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Abstract 
 

Cells express thousands of transcripts that show weak coding potential. Known as 

long non-coding RNAs (lncRNAs), they typically contain short open reading frames 5 
(ORFs) having no homology with known proteins. Recent studies show that a 

significant proportion of lncRNAs are translated, challenging the view that they are 

non-coding. These results are based on selective sequencing of ribosome-protected 

fragments, or ribosome profiling. The present study used ribosome profiling data 

from eight mouse tissues and cell types, combined with ~330,000 synonymous and 10 
non-synonymous single nucleotide variants, to dissect the patterns of purifying 

selection in proteins translated from lncRNAs. Using the three-nucleotide read 

periodicity that characterizes actively translated regions, we identified 832 mouse 

translated lncRNAs. Overall, they produced 1,489 different proteins, most of them 

smaller than 100 amino acids. Nearly half of the ORFs then showed sequence 15 
conservation in rat and/or human transcripts, and many of them are likely to encode 

functional micropeptides, including the recently discovered Myoregulin. For lncRNAs 

not conserved in rats or humans, the ORF codon usage bias distinguished between 

two classes, one with particularly high coding scores and evidence of purifying 

selection, consistent with the presence of lineage-specific functional proteins, and a 20 
second, larger, class of ORFs producing peptides with no significant purifying 

selection signatures. We obtained evidence that the translation of these lncRNAs 

depends on the chance occurrence of ORFs with a favorable codon composition. Some 

of these lncRNAs may be precursors of novel protein-coding genes, filling a gap in 

our current understanding of de novo gene birth. 25 
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Introduction 

 
In recent years, the sequencing of transcriptomes has revealed that, in addition to 

classical protein-coding transcripts, the cell expresses thousands of long transcripts 30 
with weak coding potential [1–5]. Some of these transcripts, known as long non-

coding RNAs (lncRNAs), have well-established roles in gene regulation; for example, 

Air is an Igf2r antisense lncRNA involved in silencing the paternal Igf2r allele in cis 

[6,7]. However, the vast majority of lncRNAs remain functionally uncharacterized. 

Some have nuclear roles, but most are polyadenylated and accumulate in the 35 
cytoplasm [8]. In addition, many lncRNAs are expressed at low levels and have a 

limited phylogenetic distribution [9,10]. 

 

In 2009, Nicholas Ingolia and co-workers published the results of a new technique to 

measure translation of mRNAs by deep sequencing of ribosome-protected RNA 40 
fragments, called ribosome profiling (Ribo-Seq) [11]. This technique generates 

millions of ribosome footprints that can be mapped to a species genome or 

transcriptome to assess the translation of thousands of open reading frames (ORFs) 

[12], including low-abundant small peptides that may be difficult to detect by 

standard proteomics approaches [13–15]. In ribosome profiling experiments, the 45 
three-nucleotide periodicity of the reads, resulting from the movement of the 

ribosome along the coding sequence, can be used to differentiate translated 

sequences from other possible RNA protein complexes [13,16–19]. A growing 

number of studies based on this technique have found that a significant proportion 

of lncRNAs are translated [16,18,20–25], but the functional significance of this 50 
finding is not yet clear. Some of the translated lncRNAs may be mis-annotated 

protein-coding genes that encode micropeptides (<100 amino acids) which, due to 

their short length, have not been correctly predicted by bioinformatics algorithms 

[13,15,26,27]. This is likely to include some recently evolved proteins that lack 

homologues in other species and are even harder to detect than conserved short 55 
peptides [24].  

 

One striking feature of the ORFs reported to be translated from lncRNAs is that, in 

general, they appear to have fewer selective constraints than standard proteins 

[18,24], raising the possibility that a large fraction of them encode proteins that are 60 
not functional, despite being translated in a stable manner. However, evidence for 

this hypothesis is presently lacking. 
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Non-synonymous and synonymous single nucleotide polymorphisms in coding 

sequences provide useful information to distinguish between neutrally evolving 65 
proteins and proteins undergoing purifying or negative selection. Under no selection, 

both kinds of variants accumulate at the same rate, whereas under purifying selection 

there is a deficit of non-synonymous variants [28]. The detection of selection 

signatures provides strong evidence of functionality, whereas non-functional proteins 

evolve neutrally. The present study takes advantage of existing nucleotide variation 70 
data for the house mouse to investigate the selective patterns of peptides translated 

by lncRNAs. Our findings provide evidence that lncRNAs are pervasively translated 

and that a large fraction of them produce neutrally evolving peptides. We discuss the 

importance of these peptides as raw material for the evolution of de novo protein-

coding genes.  75 
 

Results 
 

Identification of translated sequences 

 80 
We sought to identify translated open reading frames (ORFs) in a comprehensive set 

of long non-coding RNAs (lncRNAs) and protein-coding genes (codRNAs) from mouse, 

using ribosome-profiling RNA-sequencing (Ribo-Seq) data from eight different tissues 

and cell types (Table 1 and references therein). The samples corresponded to healthy 

individuals and comprised hippocampus, neural embryonic stem cells, brain, testis, 85 
neutrophils, splenic B cells, heart and skeletal muscle. In contrast to RNA sequencing 

(RNA-Seq) reads, which are expected to cover the complete transcript, Ribo-Seq 

reads are specific to regions bound by ribosomes. We mapped the RNA-Seq and Ribo-

Seq reads of each experiment to a mouse transcriptome that comprised all Ensembl 

mouse gene annotations, including both coding genes and lncRNAs, as well as 90 
thousands of additional de novo assembled polyadenylated transcripts derived from 

non-annotated expressed loci (novel lncRNAs, see Methods). For the assembly of this 

transcriptome, we used more than 1.5 billion strand-specific RNA sequencing reads 

from mouse [29].  

 95 
We selected all expressed transcripts (FPKM > 0.2, see Methods) and predicted all 

possible canonical ORFs encoding putative proteins with a length of at least 9 amino 

acids. For each mapped Ribo-Seq experiment, we selected the ORFs covered by at 

least 10 Ribo-Seq reads and examined the distribution of the predicted ribosome P-

sites along the ORF using RibORF software [16] (Fig 1a). ORFs classified as translated 100 
by the program showed clear three-nucleotide periodicity and uniformity when 
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compared to the reads for the rest of the ORFs (Fig 1b and 1c). These two biases are 

characteristic of regions that are being actively translated [11,20,16,13,17], and are 

absent from other types of protein-RNA interactions [30]). 

 105 
This method translated ORFs in ~20% of the loci annotated as lncRNAs and ~90% 

of the coding genes (Table 1 and Fig 1d). We also identified 286 novel genes that did 

not overlap with annotated protein-coding genes but contained translated ORFs. A 

substantial fraction of the codRNAs (29.54%) showed translation of more than one 

non-overlapping ORF; 2,954 ORFs were located upstream or downstream of the main 110 
protein-coding ORF in the same transcript (uORFs and dORFs, respectively), while 

3,951 ORFs corresponded to putative alternatively translated products. Moreover, we 

found that 325 lncRNAs (~39%, including annotated and novel lncRNAs) showed 

evidence of polycistronic translation, producing two or more peptides. 

 115 
Sample GEO (ref) Annotated codRNA Annotated lncRNA Novel lncRNA 

  # genes   
transcribed 

# genes 
translated 

# ORFS 
translated 

# genes 
transcribed 

# genes 
translated 

# ORFS 
translated 

# genes 
transcribed 

# genes 
translated 

# ORFS 
translated 

Brain GSE51424 (1) 14,092 10,850 11,961 1,416 65 77 3,391 39 44 

Testis GSE50983 (2) 13,369 11,754 13,150 1,370 120 148 3,184 78 84 

Neutrophils GSE22001 (3) 11,074 8,632 9,228 1,080 32 40 2,594 9 9 

Heart GSE41246 11,785 7,245 7,500 582 4 4 2,283 2 3 

Skeletal muscle GSE41246 11,020 4,987 5,137 499 3 3 2,182 0 0 

Splenic B cells GSE62134 (4) 10,741 9,405 10,531 1,200 67 84 2,781 38 40 

Neural ES cells GSE72064 (5) 11,606 10,393 11,668 1,150 77 105 2,837 28 37 

Hippocampus GSE72064 (5) 12,671 12,366 17,930 1,179 425 840 3,077 245 403 

Integrated  - 16,681 15,013 21,918 2,580 546 1,027 3,913 286 462 

 

Table 1. Number of transcribed and translated loci. Integrated refers to the number 

transcribed/translated in at least one sample. GEO: Gene Expression Omnibus. codRNA: coding 

gene. ES cells: embryonic stem cells. References (ref): (1) [31], (2) [32], (3) [33], (4) [34], 

(5) [35]. 120 
 

A significant fraction of the ORFs in codRNAs were transcribed and translated in 

several samples, whereas lncRNAs, uORFs, and dORFs tended to be sample-specific 

(S1 Fig). About 75% of the translated lncRNAs encoded putative proteins shorter 

than 100 amino acids (small ORFs or smORFs). Overall, ORFs in lncRNAs were longer 125 
than uORFs and dORFs (median 48-52 vs. 26 amino acids, Wilcoxon test, p-value < 

10-5), but shorter than the main ORF in protein-coding genes (median 381 amino 

acids, Wilcoxon test, p-value < 105). The characteristics of translated transcripts and 

the size of the translated products were very similar for annotated lncRNAs and for 

novel expressed loci (Fig 1b, 1c and 1e). Therefore, these two types of transcripts 130 
were merged into a single class (lncRNA) for most analyses. 
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Figure 1. Detection of translated ORFs. A. Workflow to identify translated ORFs. Ribosome 135 
profiling (Ribo-Seq) reads, corresponding to ribosome-protected fragments, are mapped to all 

predicted canonical ORFs in transcripts with a minimum length of 30 nucleotides. This is 

performed with single-nucleotide resolution after computing the read P-site per each read 

length. In each ORF, reads per frame and read uniformity are evaluated by RiboORF. B. 

Relationship between the number of reads, frame periodicity and read uniformity in a given 140 
ORF for codRNAs, annotated lncRNA and novel genes. Data shown are for the hippocampus 

sample; similar results were obtained in other samples. C. Density plot showing the uniformity 

of Ribo-Seq reads across codons in the ORF by measuring the Percentage of Maximum Entropy 

(pme), where 1 represents uniform read distribution across all codons. D. Number of translated 

and non-translated expressed genes belonging to different classes. The translated genes have 145 
been divided into small ORFs (< 100 aa) and long ORFs (≥ 100 aa), depending on the length 

of the longest translated ORF. E. Length of translated ORFs for different gene types in 

logarithmic scale: coding (codRNA), annotated long non-coding RNA (lncRNA), non-annotated 

assembled transcripts (novel), upstream coding ORFs (uORF) and downstream coding ORFs 

(dORFs). LncRNA and novel ORFs were significantly shorter than codRNA ORFs (median size 150 
48 and 52, respectively, versus 381 for annotated protein-coding genes, Wilcoxon test and p-

value < 10-5), but longer than uORFs and dORFs (median size 26, Wilcoxon test, p-value < 
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10-5).  

 

Properties of translated lncRNAs compared to coding genes 155 
 

The number of transcribed and translated ORFs varied substantially depending on 

the sample (Table 1, Fig 2a). The largest number of translated genes were detected 

in hippocampus tissue, followed by testis, embryonic stem cells and brain, both for 

codRNAs and lncRNAs. Similar results were obtained when we focused on ORFs 160 
translated in a single tissue (Fig 2b) or separately considered long ORFs and smORFs 

(S2 Fig). There were two reasons for these differences. The first reason was the 

number of available Ribo-Seq sequencing reads in each experiment, about three 

times greater in hippocampus than in other tissues, which provided increased 

resolution to detect translation of lowly expressed transcripts. As expected, 165 
subsampling the number of reads in the hippocampus resulted in a decrease in the 

number of translated ORFs detected (S2 Fig). The second reason was that, in some 

tissues, the pool of translated ORFs was highly skewed towards a few very abundant 

proteins (S3 Fig). For example, in skeletal muscle and heart the five most highly 

translated genes, which included myosin and titin, gathered 22.5-31.2% of the 170 
sequencing reads; this substantially reduced the number of reads available to detect 

other products of translation. Overall, the data suggested that the experimental 

translation signal was not saturated and that the true number of translated lncRNAs 

may be higher than was estimated here. 

 175 
When we compared the translated and non-translated protein-coding genes, the 

former had higher expression levels and were longer than the latter (Fig 2c, Wilcoxon 

test, p-value < 10-5). In the case of lncRNAs, translation was positively associated 

with ORF length (Wilcoxon test, p-value < 10-5), but we did not detect any 

relationship between translation status and expression level. In general, lncRNAs 180 
were expressed at much lower levels than coding genes (Fig 2C); this is a well-known 

global difference between the two types of genes [9,36]. 

 

 

 185 
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 190 
Figure 2. Features of translated sequences. A. Number of transcribed or translated ORFs 

(Y-axis) in relation to the number of sequencing reads (RNA-Seq or Ribo-Seq) mapped to the 

genome in the different experiments (X-axis) for codRNA and lncRNA. Hipp: hippocampus; ES 

cells (ESc): Neural embryonic stem cells; Neu: neutrophils; SkM: skeletal muscle. Translation 

of lncRNAs in heart and skeletal muscle was very low (< 5) and therefore the points are not 195 
represented. B. Number of ORFs translated in a single tissue, for codRNAs and lncRNAs. C. 

Distribution of ORF length, gene expression level, and coding score values in codRNA and 

lncRNA for the longest translated and non-translated ORF per gene. Expression level is defined 

as the maximum FPKM value across the 8 samples. *** Wilcoxon test, p-value < 10-3. 

 200 
 

Phylogenetic conservation and codon usage bias  

 

We next examined which fraction of the mouse lncRNAs with evidence of translation 

were conserved in rat and/or human transcripts. For this we employed de novo 205 
human and rat transcript assemblies of a quality similar to that used for mouse (see 

Methods). We searched for homologues of the putatively translated mouse ORFs in 

the human and rat transcripts using TBLASTN (e-value < 10-4). We found hits in 

human and/or rat for 41% of the mouse-translated ORFs in lncRNAs, compared to 

92% for protein-coding genes (Fig 3a). This is in line with previous studies showing 210 
that lncRNAs tend to be much less conserved than protein-coding genes [10,37,38].  
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Codon usage bias is usually employed to predict coding sequences in conjunction with 

other variables such as ORF length and sequence conservation [39,40]. In the case 

of non-conserved smORFs, such as those translated from many of the lncRNAs, only 215 
measures based on codon usage bias can be applied. We have previously 

implemented [24] a metric based on the differences in dicodon (hexamer) 

frequencies between coding and non-coding sequences, which we have used to 

calculate length-independent coding scores for translated and non-translated ORFs 

in different species. Based on this metric, we developed a computational tool to 220 
identify ORFs with significant coding scores in any set of sequences of interest, which 

is available online (evolutionarygenomics.imim.es/CIPHER).  

 

We observed a positive relationship between the RibORF translation score and the 

coding score produced by CIPHER, both for codRNAs and in lncRNAs (Fig 2c, S4 Fig). 225 
We also found that conserved ORFs (group C) had significantly higher coding scores 

than non-conserved ORFs, both for codRNAs and lncRNAs (Fig 3b). We reasoned that 

ORFs with a very biased codon usage may correspond to functional proteins even if 

not conserved across species. We used CIPHER to divide the non-conserved genes 

into a group with high coding scores (NC-H, coding score > 0.079, above the median 230 
value for conserved coding genes) and another group with lower coding scores (NC-

L, coding score ≤ 0.079). We also searched for proteomics evidence in PRIDE [41]. 

Using stringent criteria, we found proteomics evidence for 37 of the ORFs in the 

lncRNAs, with similar numbers in the different groups (11 in C, 12 in NC-H and 14 in 

NC-L).  235 
 

Testing for signatures of natural selection in translated ORFs 

 

We had detected ~1,500 putatively translated ORFs in lncRNAs, but it was unclear if 

they were likely to encode functional proteins. To address this, we investigated the 240 
signatures of natural selection in the ORFs using a large collection of mouse single 

nucleotide polymorphisms (SNP) for the house mouse subspecies Mus musculus 

castaneus [42,43]. We used the ratio between non-synonymous and synonymous 

SNPs to evaluate whether proteins translated from different sets of transcripts were 

subject to purifying selection. This method has an advantage over non-synonymous 245 
to synonymous substitutions in that it can be applied to sequences which do not show 

phylogenetic conservation. This allowed us to investigate the signatures of selection 

in hundreds of translated ORFs from mouse lncRNAs that were not conserved in 

human or rat transcripts.  
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 250 
In the absence of selection, and considering that all codons have the same frequency 

and all mutations between pairs of nucleotides are equally probable, we would expect 

the PN/PS ratio of a sequence or set of sequences to be 2.89 [44]. However, not all 

codons are equally frequent in coding sequences, and the probability of mutation 

differs between pairs of nucleotides [45–47]. These parameters can be estimated 255 
from real data and subsequently used to compute an expected PN/PS under 

neutrality. The difference between the observed and expected PN/PS ratios informs 

us on the strength of purifying selection. If the observed PN/PS normalized by the 

expected PN/PS is not significantly different from 1, the observed proportion of non-

synonymous and synonymous SNPs is consistent with neutral evolution. If it is 260 
significantly lower than 1, there is a depletion of non-synonymous SNPs. Such a 

depletion is consistent with purifying selection acting at the amino acid sequence 

level and provides a strong argument for functionality. 

 

We mapped a total of 324,729 SNPs from Mus musculus castaneus to the previously 265 
defined ORFs from codRNAs and lncRNAs. For each sequence, and sequence dataset 

(C, NC-H and NC-L), we calculated the ratio between observed non-synonymous and 

synonymous SNPs (PN/PS(obs)) and divided it by the ratio expected under neutrality 

(PN/PS(exp)), obtaining a normalized PN/PS. The expected PN/PS was obtained using 

a table of nucleotide mutation frequencies in Mus musculus castaneus, which we 270 
derived from SNPs in intronic sequences (S1 and S2 Tables), and the observed codon 

frequencies in the sequences of interest. The values ranged from 2.31 to 2.47 for 

different sequence datasets (S3 Table). We used the chi-square test to determine if 

the sequences under analysis showed a PN/PS that deviated significantly from that 

expected under neutrality (Fig 3c, S4 Table).  275 
 

We found that conserved translated ORFs, both in codRNAs and lncRNAs, had PN/PS 

values significantly lower than the neutral expectation (Fig 3c, chi-square test p-

value < 10-5). In lncRNAs, there was an approximately 40% depletion of non-

synonymous SNPs over the expected value, strongly suggesting that a sizable 280 
fraction of the lncRNAs in this group are in fact protein-coding genes that produce 

functional small proteins or micropeptides (smORFs). The computational 

identification of smORFs is especially challenging because they can randomly occur 

in any part of the genome [48]. Therefore, it is not surprising that some remain 

hidden in the vast ocean of transcripts annotated as non-coding. For instance, the 285 
recently discovered peptide Myoregulin, which is only 46 amino acids long, regulates 

muscle performance [49]. Another example is NoBody, which encodes a protein just 
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68 amino acids long and has recently been shown to interact with the mRNA decaying 

complex [50]. NoBody was annotated as non-coding when we initiated the study, 

and Myoregulin was annotated with a different non-canonical ORF, although their 290 
annotations are now fully consistent with our findings. Other examples of conserved 

smORFs in our set were Stannin, a mediator of neuronal cell apoptosis conserved 

across metazoans [51,52], and Apela, a peptide ligand that acts as an embryonic 

regulator and increases cardiac contractility in mouse [53,54]. The distribution of the 

Ribo-Seq reads in these examples is shown in Figure 4.  295 
 

The group of ORFs which were not conserved across species but had high coding 

scores (NC-H) showed weaker purifying selection than conserved genes; however, 

PN/PS was significantly lower than the neutral expectation (Fig 3c, chi-square p-value 

= 1.6 x 10-5 for codRNAs and p-value = 0.0026 for lncRNAs). Despite the lack of 300 
detectable homologues in rat and human, this finding indicates some of the proteins 

in this group are probably functional. 

 

In contrast, the normalized PN/PS in the rest of the non-conserved ORFs (NC-L) was 

not different from 1 and therefore consistent with neutral evolution (Fig 3c). This 305 
result was equivalent to that found for randomly selected ORFs from introns (Table 

S4). Despite the lack of evidence of selection, these ORFs showed strong three-

nucleotide read periodicity and uniformity (Fig 4, Fig 5a), indicating bona fide 

translation. The lack of selection signatures was evident both in transcripts annotated 

as coding RNAs and as lncRNAs. Although these cases represented a very small 310 
minority of the protein-coding genes (~1%), they were a much larger fraction of the 

lncRNAs (~40%).  

 

The above analyses grouped the sequences into classes before computing the PN/PS 

ratio. In general, ORF-by-ORF analysis was not possible because the ORFs were small 315 
and contained too few SNPs. Nevertheless, a small fraction of the ORFs in lncRNAs 

contained 10 or more SNPs, and we computed a normalized PN/PS ratio for these 

cases. The results were very much in line with those obtained with the complete 

sequence sets and supported our previous conclusions (Fig 3d).  
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 320 
Figure 3. Different classes of translated ORFs. A. Number of translated ORFs that were 

conserved in human (C), not conserved but showing a high coding score (NC-H, coding score > 

0.079, significant at p-value < 0.05) and not conserved with a low coding scorel (NC-L, coding 

score ≤ 0.079). First, ORFs were divided into coding genes (codRNA) and long non-coding 

RNAs (lncRNA) and lncRNA, and second, into long (length ≥ 100 amino acids) and small ORFs 325 
(smORFs, length < 100 amino acids). B. Differences in coding score for conserved (C) and 

non-conserved ORFs (NC). Conserved ORFs showed significantly higher coding score values 

than non-conserved ones; *** Wilcoxon test, p-value < 10-5. C. Analysis of selective 

constraints in translated ORFs. PN/PS (obs/exp) refers to the normalized ratio between non-

synonymous (PN) and synonymous (PS) single nucleotide polymorphisms, using data from a 330 
population of 20 individuals of Mus musculus castaneus; a value of 1 is expected in the absence 

of selection at the protein level. Conserved and high-score ORFs showed significant purifying 

selection signatures independently of transcript type (codRNA or lncRNA). In contrast, non-

conserved ORFs with low coding scores (NC-L) did not show evidence of purifying selection at 

the protein level in either codRNAs or lncRNAs. Significant differences between observed and 335 
expected PN/PS are indicated: chi-square test with one degree of freedom, * p- value < 0.05, 
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** p- value < 0.005, *** p-value < 10-5. Error bars indicate the standard error of the sample 

proportion. D. Distribution of normalized PN/PS values for individual ORFs in different gene 

classes. Only ORFs with at least 10 SNPs were considered; the NC-H group contained too few 

cases to be analyzed. The differences between C and NC-L were significant in both codRNAs 340 
(Wilcoxon test, p-value <10-5) and lncRNAS (Wilcoxon test, p-value < 0.05). 

 

The group of lncRNAs producing proteins with no selection signatures included several 

RNAs with known non-coding functions, such as Malat1, Neat1, Jpx, and Cyrano. 

These genes are involved in several cellular processes: Cyrano in the regulation of 345 
embryogenesis [55], Jpx in X chromosome inactivation [56], Neat1 in the 

maintenance and assembly of paraspeckles [57], and Malat1 in regulating the 

expression of other genes [58]. Many other translated ORFs were located in 

transcripts with no known function. Two examples are shown in Figure 4. Due to the 

absence of selection signatures, one must conclude that the translation of these 350 
transcripts is probably due to promiscuous activity of the ribosome machinery. This 

may lead to the production of thousands of novel non-functional small proteins in 

different cell types and tissues. 

 

 355 
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Figure 4. Examples of translated ORFs. The mapping of Ribo-Seq reads on ORFs classified 

as translated by RibORF is shown. The Y axis represents the number of reads, the X axis the 

positions in the coding sequence. The reads show strong frame bias, with a preponderance of 

in-frame reads (green) versus off-frame reads (red and blue). The exon/intron structure and 360 
the amino acid sequence is also shown. C: Conserved; NC-L: Not conserved – Low score. The 

genes NOVEL_00017522 (ORF_id: CUFF_mmu_all_st_00017522-1, gene_id: XLOC_007614) 

and Gm12925 are lncRNAs with no known function. 

 

What drives the translation of lncRNAs? 365 
 

Translated ORFs in lncRNAs lacking conservation in rat and/or human and with no 

evidence of selection (NC-L) comprised 369 genes translating 472 different ORFs. 

These genes were not coding in the usual sense, as we observed no signatures of 

selection but yet they produced proteins. The ORFs in the NC-L group of genes 370 
showed the characteristic three-nucleotide periodicity of actively translated regions 

(Fig 5a). In addition, the ORF frame bias was highly reproducible across tissues and 

the correlation coefficient similar to that computed for conserved, well-established, 

codRNAS (Fig 5b and S5-S7 Fig).  

 375 
Why was translation detected in these lncRNAs but not in others? The lack of selection 

signatures at the protein level precluded their being mis-annotated classical protein-

coding genes. We inspected the translation initiation sequence context but did not 

detect any significant differences between translated and non-translated ORFs. We 

then hypothesized that the ORF coding score could affect the “translatability” of the 380 
transcript, because codons that are abundant in coding sequences are expected to 

be more efficiently translated than other, more rare, codons. Consistent with this 

hypothesis, we found that the translated ORFs in this group exhibited higher coding 

scores than the ORFs in non-translated genes (Fig 5c, Wilcoxon test, p-value < 10-

5). Importantly, we obtained a similar result after controlling for gene expression 385 
level (Fig 5d, Wilcoxon test, p-value < 10-5). This is consistent with codon 

composition having an effect per se in ORF translation. We also detected significant 

differences in the expression level of translated and non-translated ORFs when 

controlling by coding score (Fig 5e). This may reflect better capacity to detect 

translation in the case of highly expressed transcripts. In contrast, although 390 
translated ORFs tend to be longer than non-translated ORFs (Fig 2c), ORF length 

appeared to have no effect per se in translatability (Fig 5e).  
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Figure 5. Factors influencing the translation of lncRNAs. A. Relationship between the 

number of reads, frame periodicity, and read uniformity in a given translated ORF for 

conserved and non-conserved neutral (NC-L) ORFs. Data shown are for the hippocampus 425 
sample; similar results were obtained in other samples. B. Relationship between the 

percentage of reads falling in the correct frame in ES cells and hippocampus samples, for small 

and long NC-L ORFs. Pearson correlation coefficient (R=0.5015) was highly significant (p-value 

< 10-5) and similar to conserved protein-coding ORFs (R= 0.5037, S5 Fig). C. Influence of 

coding score in the translatability of non-conserved neutral ORFs (NC-L). Intronic ORFs are 430 
shown for comparison. Translated ORFs showed significantly higher coding score than non-

translated ORFs; *** Wilcoxon test, p-value < 10-5. D. Influence of coding score in the 

translatability of non-conserved neutral ORFs normalized by maximum FPKM gene expression 

(median FPKM value = 13.19). Translated ORFs showed significantly higher coding score 

values than non-translated ORFs; *** Wilcoxon test, p-value < 10-5. E. Influence of maximum 435 
FPKM gene expression and ORF length in the translatability of neutral ORFs normalized by 
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coding score (median coding score value = -0.013). Translated ORFs showed significantly 

higher FPKM values; *** Wilcoxon test, p-value < 10-5.   

 

DISCUSSION 440 
 

Several studies have reported that many lncRNAs translate small proteins [13,16–

18,22]. Each study detected hundreds or even thousands of lncRNAs with patterns 

consistent with translation. Varying criteria have been used to differentiate active 

translation from other signals, including three-nucleotide periodicity of the Ribo-Seq 445 
reads, high translational efficiency values (number of Ribo-Seq reads with respect to 

transcript abundance), and signatures of ribosome release after the STOP codon. As 

lncRNAs are, in general, expressed at low levels, the stringency of the method, as 

well as the sequencing depth, can be expected to strongly impact the number of 

translated lncRNAs identified. 450 
 

The recent discovery that a large number of lncRNAs show ribosome profiling patterns 

consistent with translation has puzzled the scientific community [59]. Most lncRNAs 

are not conserved across mammals or vertebrates, which limits the use of 

substitution-based methods to infer selection. Methods based on the number of non-455 
synonymous and synonymous nucleotide polymorphisms (PN and PS, respectively) 

detect selection at the population level and can be applied to both conserved and 

non-conserved ORFs. This analysis is well-suited for pre-defined sets of ORFs; 

individual coding sequences in mammals do not always contain enough 

polymorphisms to test for selection [60]. In a previous study using ribosome profiling 460 
experiments from several species, we found that, in general, ORFs with evidence of 

translation in lncRNAs have weak but significant purifying selection signatures [24]. 

Together with previous observations that lncRNAs tend to be lineage-specific [10] 

and that young proteins evolve under relaxed purifying selection [61], this finding 

led us to hypothesize that lncRNAs are enriched in young protein-coding genes.  465 
 

The present study employed recently generated mouse, rat and human deep 

transcriptome sequencing, together with extensive mouse variation data and codon 

usage bias to investigate the patterns of selection in translated ORFs from lncRNAs. 

LncRNAs conserved across species are more likely to be functional than those which 470 
are not conserved. This is supported by studies measuring the sequence constraints 

of lncRNAs with different degrees of phylogenetic conservation [38,62]. Here we 

found that about 5% of the lncRNAs in databases may encode conserved functional 

micropeptides (smORFs). Standard proteomics techniques have important limitations 
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for the detection of micropeptides and there is evidence that the smORFs currently 475 
annotated in databases are only a small part of the complete set [63–66]. As shown 

here, and in other recent studies [13,15], computational prediction of ORFs coupled 

with ribosome profiling is a promising new avenue to unveil many of these peptides. 

In our study, the majority of transcripts encoding micropeptides were not annotated 

as coding, emphasizing the power of using whole transcriptome analysis instead of 480 
only annotated genes to characterize the so-called smORFome. Analysis of other 

tissues, and case-by-case experimental validation, will no doubt lead to a sustained 

increase in the number of micropeptides with characterized functions.  

 

Aside from lncRNAs which translate functional microproteins, the present study 485 
identified another large class of lncRNAs that appears to evolve neutrally and thus to 

translate proteins that do not perform any useful function. These ORFs can be 

distinguished from the rest because they were not conserved across species and did 

not exhibit high coding scores. As the test of neutrality was applied to the complete 

group, it remains possible that a few of the ORFs were under selection, but this is 490 
likely to be a very small number. An interesting observation is that the lack of 

selection signatures was not only observed in lncRNAs but also in coding RNAs that 

share the same characteristics. This blurs any differences between the two classes of 

genes when we focus on genes showing limited phylogenetic conservation. Overall, 

we detected 1,333 proteins that appeared to be translated but showed no signs of 495 
selection. This could be a gross underestimate, considering that many cell types and 

tissues have not yet been sampled. 

 

Although the existence of non-functional proteins may seem counterintuitive at first, 

we must consider that most of these transcripts (lncRNAs and non-conserved 500 
codRNAs) tend to be expressed at low levels and so the associated energy costs of 

this activity may be negligible. This is in agreement with recent estimates that the 

cost of transcription, and even translation, in multicellular organisms is probably too 

small to overcome genetic drift [67]. In other words, provided the peptides are not 

toxic, the negative selection coefficient associated with the cost of producing them 505 
may be too low for natural selection to effectively remove them. We observed that 

the translation patterns of many of these peptides were similar across tissues, 

indicating that their translation is relatively stable and reproducible. The “neutral” 

translation of lncRNAs provides an answer for the conundrum of why transcripts that 

have been considered to be non-coding appear to be coding when viewed through 510 
the lens of ribosome profiling.  
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According to our results, the “neutral” translation of certain lncRNAs, but not others, 

may be due to the chance existence of ORFs with a more favorable codon 

composition. This is consistent with the observation that abundant codons enhance 515 
translation elongation [68], whereas rare codons might affect the stability of the 

mRNA and activate decay pathways [69]. Other researchers have hypothesized that 

the distinction between translated and non-translated lncRNAs may be related to the 

relative amount of the lncRNA in the nucleus and the cytoplasm [16]. However, we 

found evidence that some lncRNAs with nuclear functions, such as Malat1 and Neat1, 520 
are translated, suggesting that the cytosolic fraction of any lncRNA may be translated 

independently of the role or preferred location of the transcript.  

 

In the absence of experimental evidence, the codon composition of an ORF can 

provide a first indication of whether the ORF will be translated or not. Differences in 525 
codon frequencies between genes reflect the specific amino acid abundance as well 

as the codon usage bias, and are influenced both by selection and drift [70,71]. 

Algorithms to predict coding sequences often use dicodon instead of codon 

frequencies, as the former also capture dependencies between adjacent amino acids 

or nucleotide triplets. We found that ORFs with very low coding scores are in general 530 
not translated. One example of this sort was the previously described de novo non-

coding gene Poldi [72], which lacked any evidence of translation in the data we 

analyzed. The group of ORFs that had high coding scores, but lacked conservation in 

human or rat transcripts, had weak but significant purifying selection signatures. 

Although there may be different reasons why we did not detect any homologues, 535 
such as rapid evolution linked to very short protein size, or loss of the gene in 

different lineages, this set is probably enriched in genes that have recently evolved 

de novo [73,74]. For this type of genes, the annotation as coding and non-coding 

appears to be highly irrelevant, as the two types of genes displayed very similar 

features in all the analyses performed. 540 
 

A growing number of protein-coding genes have been reported to have originated de 

novo from previously non-functional genomic regions [75–83]. These genes encode 

proteins with unique new sequences, which may have important roles in lineage-

specific adaptations. The encoded proteins are usually small and disordered, and 545 
have been hypothesized to become longer and more complex over time [79,84,85]. 

Interestingly, there is recent evidence that many of these genes may have originated 

from lncRNAs [29,86,87]. This is also consistent with the large number of species-

specific transcripts with lncRNA features identified in comparative transcriptomics 

studies [29,88–90]. The discovery that some non-coding RNAs are translated makes 550 
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the transition from non-coding/non-functional to coding/functional more plausible, as 

deleterious polypeptides can be purged by selection [91], and the remaining ones 

tested for new functions. However, the observation that lncRNAs are translated is by 

itself inconclusive, as one could also argue that translated lncRNAs are simply mis-

annotated functional protein-coding genes. Here we have shown that, for the bulk of 555 
translated lncRNAs, this is not the case, because many of the peptides do not show 

signatures of purifying selection. We propose that the evolutionary neutral translation 

of lncRNAs represents the missing link between transcribed genomic regions with no 

coding function and the eventual birth of proteins with new functions. 

 560 
In conclusion, our data support the use of ribosome profiling and conservation 

analysis to uncover putative new functional micropeptides. We also observed that 

many lncRNAs produce small proteins that lack a function; these peptides can serve 

as raw material for the evolution of new protein-coding genes. We found that the 

translated ORFs in these lncRNAs are enriched in coding-like hexamers when 565 
compared to non-translated or intronic ORFs, which implies that the sequences 

available for the formation of new proteins are not random but may have coding-like 

features from the start.  

 

METHODS 570 
 

Transcriptome assembly 

 

The polyA+ RNA-Seq from mouse was comprised of 18 strand-specific paired-end 

data publicly available in the Gene Expression Omnibus under accession numbers 575 
GSE69241 [29], GSE43721 [92], and GSE43520 [10]. Data corresponded to 5 brain, 

2 liver, 1 heart, 3 testis, 3 ovary and 4 placenta samples.  The polyA+ RNA-Seq from 

human comprised 8 strand-specific paired-end data publicly available in the Gene 

Expression Omnibus under accession number GSE69241 [29]. Data corresponded to 

2 brain, 2 liver, 2 heart and 2 testis samples.  580 
 

RNA-Seq sequencing reads were filtered by length (> 25 nucleotides) and by quality 

using Condetri (v.2.2) with the following settings: -hq = 30 –lq = 10. We retrieved 

genome sequences and gene annotations from Ensembl v. 75. We aligned the reads 

to the corresponding reference species genome with Tophat (v. 2.0.8, –N 3, -a 5 and 585 
–m 1) [93]. Multiple mapping to several locations in the genome was allowed unless 

otherwise stated. 
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We assembled the transcriptome with Stringtie [94], merging the reads from all the 

samples, with parameters -f 0.01, and -M 0.2. We used the species transcriptome as 590 
a guide (Ensembl v.75), including all annotated isoforms, but permitting the 

assembly of annotated and novel isoforms and genes (antisense, intergenic and 

intronic) as well. We complemented our human and mouse transcript assemblies with 

an additional rat transcript assembly generated in a parallel study [95]. The latter 

assembly was derived from RNA-seq data from 11 tissues: adrenal gland, brain, 595 
heart, kidney, liver, lung, muscle, spleen, testis, thymus, and uterus. 

 

In mouse, we selected genes with a minimum size of 300 nucleotides and with a per-

nucleotide read coverage ≥ 5 in at least one sample. This ensures a high degree of 

transcript completeness, as shown previously [29]. The resulting transcriptome 600 
comprised 16,679 protein-coding genes (average of 6.64 isoforms/gene); 2,580 long 

non-coding RNAs (average of 2.35 isoforms/gene) defined as assembled genes that 

overlapped annotated genes that were not annotated as protein-coding; 3,912 novel 

non-annotated genes (average of 1.07 isoforms/gene), and 3,467 genes overlapping 

pseudogenes. 605 
 

Ribosome profiling data 

 

We used 8 different data sets that included both strand-specific ribosome profiling 

(Ribo-Seq) and RNA-seq data and which we obtained from Gene Expression Omnibus 610 
under accession numbers GSE51424 [31], GSE50983 [32], GSE22001 [33], 

GSE62134 [34], GSE72064 [35], and GSE41246. Data corresponded to brain, testis, 

neutrophils, splenic B cells, neural embryonic stem cells, hippocampus, heart and 

skeletal muscle (Table 1). Only datasets corresponding to normal samples were 

considered. Any replicates were merged before the analyses. For all analyses we 615 
considered only genes expressed at significant levels in at least one sample 

(fragments per kilobase per Million mapped reads (FPKM) > 0.2). 

 

Ribo-Seq data sets were depleted of anomalous reads (length < 26 or > 33 nt) and 

small RNAs after discarding reads that mapped to annotated rRNAs and tRNAs in 620 
mouse. Next, reads were mapped to the assembled mouse genome (mm10) with 

Bowtie, allowing read multimapping (v. 0.12.7, -k 1 -m 20 -n 1 --best --strata –norc) 

and controlling for strand information. 

 

We used the mapping of the Ribo-Seq reads to the complete set of annotated coding 625 
sequences in mouse to compute the position of the P-site, corresponding to the tRNA 
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binding-site in the ribosome complex, for reads of different length, as in other studies 

[11,13,16,17]. If no P-site offset was clear for a specific length, reads with that length 

were not considered for subsequent analysis. Considering that the ORFs had to be 

extensively covered by reads to be considered translated (high uniformity), we 630 
decided to include multiple mapped reads so as not to compromise the detection of 

paralogous proteins (S8 Fig).  

 

Detection of translated ORFs 

 635 
We predicted all possible ORFs (ATG to TGA/TAA/TAG) with a minimum length of 30 

nucleotides (9 amino acids) in transcripts expressed at FPKM > 0.2 in any sample. 

Next, we ran RibORF (v.0.1) [16] to obtain a set of translated ORFs per sample. This 

program is a support vector machine classifier and we used a score threshold of 0.7 

to classify an ORF as translated, as in the original study. This cutoff is considered to 640 
be very stringent, with a false positive rate of 0.67% and a false negative rate of 

2.5% [16]. With the 0.7 threshold, no translated ORFs were found in annotated small 

RNAs, providing additional support for our approach. We only considered ORFs with 

10 or more mapped reads; the rest were classified as non-translated. The ORFs 

classified as translated by the program showed high three-nucleotide read periodicity 645 
and uniformity when compared to ORFs classified as non-translated (Figure 1b).  

 

For every gene, we selected all the ORFs that were translated in any of the samples 

and merged overlapping ORFs in clusters represented by the longest ORF in the 

group, for conservation and coding score analyses. If any of the ORFs were found 650 
upstream or downstream of another longer ORF in an annotated protein-coding 

transcript, we defined them as upstream ORF (uORF) or downstream ORF (dORF). If 

a gene was not translated, we selected the longest ORF across all transcripts for 

comparative purposes. In translated ORFs, the ORF with the highest number of 

mapped Ribo-Seq reads was usually the longest ORF (75.7% for codRNAs and 84% 655 
for lncRNAs).  

 

We differentiated between genes with small ORFs (smORFs) and those with longer 

ORFs. In the first class, the longest ORF in the gene encoded a protein of less than 

100 amino acids. We did not consider genes overlapping annotated pseudogenes and 660 
excluded smORFs in lncRNAs that showed significant sequence similarity to known 

protein-coding sequences, since they might be pseudogenized regions.  

 

Sequence conservation 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2017. ; https://doi.org/10.1101/064915doi: bioRxiv preprint 

https://doi.org/10.1101/064915
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 665 
We searched for homologues of the mouse ORFs in the human and rat transcript 

assemblies using TBLASTN (limited to one strand, e-value < 10-4) [96]. The aim was 

to define a set of proteins which were conserved in human, rat, or both, and a set of 

non-conserved proteins for which homologues in the transcriptomes of these species 

could not be identified. An additional requirement to classify a protein as conserved 670 
was that the alignment covered at least 50 amino acids or 75% of the total ORF 

length. The smallest conserved protein was 19 amino acids long. In the non-

conserved ORFs we only considered proteins of size 24 amino acids or longer, as 

homologues of shorter proteins may be difficult to detect even if they exist. For 

simplicity, in the analysis of the signatures of purifying selection we also discarded a 675 
small number of non-conserved ORFs that were in the same transcript than 

conserved ORFs (uORFs and dORFs were not taken into account here). 

 

Single nucleotide polymorphism data 

 680 
Single nucleotide polymorphism (SNP) data was obtained from Harr et al. [43], and 

included complete genotyping information from 20 individuals of the house mouse 

subspecies Mus musculus castaneus. We classified SNPs in ORFs as non-synonymous 

(PN, amino acid altering) and synonymous (PS, not amino-acid altering). We 

discarded any nucleotide variants that are fixed in the population used. We calculated 685 
the PN/PS ratio in each ORF group by using the sum of PN and PS in all the sequences 

((PN/PS)obs). In general, estimation of PN/PS ratios of individual sequences was not 

reliable due to lack of a sufficiently large number of SNPs per ORF; we only performed 

this calculation in cases with at least 10 SNPs in the ORF. 

 690 
We calculated the expected PN/PS under neutrality ((PN/PS)exp) using the mutation 

frequencies between pairs of nucleotides in Mus musculus castaneus and the codon 

composition of the different sequences or sets of sequences under study. The 

mutation frequencies were estimated from SNPs in introns from the same population 

of mice (supplemental file, Table S1). The transition to transversion ratio was 4.42, 695 
very similar to the 4.26 value obtained in early observations based on mouse-rat 

divergence data [97]. As a test of neutrality on the coding sequence, we used a chi-

square test with one degree of freedom that compares the observed and expected 

PN and PS values in the sequences of interest. In the absence of selection we expect 

(PN/PN)obs/(PN/PS)exp to be approximately 1. Under purifying selection, this ratio 700 
will be lower than one. Positively selected mutations are rapidly fixed in the 

population and their effect is expected to be negligible when using SNP data.  
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Analysis of proteomics data 

 705 
We used the proteomics database PRIDE [41] to search for peptide matches in the 

proteins encoded by various gene sets. For a protein to have proteomics evidence, 

we required at least two distinct perfect matches of peptides that did not map to any 

other protein in the dataset, allowing for up to two mismatches. These are very 

stringent conditions, for which a false positive rate lower than 0.2% has been 710 
previously estimated [95]. 

 

Computation of coding scores with CIPHER 

 

For each hexanucleotide (hexamer), we calculated the relative frequency of the 715 
hexamer in the complete set of mouse annotated coding sequences encoding 

experimentally validated proteins and in the ORFs of a large set of randomly selected 

intronic sequences [24]. Hexamer frequencies were calculated in frame, using a 

sliding window and 3 nucleotide steps. Subsequently, we obtained the logarithm of 

each hexamer frequency in coding sequences divided by the frequency in non-coding 720 
sequences. This log likelihood ratio was calculated for each possible hexamer i and 

termed CShexamer(i). The coding score of an ORF (CSORF) was defined as the average of 

the hexamer coding scores in the ORF.  

 

The following equations were employed: 725 
 

 

 

 

 730 
 

We have developed a computational tool, CIPHER, that uses this metric to calculate 

the coding score of the ORFs in any set of sequences. It also predicts ORFs with a 

high likelihood to be translated by using an empirical calculation of p-values derived 

from the distribution of coding scores in ORFs from introns. Specific parameters have 735 
been derived for several eukaryotic species. The code and executable file is freely 

available at https://github.com/jorruior/CIPHER. The program can also be accessed 

at  http://evolutionarygenomics.imim.es/cipher/. 

 

Using this metric, we divided the set of non-conserved genes into a group of genes 740 
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with high coding score (NC-H) and a group of genes with low coding score (NC-L).  

Genes in the NC-H group were defined as those with a coding score over the median 

value of conserved coding sequences (> 0.079, with CIPHER significant at p-value < 

0.025). 

 745 
Statistical data analyses 

 

The generation of plots and statistical tests was performed with the R package [98].  

 

DATA AVAILABILITY 750 
 

Transcript assemblies, open reading frames (ORFs) predicted to be translated, and 

code to calculated the PN/PS expected under neutrality in mouse sequences have 

been deposited at figshare (http://dx.doi.org/10.6084/m9.figshare.4702375). 

Supplemental file contains detailed information on the translated ORFs identified in 755 
this study (S1 Dataset).  

 

SUPPORTING INFORMATION  

 

S1 Fig. Number of tissues in which ORFs are translated. codRNAs are expressed 760 
and translated in most of the samples. Annotated and novel lncRNAs, as well as 

upstream and downstream ORFs (u/dORFs), often exhibit sample-specific patterns of 

translation.  

 

S2 Fig. Effect of Ribo-Seq number of reads in the detection of translation. 765 
Number of translated long and small ORFs (length < 100 aa) after randomly 

subsampling mapped Ribo-Seq reads from hippocampus using different read 

numbers are shown. For comparison, points represent the number of ORFs translated 

on the eight different samples.  

 770 
S3 Fig. Percentage of Ribo-Seq reads mapping to the top 5 translated genes 

in every sample. The five most highly translated genes in skeletal muscle and heart 

gathered a significant proportion of the mapped reads, decreasing the capability to 

detect translation of other proteins in the sample.  

 775 
S4 Fig. Relationship between coding score and RibORF score. ORFs are groups 

according to the RibORF score; data shown are for hipoccampus. Only ORFs with at 

least 10 mapped Ribo-Seq reads were considered. A positive relationship between 
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coding score and RibORF score was observed in both codRNAs and lncRNAs/novel 

transcripts.  780 
 

S5 Fig. Reproducibility of the Ribo-Seq frame bias in codRNAs in brain and 

hippocampus samples. Relationship between the percentage of reads falling in the 

correct frame in brain and hippocampus samples. The data is for codRNAs classified 

as Conserved. Pearson correlation coefficient was R=0.5037, significant at p-value < 785 
10-5.  

 

S6 Fig. Reproducibility of the Ribo-Seq frame bias in lncRNAs in neural 

embryonic stem cells and hippocampus samples. Relationship between the 

percentage of reads falling in the correct frame in brain and hippocampus samples. 790 
The data are for lncRNAs classified as NC-LS. Pearson correlation coefficient was 

R=0.3654, significant at p-value < 10-5.  

 

S7 Fig. Reproducibility of the Ribo-Seq frame bias in codRNAs in neural 

embryonic stem cells and hippocampus samples. Relationship between the 795 
percentage of reads falling in the correct frame in brain and hippocampus samples. 

The data is for codRNAs classified as Conserved. Pearson correlation coefficient was 

R=0.3512, significant at p-value < 10-5.  

 

S8 Fig. Effect of using multiple mapped reads versus uniquely mapped reads 800 
in the detection of translation. Maximum frame bias refers to the fraction of reads 

that map to the correct frame. pme is the percentage of maximum entropy and 

measures read uniformity along the ORF. The values of the parameters were 

measured with RibORF. “All” is when multiple mapping with Bowtie2 was allowed (up 

to 20 different locations), “unique” is when only reads that map to a single location 805 
with Bowtie2 were considered. “Translated” refers to the cases in which RibORF score 

was equal or higher than 0.7. CodRNA: protein-coding ORFs. LncRNA: annotated and 

novel long-noncoding ORFs. Use of multimapped reads resulted in a better 

performance of the parameters classifying protein-coding genes and long non-coding 

genes as translated.  810 
 

S1 Table. Number and type of single nucleotide polymorphisms (SNPs) in 

introns from Mus musculus castaneus. The SNP data were from 20 different 

individuals and obtained from [43]. We mapped the SNP data to 23,667 randomly 

taken introns from mouse genes annotated in Ensembl version 75. T: transition; V: 815 
transversion. 
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S2 Table. Relative mutation frequencies in Mus musculus castaneus. The 

frequencies were derived from the intronic SNPs in Table S1. We used them to 

calculate the expected ratio between non-synonymous and synonymous SNPs in the 820 
absence of selection in any sets of sequences ((PN/PS)exp, see Table S3). For 

practical reasons, the table was normalized so that the sum of each row was 1.  

 

S3 Table. Number of non-synonymous and synonymous single nucleotide 

polymorphisms (PN and PS, respectively) in translated ORFs from coding 825 
genes and lncRNAs. PN and PS was from 20 different individuals of Mus musculus 

castaneus, as provided by Harr et al. (2016). Conserved: ORFs with homology to 

human expressed sequences. NC-HS: ORFs with no homology to human expressed 

sequences and with a coding score > 0.079. NC-N: rest of ORFs with no homology to 

human expressed sequences. (PN/PS)exp refers to the neutral expectation based on 830 
the estimated mutational frequencies (Table S2) and the observed codon composition 

of each set of sequences. ORFs in introns: 4,835 randomly taken ORFs in introns.  

Chi-square test with 1 degree of freedom, observed versus expected, ** p-value < 

10-2, *** p-value < 10-3, N.S.: non-significant. 

 835 
S4 Table. Observed versus expected PN/PS ratio. SE: standard error of sample 

proportion. The p-value obtained with the chi-square test employed to compare the 

observed and expected data in Table S3 is shown. The datasets are the same as in 

Table S3.  

 840 
S1 Dataset. Sequence data and annotations. Information on the open reading 

frames (ORFs) and genes used in this research is annotated by translation status, 

sample, conservation class, coding scores, non-synonymous polymorphisms (PN), 

synonymous polymorphisms (PS), expected PN/PS under neutrality, proteomics 

evidence. 845 
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