a normalized count matrix of astrocyte, neuron, 4 

microglia, and oligodendrocyte dissected cells from the GEO accession GSE73721 5 

previously described. 6 

Enrichment analysis for extreme fold change was performed by randomly sampling the 7 

fold changes of 1000 null gene sets equivalent in size and expression level (allowing 8 

5% error) to the neuron and astrocyte specific gene sets. The median fold change of 9 

each 1000 null gene set was compared to the observed median fold change for neuron 10 

and astrocyte gene sets respectively. 11 

Metabolomics 12 

Sample preparation 13 

Sections of approximately 100mg of frozen tissue were weighed and homogenized for 14 

45 seconds at 6.5M/s with ceramic beads in 1mL of 50% methanol using the MP 15 

FastPrep-24 homogenizer (MP Biomedicals). A sample volume equivalent to 10mg of 16 

initial tissue weight was dried down at 55oC for 60 minutes using a vacuum concentrator 17 

system (Labconco). Derivatization by methoximation and trimethylsilylation was done as 18 

previously described [31].  19 

We analyzed technical replicates of each tissue sample, in randomized order. 20 

GCxGC-TOFMS analysis 21 
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All derivatized samples were analyzed on a Leco Pegasus 4D system (GCxGC-1 

TOFMS), controlled by the ChromaTof software (Leco, St. Joseph, MI). Samples were 2 

analyzed as described previously [31] with minor modifications in temperature ramp. 3 

Data analysis and metabolite identification 4 

Peak calling, deconvolution and library spectral matching were done using ChromaTOF 5 

4.5 software.  Peaks were identified by spectral match using the NIST, GOLM [32], and 6 

Fiehn libraries (Leco), and confirmed by running derivatized standards (Sigma). We 7 

used Guineu for multiple sample alignment [33].  8 

Integrated Pathway Analysis 9 

Altered metabolites and genes were analyzed for enrichment in KEGG pathways 10 

containing both metabolite and gene features. A non-parametric, threshold free pathway 11 

analysis similar to that of a previously described method [34] was first performed on 12 

metabolite and gene expression data separately. Our method builds on the principle 13 

described by Subramanian that implements a one-tailed Wilcox test to identify pathways 14 

enriched for low p-values. Instead of just accounting for enrichment at the gene level, 15 

we use metabolite or gene p-value ranks within each pathway compared to remaining 16 

non-pathway metabolites or genes with a one-tailed Wilcox test to test the hypothesis 17 

that elements of a given pathway may be enriched for lower p-value ranks than 18 

background elements. Metabolite and gene p-values were subsequently combined to 19 

provide an integrated enrichment significance p-value using Fisher’s method. Pathways 20 

had to contain greater than 5 genes and 1 metabolite measured in our dataset to be 21 

included in the analysis. Table 10 lists p-values for enriched pathways based on genes, 22 

metabolites or combined. 23 
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Results 1 

Region-specific gene expression in control and psychiatric brain tissue 2 

We collected post-mortem human brain tissue, associated clinical data, including age, 3 

sex, brain pH, and post-mortem interval (PMI), and cytotoxicology results (Tables S1-2) 4 

for matched cohorts of 24 patients each diagnosed with SZ, BPD, or MDD, as well as 5 

24 control individuals with no personal history of, or first-degree relatives diagnosed 6 

with, psychiatric disorders. Importantly, to limit the effect of acute patient stress at the 7 

time of death as a potential confounder we included only patients with an agonal factor 8 

score of zero and a minimum brain pH of 6.5 [18]. Using RNA-seq [21], we profiled gene 9 

expression in three macro-dissected brain regions (AnCg, DLPFC, nAcc). After quality 10 

control, we analyzed 57,905 ENSEMBL genes in a total of 281 brain samples (Table 11 

S3).    12 

To examine heterogeneity across brain regions and subjects, we performed a principal 13 

component analysis (PCA; Figure S1A) of all genes. The first principal component 14 

(PC1, 21.8% of the variation) separates cortical AnCg and DLPFC samples from 15 

subcortical nAcc samples. Examination of the first and second principal components for 16 

disorder associations reveals a separation of some SZ and BPD samples from all other 17 

samples (Figures S1B and S2A-C). However, in agreement with previously reported 18 

post-mortem brain RNA sequencing studies [14], we found several principal 19 

components to be highly correlated with quality metrics including the percentage of 20 

reads uniquely aligned and percentage of reads aligned to mitochondrial sequence 21 

(absolute Rho>0.5, FDR<1E-16, Table S4). To reduce the potentially confounding 22 

effects of sample quality, we repeated the PCA on expression data normalized to the 23 
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percentage of reads uniquely aligned for each sample and found that global disease-1 

specific expression differences were significantly reduced and PC1 primarily separated 2 

nAcc samples from AnCg and DLPFC brain regions (Figures S1C and S2D-I). 3 

Disease-specific gene expression in control and psychiatric brains 4 

We next applied DESeq2 [24], a method for analyzing differential sequence read count 5 

data, to identify genes differentially expressed across disorders within each brain region 6 

after correcting for biological and technical covariates. The largest number of significant 7 

expression changes occurred in AnCg between SZ and CTL individuals (87 genes, 8 

FDR<0.05, Figure 1A). Pathway enrichment analysis of differentially expressed genes 9 

between SZ and CTL patients revealed 935 gene ontology (GO) terms with an 10 

FDR<0.05 (Table S5) (122 GOCC, 159 GOMF, and. 654 GOBP). Significant GO terms 11 

fall into the broad categories of synaptic function and signaling (e.g. neurotransmitter 12 

transport, ion transport, calcium signaling) (Figure S3). These terms overlap significantly 13 

with those identified by the Psychiatric Genomics Consortium in their analysis of GWAS 14 

implicated genes [35] with 68 GO terms meeting a p-value cutoff of <0.05 in both 15 

datasets (p-value<0.0001, Chi-square test). Additionally, nine genes were differentially 16 

expressed between SZ and CTL individuals in DLPFC. Three of these were also 17 

identified in AnCg: SST, PDPK2P and KLHL14. No genes had an FDR<0.05 when 18 

comparing BPD or MDD samples to CTLs in any brain region, or comparing SZ and 19 

CTL tissues in nAcc (Table S6). To examine potential common gene expression 20 

patterns between the psychiatric disorders, we performed pair-wise correlation 21 

calculations of all gene log2 fold changes for each disorder versus controls in each brain 22 

region. Of the nine case-control comparisons (for three regions and three diseases), a 23 
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particularly strong correlation is observed between BPD and SZ compared to either SZ 1 

or BPD and MDD in each brain region (Figure 1B). In the AnCg, BPD and SZ share 2 

1,020 common genes differentially expressed at an uncorrected DESeq2 p-value<0.05 3 

compared to only 248 and 143 genes shared between MDD and SZ or BPD 4 

respectively (Figure 1C). This strong overlap between BPD and SZ (Fisher’s exact p-5 

value<1E-16) indicates that although expression changes are weaker in BPD they 6 

follow a trend similar to those identified in SZ. 7 

Because previous post-mortem analyses have been limited by, and are particularly 8 

vulnerable to, biases inherent to examining a single patient cohort, we sought to 9 

generate a robust set of SZ associated genes by validating our observed expression 10 

changes in an independent cohort.  To accomplish this, we examined gene expression 11 

differences in the AnCg between SZ and CTL samples in the SNCID RNA-seq Array 12 

dataset [13], revealing 1,003 genes altered (DESeq2 uncorrected p-value<0.05) in both 13 

datasets (Fisher’s p-value<1E-16, Table S7). The magnitude and direction of change in 14 

significant genes in the Pritzker dataset were highly correlated with the SNCID dataset 15 

(Rho=0.202, p-value<1E-16), particularly in 87 genes that met a cutoff of FDR<0.05 16 

(Rho=0.812, p-value<1E-16; Figure 1D). We performed hierarchical clustering of SZ 17 

and CTL samples in the SNCID validation cohort using the 1,003 genes differentially 18 

expressed, at the less stringent threshold, p-value<0.05, between SZ and CTL in the 19 

Pritzker dataset (Figure 1E), and found these genes successfully distinguished the two 20 

disease groups with only 5 out of 27 SZ and 2 out of 26 CTL samples misclassified. 21 

Of particular interest are the 5 genes significant at a FDR<0.05 in both cohorts including 22 

a nearly 2-fold decrease in expression of the transcription factor EGR1 (Table S7A, 23 
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Figure 2A). Quantitative PCR (qPCR) validation confirmed reduced EGR1 expression in 1 

SZ samples (Figure 2B, Wilcox p-value=4.33x10E-5). EGR1, a zinc finger transcription 2 

factor, has been recently implicated in SZ by a GWAS study [5], thus we sought to 3 

investigate whether loss of EGR1 expression might be associated with transcriptional 4 

changes observed in the AnCg of SZ patients using publicly available genome-wide 5 

occupancy data from the ENCODE consortium (https://www.encodeproject.org). To 6 

obtain high confidence EGR1 binding sites we intersected chromatin 7 

immunoprecipitation sequencing (ChIP-Seq) peaks derived from the H1-hESC, K562, 8 

and GM12878 cell lines. We found that genes with a transcription start site (TSS) within 9 

1kb of an EGR1 binding site had significantly lower DESeq2 p-values (Wilcox p-10 

value=9.68E-5) and reduced expression in SZ versus CTL (Wilcox p-value=7.69E-15) 11 

compared to genes whose TSSs were greater than 1kb from an EGR1 binding site. A 12 

monotonic decrease in this effect was observed as the distance threshold used for this 13 

comparison was increased from 1kb to 50kb (Figure 2C).  14 

Cell type specific changes  15 

In addition to dysregulation of broadly acting transcription factors, another mechanism 16 

that can drive large-scale transcriptional changes in bulk tissue is alterations in 17 

constituent cell type proportions. Previous studies have observed decreases in neuron 18 

density and increased glial scarring in psychiatric disorders [36,37]. To test for signs of 19 

changing cell populations in our dataset we applied a method to deconvolute RNA 20 

expression data and estimate cell type proportions. Darmanis et al. identified genes 21 

capable of classifying cells into the major neuronal, glial, and vascular cell-types in the 22 

brain based on single cell RNA sequencing. We used these gene sets to generate cell 23 
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type indices using the median of normalized counts for each cell type-specific gene set. 1 

We tested these indices on purified brain cell populations (Zhang et al.) and in silico 2 

mixed cell populations to demonstrate their accuracy and specificity [28,29] (Figure S4).  3 

Application of these cell type indices to patient AnCg expression data revealed a 4 

significant decrease in neuron specific gene expression (Wilcox p-value<0.05) and a 5 

significant increase in astrocyte specific expression (Wilcox p-value<0.05) in SZ and 6 

BPD patients compared to controls (Figures 3A-B). Other brain cell-type indices were 7 

not significantly different between psychiatric patients and controls (Figure S5). An 8 

alternate algorithm for cell type deconvolution, DeconRNASeq, showed similar results 9 

(Figure S6A,B).  10 

Additionally, we showed that neuron-specific genes identified by Darmanis et al. are 11 

enriched for decreased expression in SZ compared to controls and astrocyte-specific 12 

genes are enriched for increased expression (Figure S6C). Again, these enrichments 13 

are specific to this gene set and are not reproduced by 1000 expression matched, 14 

randomly sampled gene sets (Figure S6D,E). Further supporting a decrease in neuronal 15 

gene expression, we found a significant negative correlation between gene expression 16 

changes in patient brains relative to control brains and the degree of neuron specific 17 

transcription (fold enrichment of neuronal gene expression over other cell types) (SZ 18 

Rho=-0.50 and BPD Rho=-0.41, p-value<1E-16, SZ shown in Figure 3C).  19 

Transcriptomic changes reflected in altered metabolomic profiles 20 

To assess the biochemical consequences of expression changes, we used 2D-GCMS 21 

to measure metabolite levels in 86 of the AnCg samples (sufficient tissue was 22 

unavailable for 10 samples). We measured and identified 141 unique metabolites (Table 23 
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S8). We found no metabolites reached statistical significance (FDR<0.05), however 8 1 

metabolites had an FDR<0.1 when comparing SZ to CTL. Similar to our gene 2 

expression analysis, metabolite levels (Table S9) successfully differentiated SZ and 3 

BPD patients from CTLs (Figure 4A), while MDD metabolite profiles were very similar to 4 

CTLs. Several of the most significant metabolites, including GABA, are known to be 5 

relevant to BPD and SZ (Figure 4B) [38]. Furthermore, GABA/glutamate metabolite 6 

ratios correlate strongly with average GAD1 and GAD2 expression levels measured by 7 

RNA-seq (Rho = 0.413, p-value=0.007, Figures 4C-D). This metabolite-gene 8 

relationship is consistent with previous multi-level phenomic analyses [39] and 9 

demonstrates realized biochemical consequences from altered gene expression. 10 

Notably, reductions in GABA could coincide with loss of neuron specific gene 11 

expression as suggested by the RNA-seq data. Integrated pathway analyses of 12 

metabolite and gene expression data revealed disruption of synaptic and 13 

neurotransmitter signaling in SZ compared to CTL (Figure S7, Table S10). 14 

Discussion 15 

Here, we describe a large transcriptomic dataset across three brain regions (DLPFC, 16 

AnCg, and nAcc) in SZ, BPD, and MDD patients, as well as CTL samples matched for 17 

agonal state and brain pH. In MDD, we do not identify any genes that meet genome-18 

wide significance for differential expression between cases and controls in any brain 19 

region. This finding agrees with previous post-mortem RNA-seq studies [40], however 20 

sample size and the choice of brain regions examined likely contributed to our inability 21 

to replicate results from previous non-transcriptome wide sequencing based 22 

approaches comparing MDD to CTL in post-mortem brain [41]. One limitation of our 23 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 2, 2017. ; https://doi.org/10.1101/061416doi: bioRxiv preprint 

https://doi.org/10.1101/061416
http://creativecommons.org/licenses/by-nc/4.0/


 

 20

study is that females are underrepresented at a rate of about 5:1. This reflects the 1 

increased chance of accidental death among males [42], but limits us in our ability to 2 

make more general conclusions about these disorders and to address known 3 

differences between the sexes as they relate to these disorders. We also do not have 4 

information on the smoking status for our cohort, which is an important covariate as 5 

smoking rates are higher among patients with psychiatric disorders and smoking has 6 

been demonstrated to effect gene expression [43,44]. Another potential limitation 7 

inherent to post-mortem cohort analyses is accounting for patient drug use.  As detailed 8 

in Table S2, patient toxicology reports were positive for several prescribed and illicit 9 

drugs that were not present in CTL samples. As this is a bias inherent to psychiatric 10 

patients it is impossible to disentangle from non-treatment related disease patterns in a 11 

post-mortem analysis.  12 

Another important limitation of post-mortem RNA-sequencing studies is RNA quality. 13 

We found a significant proportion of variation in our data to be associated with multiple 14 

alignment quality metrics. Significant effort went into controlling for potential sources of 15 

bias due to differences in RNA quality. We only included tissue from patients with an 16 

agonal score of 0 and who had a brain pH of 6.5 or greater. We also controlled for brain 17 

pH, post-mortem interval, and alignment quality in all differential expression analyses. 18 

Our study, as well as future post-mortem studies, could be improved by directly 19 

measuring RNA quality at the time of sample preparation (e.g. RNA integrity number 20 

(RIN)). Even with these caveats, we believe our data yield new insights contributing to a 21 

growing understanding of these disorders. 22 
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The most dramatic gene expression signals we observed were brain region-specific. 1 

The majority of disease-associated expression differences were seen in the AnCg of SZ 2 

compared to CTL individuals. The AnCg has been associated with multiple disease-3 

relevant functions, including cognition, error detection, conflict resolution, motivation, 4 

and modulation of emotion [45–47]. We observed a striking overlap in SZ- and BPD-5 

associated expression changes consistent with previous findings [38,48].  6 

One of the more intriguing genes significantly down regulated (FDR<0.05) in both 7 

cohorts of SZ patients was the zinc finger transcription factor, EGR1. We provide 8 

evidence that this factor binds upstream of a genes with altered expression in SZ and 9 

are associated with decreased expression in SZ patients. Down regulation of EGR1 has 10 

been previously described in the prefrontal cortex of post-mortem brain samples from 11 

SZ patients [49,50]. EGR1 has also previously been associated with several 12 

phenotypes relevant to psychiatric disorder including neural differentiation [51], 13 

emotional memory formation [52], response to antipsychotics [53], and has recently 14 

been described as part of a transcription factor-miRNA co-regulatory network capable of 15 

acting as a biomarker in peripheral blood cells (PBCs) for SZ [54]. In mice, loss of 16 

EGR1 has linked to neuronal loss in a model of Alzheimer’s Disease [55]. EGR1 is also 17 

important for regulation of the NMDA Receptor pathway, which is critical for synaptic 18 

plasticity and memory formation and has been implicated in SZ in humans [56]. We 19 

believe a more detailed examination of genome-wide EGR1 occupancy in post-mortem 20 

brain tissue or cultured neurons could yield additional information and assessment of 21 

the functional consequences of EGR1 perturbation is required to confirm this factor’s 22 

role in SZ pathogenesis. 23 
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We also see evidence for depletion of neuron-specific genes and increased levels of 1 

astrocyte-specific genes in SZ and BPD patients. This observation is further supported 2 

by metabolomic analysis of the AnCg, which found a concordant decrease in GABA 3 

levels in BPD and SZ individuals. Neuronal depletion has been previously described in 4 

SZ [36,37]. Insufficient tissue remains from our patient cohort to validate computational 5 

cell type predictions immunohistochemically, however our data strongly suggests that 6 

future post-mortem studies should be cognizant of cell type heterogeneity across patient 7 

samples. The method for cell type composition estimation is limited in its accuracy to 8 

estimating only the major classes of cells present. Genes represented in cell types 9 

present at only a small minority could be over or under-represented using this 10 

technique. Based on these results, future studies should consider using robust 11 

techniques for assessing tissue composition to examine potential cell type proportion 12 

differences between disease cohorts and to identify which transcriptional changes occur 13 

in conjunction with, and independent of, those differences. 14 

We observed very few or no significant expression differences in the DLPFC and nAcc, 15 

which contradicts several previous studies [57,58]. We do not intend to claim that no 16 

transcriptional changes occur in these brain regions as our study was designed to 17 

broadly compare transcriptional alterations across multiple brain regions in multiple 18 

psychiatric disorders, thereby sacrificing exceptional sample sizes in any single disorder 19 

in any specific brain region. However, our data does suggest that of the regions we 20 

tested, the strongest transcriptional changes occur in the AnCg of SZ patients. 21 

Moreover, this data provides a useful resource for future studies facilitating the testing 22 

of preliminary hypotheses or validation of significant findings. 23 
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Conclusions 1 

Our study provides several meaningful and novel contributions to the understanding of 2 

psychiatric disease. We provide a well-annotated data set that has the potential to act 3 

as a broadly applicable resource to investigators interested in molecular changes in 4 

multiple psychiatric disorders across multiple brain regions. We have conducted an 5 

extensive characterization of the molecular overlap between SZ and BPD at the gene 6 

expression and metabolite level across multiple brain regions. We provide a high 7 

confidence set of genes differentially expressed between SZ and CTL individuals 8 

utilizing two independent cohorts and highlight down regulation of EGR1 as a potential 9 

driver of broader scale transcription changes. We also establish that a significant 10 

proportion of transcriptome variation within SZ and BPD cohorts is correlated with 11 

expression changes in previously identified cell type-specific genes.  12 

List of abbreviations 13 

RNA-seq – RNA sequencing 14 

GABA – gamma-Aminobutyric acid 15 

GWAS – genome-wide association study 16 

SZ – schizophrenia 17 

BPD – bipolar disorder 18 

MDD – major depression disorder 19 

CTL – control 20 

AnCg – anterior cingulate gyrus 21 
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nAcc – nucleus accumbens 2 
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PCA – principal component analysis 5 
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 7 

Figure Legends 8 

Figure 1. (A) Histograms of case vs. control differential expression (DESeq2 p-values) 9 

for SZ (red), BPD (blue), and MDD (green) in each brain region assayed. A minimum 10 

DESeq2 base mean of 10 was required for inclusion. (B) Pairwise spearman 11 

correlations of log2 fold gene expression changes between each disorder and CTL in 12 

each brain region.  Circle sizes are scaled to reflect absolute Spearman correlations.  13 

(C) Venn diagram showing overlap of genes differentially expressed between SZ (red), 14 

BPD (blue), MDD (green) vs. CTL at p-value<0.05 in the AnCg. (D) Log2 fold expression 15 

change correlation of 87 genes with FDR<0.05 comparing SZ and CTL (AnCg) in the 16 

Pritzker dataset with the SNCID dataset (Spearman coefficient=0.812, p-value<0.0001). 17 

Genes differentially expressed at an FDR<0.05 in both cohorts are identified with red 18 

circles. (E) Hierarchical clustering 27 SZ and 26 CTL tissues in the SNCID dataset 19 

using variance-stabilized expression of 1003 genes differentially expressed between SZ 20 

and CTL in the AnCg (uncorrected p-value<0.05) in the Pritzker dataset. CTL (black), 21 

SZ (red), lowly expressed genes (blue pixels), highly expressed genes (yellow pixels).  22 
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Figure 2. (A) Boxplots indicating relative expression of EGR1 in the AnCg of SZ (red), 1 

BPD (blue), MDD (green), and CTL (gray). (B) Correlation plot comparing RNA-seq 2 

measured expression level of EGR1 to qPCR measured expression in 10 SZ (red) and 3 

10 CTL (black) patients. (C) Wilcox p-values resulting from comparing the degree of 4 

differential expression (based on DESeq2 p-values) of genes whose TSS are within the 5 

indicated distance to an EGR1 binding sites compared to to genes whose TSSs are 6 

greater than the indicated threshold. 7 

Figure 3.  Boxplots indicating z-scored neuron- (A) and astrocyte- (B) specific 8 

expression indices in the AnCg for SZ (red), BPD (blue), MDD (green), and CTL (gray) 9 

individuals.  (C) Correlation plot comparing the log2 expression fold change between SZ 10 

and CTL patients in the AnCg (X-axis) and the log2 fold change in gene expression from 11 

dissected neuron populations compared to all other dissected brain cell types 12 

(astrocytes, oligodendrocytes, endothelial cells, and microglia) for each transcript 13 

measured by Zhang et al. 14 

Figure 4.  Hierarchical clustering of SZ (red), BPD (blue), MDD (green), and CTL 15 

(black) individuals using the top ten most significant metabolites for each case-control 16 

comparison  (for a total of 30 metabolites). (B) Boxplots indicating z-scored GABA 17 

metabolite levels. (C) Boxplots indicating relative expression of GAD1 and GAD2 18 

enzymes in the AnCg of SZ (red) and CTL (gray) patients. (D) Correlation plot 19 

comparing average GAD1 and GAD2 expression and the GABA/Glutamate metabolite 20 

level ratio in the AnCg of SZ (red) and CTL (black) individuals. 21 

Supplementary Figure Legends 22 
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Figure S1. A) Principal components analysis of all 281 brain tissues. AnCg (red 1 

squares), DLPFC (blue triangles), nAcc (green circles). B) Principal components 2 

analysis of all 281 brain tissues. CTL (gray squares), BPD (blue triangles), MDD (green 3 

circles), SZ (red triangles).  (C) Principal components analysis of all 281 brain tissues 4 

after correcting RNA-seq data for alignment quality. CTL (gray squares), BPD (blue 5 

triangles), MDD (green circles), SZ (red triangles).  6 

Figure S2. Principal components analysis of all AnCg (A,D), DLPFC (B,E), and nAcc 7 

(C,F) samples before (A-C) and after (D-F) correction for RNA-seq alignment quality. 8 

(G-I) PC1 values in CTL (gray), BPD (blue), MDD (green), and SZ (red) patients pre- 9 

and post-RNA-seq alignment quality correction in the AnCg (G), DLPFC (H), and nAcc 10 

(I).   11 

Figure S3.  GO-term analysis for genes differentially expressed in SZ vs. CTL in AnCg 12 

(FDR<0.05).  Up-regulation (red circles), down-regulation (blue circles). 13 

Figure S4. Using cell-type specific index based on single cell sequencing, we 14 

calculated the index for purified populations of (A) neurons, (B) astrocytes, (C) 15 

oligodendrocytes, (D) microglia, and (E) endothelial cells. In all cases the calculated 16 

indexes were specific to the purified population (F) Neuron and astrocyte indices were 17 

used to predict the proportion of each cell type in in silico mixed cell-type populations. 18 

(G) Compared to the Darmanis et al. indexes, 10,000 randomly generated gene sets do 19 

not predict cell type proportions. Mean values with standard deviation are plotted (H, I) 20 

Histogram of mean squared error of null index cell type proportion predictions for mixed 21 

neuron and astrocyte transcriptomes with Darmanis et al. gene performance indicated 22 

in red. The Darmanis gene set far outperforms any randomly generated gene sets. 23 
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Figure S5. Boxplots of endothelial (A), microglia (B), and oligodendrocyte (C) cell type 1 

indices in SZ (red), BPD (blue), MDD (green), and CTL (gray) individuals using indices 2 

derived from Darmanis et al. 3 

Figure S6. (A,B) Estimated neuron (A) and astrocyte (B) cell type proportions using the 4 

deconRNAseq deconvolution algorithm in SZ, BPD, MDD, and CTL individuals. (C) 5 

Volcano plot of cell type specific transcripts in the Darmanis et al. gene sets show 6 

altered expression in SZ v CTL. Neuronal transcripts are enriched for loss of expression 7 

and astrocyte-specific transcripts are enriched for increased expression (D,E) 8 

Histograms representing the distribution of median log2 fold change for expression level 9 

matched gene sets to neuron (D) and astrocyte (C) specific genes. Red lines indicate 10 

median log2 fold change observed for neuron- and astrocyte-specific genes 11 

respectively.  12 

Figure S7. Integrated KEGG pathway analysis of metabolite and RNA-seq differences 13 

between SZ and CTL patients. Top 10 pathways are shown for metabolite, gene and 14 

combined analysis. 15 
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