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4Department of Ecology & Evolution, University of California, Los Angeles, California, 90095,
USA
5Fogarty International Center, National Institutes of Health, Bethesda, Maryland, 20892, USA

Corresponding authors: *sschreiber@ucdavis.edu, **jlloydsmith@ucla.edu

Keywords: evolutionary emergence, multiscale disease dynamics,

Abstract

When emerging pathogens encounter new host species for which they are poorly adapted, they
must evolve to escape extinction. Pathogens experience selection on traits at multiple scales,
including replication rates within host individuals and transmissibility between hosts. We analyze
a stochastic model linking pathogen growth and competition within individuals to transmission
between individuals. Our analysis reveals a new factor, the cross-scale reproductive number of a
mutant virion, that quantifies how quickly mutant strains increase in frequency when they initially
appear in the infected host population. This cross-scale reproductive number combines with viral
mutation rates, single-strain reproductive numbers, and transmission bottleneck width to
determine the likelihood of evolutionary emergence, and whether evolution occurs swiftly or
gradually within chains of transmission. We find that wider transmission bottlenecks facilitate
emergence of pathogens with short-term infections, but hinder emergence of pathogens exhibiting
cross-scale selective conflict and long-term infections. Our results provide a framework to advance
the integration of laboratory, clinical and field data in the context of evolutionary theory, laying
the foundation for a new generation of evidence-based risk assessment of emergence threats.
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Introduction

Emerging infectious diseases are rising in frequency and impact and are placing a growing
burden on public health and world economies [1–4]. Nearly all of these emergence events involve
pathogens that are exposed to novel environments such as zoonotic pathogens entering human
populations from non-human animal reservoirs, or human pathogens exposed to antimicrobial
drugs [1]. In these novel environments, pathogens may experience new selective forces acting at
multiple biological scales, leading to reduced replication rates within hosts or less efficient
transmission between hosts. When these novel environments are sufficiently harsh, emergence only
occurs when the pathogen adapts sufficiently quickly to avoid extinction. As genetic sequencing of
pathogens becomes increasingly widespread, there are clear signs of such rapid adaptation [5–11],
but we lack a cohesive framework to understand how this process might work across scales.
Theoretical studies have shed important insights into circumstances under which this evolutionary
emergence is possible, but either have focused on the host-to-host transmission dynamics and
treated within-host dynamics only implicitly [12–15], or have accounted for explicit within-host
dynamics only along a fixed transmission chain [16, 17]. Here, we introduce and analyze a model
explicitly linking these two biological scales and demonstrate how within-host viral competition,
infection duration, transmission dynamics within a host population, and the size of transmission
bottlenecks determine the likelihood of evolutionary emergence. This analysis sheds new light on
factors governing pathogen emergence, addresses long-standing questions about evolutionary
aspects of emergence, and lays the foundation for making risk assessments which integrate
outcomes from in vitro and in vivo experiments with findings from sequence-based surveillance in
the field.

Recent empirical findings have highlighted the need for a new generation of theory on pathogen
emergence, which addresses the current frontiers of dynamics within hosts and across scales. For
most pathogens, and certainly for RNA viruses and single-stranded DNA viruses, individual hosts
often are not dominated by single pathogen genotypes [18, 19]. Furthermore, at the host
population scale, pathogen allele frequencies at a given locus exhibit a range of dynamics from
rapid selective sweeps for drug resistance or immune escape [20–22] to gradually changing
frequencies [23, 24]. Together, these observations lead to the long-standing question of whether
adaptive evolution of viruses occurs within single hosts by rapid fixation of beneficial mutants, or
more slowly by a gradual shift of allele frequencies along chains of transmission [25, 26]. A recent
wave of studies tracking changes in within-host genetic diversity through chains of transmission
among hosts [27–34] provide unique opportunities to address this question, but a theoretical
framework is needed.

Empirical studies, together with analyses at broader population scales, have highlighted the
crucial influence of the transmission process – and particularly the population bottleneck
associated with transmission – in filtering viral diversity. The existence of transmission
bottlenecks has long been recognized, and is hypothesized to play a critical role in pathogen
evolution [35–40]. Recent studies have reported that bottleneck widths vary considerably among
pathogens and routes of transmission [41, 42], and perhaps across different phases of host
adaptation [43]. Narrow transmission bottleneck sizes of 1 to 2 viral genotypes are common for
HIV-1 [44–46] and hepatitis C virus [47, 48], and bottlenecks of 1 to 3 viruses are reported for
influenza in ferret respiratory droplet transmission experiments [41, 42, 49] and in some studies of
natural human transmission [50, 51]. Much wider bottleneck estimates, of 30 to over 100 viruses,
have been reported for natural transmission of influenza in horses [29] and swine [52]; for ferret
transmission experiments via direct contact [41, 42]; and for transmission of Ebola virus among
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humans [53]. While wide bottlenecks were also reported for natural influenza transmission among
humans [54, 55], this was determined to be a bioinformatic artefact [56].

A major frontier in understanding viral adaptation is how the transmission process influences
evolution at population scales. Past work has emphasized the potentially deleterious effect of
genetic drift [35, 37, 39], but a rising tide of studies reports direct selection for transmissibility.
This can arise as a strong selection bias at the transmission bottleneck, where strains present at
low or undetectable frequencies in the donor host are preferentially transmitted to the
recipient [43, 49, 57, 58], or it can be measured directly via experimental infection and
transmission studies [24, 59–61] (though we emphasize that enhanced transmissibility is not
inevitable, and depends on availability of suitable adaptive genotypes [62]). Overall transmission
rates can be viewed as being determined by total viral loads, weighted by genotype-specific
transmissibilities [58]. Importantly, the transmissibility trait can vary independently from viral
replication fitness within hosts, so there is potential for conflicts in selection across scales. Indeed,
there is clear evidence that HIV-1 has certain genotypes that transmit more efficiently, but then
the within-host population tends to evolve toward lower-transmission strains during an
infection [46, 58, 63–65]; a similar phenomenon has been reported for H5N1 influenza [49] and
H9N2 influenza [66]. In an extreme example, Plasmodium parasites were found to rapidly evolve
resistance to an antimalarial drug, but at the cost of complete loss of transmissibility [67].
Experimental evolution studies have highlighted how antagonistic pleiotropy can lead to tradeoffs
between viral replication and the extracellular survival that is required for transmission [68, 69],
and a similar tradeoff has been postulated for environmental transmission of avian influenza in the
field [70]. Together these findings contribute to a growing evidence base that cross-scale conflicts
in selection may inhibit the emergence of new viral strains in many systems [reviewed in 15].

Collectively these empirical findings highlight the need for a theory of evolutionary emergence
that accounts explicitly for the within-host dynamics of competing viral strains, transmission
bottlenecks, and host-to-host transmission dynamics [71]. To this end, we introduce and analyze a
model which integrates previous work on stochastic models of evolutionary emergence and
deterministic models explicitly coupling within- and between-host
dynamics [12, 14, 16, 17, 60, 65, 72–75]. Our analysis allows us to address several fundamental
questions about the emergence of novel pathogens: What factors limit evolutionary emergence for
pathogens with different life histories? Why do some apparently ‘nearby’ adaptive mutants fail to
emerge? How do bottleneck sizes influence the likelihood of emergence? Do evolutionary changes
occur swiftly within individual hosts, or gradually across chains of transmission? Moreover, our
analysis allows us to examine the relative importance of genetic diversity in zoonotic reservoirs
versus the acquisition of new mutations following spillover into humans [76–78]. Specifically, we
address the long-standing question of how much emergence risk is increased if the “spillover
inoculum” includes some genotypes bearing adaptive mutations for the novel host? Finally, our
analysis enables us to unify findings from previous theoretical studies, and propose mechanistic
interpretations of phenomenological parameters from earlier work.

Models and Methods

Our stochastic multiscale model of evolutionary emergence follows a finite number of
individuals in a large, susceptible host population exposed to a pathogen from a reservoir
population (Fig 1A). Although our framework represents many types of pathogens and can be
extended to any number of strains, we focus on the case of a viral pathogen with two strains: a
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wild-type maladapted for the novel environment and a mutant strain potentially adapted for the
novel environment.
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Figure 1. The cross-scale dynamic of evolutionary emergence. An individual is
initially infected from the reservoir host population (panel A) with only the wild
type viral strain (in blue). Within an infected individual (panel B), the viral load
increases at an exponential rate until saturating at day Te and ending after T days.
Mutations ensure individuals typically have a mixed infection with wild-type (blue)
and mutant (red) viral strains (panel B). The likelihood of transmission between
individuals, and the composition of the infecting dose (panel C), depend on the size
and composition of the infected individual’s viral load at the time of contact, and
on the transmissibility of each strain. As the infection spreads in the population
(panel A), the frequency of the mutant virions among infected individuals varies
(panel D) and, ultimately, determines whether evolutionary emergence occurs. In D,
each horizontal line marks the infectious period of an individual whose infection was
initiated with that percentage of the mutant strain and the vertical arrows represent
transmission events between individuals.

The cross-scale model with explicit within-host dynamics. Formally, the cross-scale model
is a continuous time, age-dependent, multi-type branching process [79, 80]. The “type” of
individual corresponds to the composition of the initial virus population (i.e. the founding viral
population that initiates the infection), and the “age” of an individual corresponds to the time
since their initial infection. Within an infected host, the viral dynamics determine how the viral
load and viral composition change over time due to competition between strains and mutation
events. Transmission events are determined by the viral load and composition of the host and,
consequently, are age-dependent. Below, we describe the model at each scale and the biological
processes we consider in detail. The mean-field analogue of our model is an age-structured partial
differential equation model introduced by Coombs et al. [73].
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Within-host scale model. Infection of a host usually starts locally at the site of viral entry or first
tissue contact. This local spread involves a small number of viruses, their infection of host cells at
the exposure interface and possibly the innate immune response to infection [81, 82]. During this
period, infection is stochastic and establishment of infection is not guaranteed [82, 83]. When one
or more virions survive the period of initial local spread, they establish lineages that comprise the
productive infection. These virions are termed as transmitted founder viruses [44]. Here, we
explicitly define the number of transmitted founder viruses that establish productive infection as
the bottleneck width N . This quantity can be estimated using viral genetic sequencing data, for
example in [44, 55]. Our within-host model starts with the transmitted founder viruses by
assuming an initial viral load N , and hence considers the period of established productive
infection only (as with other within-host models [84, 85] and cross-scale deterministic models
[73]). The initial viral exposure and stochastic local infection process are implicitly incorporated
into the transmission term in the population scale model as described below, and consequently, we
consider a successful transmission event as a transmission event leading to an established infection.

The within-host dynamics are modeled with coupled differential equations where
v(t) = (vw(t), vm(t)) denotes the vector of viral abundances

(1)
dvi
dt

=

{
(1− µ)rivi + µrjvj if vw + vm ≤ K
(1− µ)rivi + µrjvj − vi

vm+vw
(rwvw + rmvm) else

where i 6= j are either w or m, for wild-type and mutant strains respectively, and µ is the
mutation rate between these strains. At time t = 0, v(0) = (vw(0), vm(0)) corresponds to the
initial viral load of an infected individual, and vw(0) + vm(0) = N . Our within-host model is
similar in structure to the quasi-species model of Lythgoe et al. [65].

In this model, the viral population initially increases exponentially because of the availability of
a large number of target cells. The wild-type and mutant strains increase exponentially at rates,
rw and rm, respectively. These dynamics are consistent with the viral dynamics predicted by
standard multistrain within-host models when target cells are abundant [86–88]. The viral load
saturates at time Te with a maximal viral load K (Fig 1B). We assume that after Te, the viral
population size stays constant at K, and the frequencies of the wild-type and the mutant change
due to their fitness differences. We further assume that the infectious period starts when
vw(t) + vm(t) > 0 and ends after T days. For some acute infections, viral load usually decreases
rapidly after viral peak (e.g., influenza A infections [89]), and thus T is close to Te. For other
acute infections, such as SARS-CoV-2 [90] infection, viral load remains at a high level after peak
viremia for a longer period of time, in the range of weeks. In this case, T > Te. For chronic
infections (though our work does not necessarily consider the full range of evolutionary processes
involved in chronic infections) such as HIV and Hepatitis C [91] infections, viral loads usually
reach a set-point and can stay roughly constant for an extended period of time, in the range of
years. In this case, T is much greater than Te. Overall, this within-host model serves as a flexible
framework to describe a range of viral dynamics from both acute and chronic infections, while
maintaining simplicity to enable analysis.

Population scale model. At the scale of the host population, the transmission dynamics are
modeled using a multi-type branching process. Each infectious individual encounters a
Poisson-distributed number of susceptible individuals at a rate of β individuals per day. Then, the
number of contacts of an infected individual during the infectious period is Poisson distributed
with mean βT . Each contact results in a successful transmission event with probability p(E)
where E is the effective viral load at the time t of transmission (see below). Similar to the
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deterministic model of Lythgoe et al. [65], p(E) is an increasing function of E. Our main analyses
assume that the transmission function p(E) is linear, but nonlinear transmission functions yield
nearly identical results (Figs. Appendix–2 through 4).

The effective viral load E is calculated as E = bwvw(t) + bmvm(t) , where bw and bm are the
transmissibilities of the wild-type and the mutant, respectively. Here bw and bm account for the
survival of the viruses through a range of processes during transmission, including their likelihoods
of being shed from the donor host, surviving the environment outside of a host, and reaching and
infecting the target cells in an uninfected host. Furthermore, as explained in the within-host
model section, these parameters also account for the likelihoods of the viruses to survive initial
local infection and establish a productive infection in the recipient host. Viruses may face different
challenges and selection pressures to overcome the barriers in each of these processes. Here, for
simplicity and generality, a single parameter is used to summarize the transmissibility of different
viruses because little is known or measured about the ability of a virus to overcome these barriers.
More explicit models can be constructed as the relevant data become available.

In the event of successful transmission, there are N virions (the transmitted founder viruses)
that establish the productive infection. In the model, these N virions are sampled binomially from
the source individual’s viral load weighted by the transmissibilities of the viral strains. Thus, the
probability of infecting an individual with a viral load of ṽ = (ṽw, ṽm) with ṽw + ṽm = N equals

ψ(v(t), ṽ) =
N !

ṽw!ṽm!

(
bwvw(t)

bwvw(t) + bmvm(t)

)ṽw ( bmvm(t)

bwvw(t) + bmvm(t)

)ṽm
.

Under these assumptions, during their infectious period, an infected individual of type v(0)
infects a Poisson distributed number of individuals with viral load ṽ, and the mean of this
distribution equals

F (v(0), ṽ) =

∫ T

0

βψ(v(t), ṽ)p(bwvw(t) + bmvm(t)) dt.

Overall, by explicitly modeling the cross-scale dynamics, our model simultaneously tracks the
number of infected hosts and the viral loads within each infected host (Fig 1D). The structure of
our stochastic model is similar to Peck et al. [16]’s stochastic model of molecular viral evolution
along transmission chains. However, our model accounts for stochastic transmission dynamics
rather than conditioning on a chain of transmission, and explicitly accounts for the dynamics of
competing viral strains. It also has similarities with Geoghegan et al. [17]’s cross-scale, stochastic
model of a single transmission event from a donor host to a recipient host. Like our model,
Geoghegan et al. [17]’s model has constant transmission bottlenecks, multinomial sampling from
donor to host, and explicit within host dynamics with exponential growth and ceiling phases.
Their model, however, focuses on a single transmission event and assumes that all virions are
equally likely to be transmitted from donor to host, i.e. it assumes no selection based on
transmissibility.

Methods. To solve the probabilities of emergence, we use the discrete-time branching process
given by censusing the infected population at the beginning of each generation of infection. This
discrete-time process is known as the embedded process [79, 80]. All the statistics of this
embedded process are given by the probability generating map G : [0, 1]N+1 → [0, 1]N+1 where
N + 1 is the number of types of initial viral loads i.e. all combinations of wild-type and mutant
virions for N virions [79, 80]. We index the coordinates by the initial number of mutant virions
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0, 1, 2, . . . , N within an infected individual and have

Gi(s) = exp

(∑
j

F ((i, N − i), (j,N − j))(sj − 1)

)
.

The i-th coordinate of
q(t) = Gt(0, . . . , 0)

is the probability of extinction by generation t when there is initially one infected individual with
initial viral load (i, N − i). The probability of emergence is given by 1− q where q = limt→∞ q(t)
is the asymptotic extinction probability. The limit theorem of branching processes implies that
q = (q0, . . . , qN) is the smallest (with respect to the standard ordering of the positive cone),
non-negative solution of the equation q = G(0, . . . , 0). These extinction probabilities can be
non-zero if and only if the dominant eigenvalue of the Jacobian matrix DG(1, 1, . . . , 1) is greater
than one. Equivalently, the reproductive number given by the dominant eigenvalue of the next
generation matrix of DG(1, 1, . . . , 1) is greater than one [92]. Note that the linear map
s 7→ DG(1, 1, . . . , 1)s corresponds to the mean-field dynamics of the embedded multi-type
branching process.

For the numerical work, we used linear, logarithmic, and saturating functions for the
transmission probability function p. All gave similar results but we present the linear case as most
analytical results were derived for this case. To compute the asymptotic extinction probabilities,
we iterated the probability generating map G for 2, 000 generations. For the individual based
simulations, we solved the within-host differential equations using matrix exponentials and
renormalizing these exponentials when the viral load reached the value K. Between host
transmission events were determined by a time-dependent Poisson process with rate function
p(bwvw(t) + bmvm(t)), and multinomial sampling was used to determine the initial viral load of an
infected individual.

Results

The probability of evolutionary emergence. We first focus on the scenario of a single
individual in the host population getting infected by the wild-type strain. We assume that the
mean number of individuals infected by this individual (the reproductive number Rw of the
wild-type) is less than one. Hence, in the absence of mutations, there is no chance of a major
outbreak [92]. However, if the wild-type strain produces a mutant strain whose reproductive
number Rm is greater than one, there is a chance for a major outbreak. The mutant strain might
have a higher reproductive number than the wild-type strain because it replicates more rapidly
within the host or because it transmits more effectively to new hosts (or both). We define these
within-host and between-host selective advantages as s = rm − rw and τ = log(bm)− log(bw),
respectively.

Consistent with theoretical expectations, a non-zero probability of evolutionary emergence
requires the mutant’s reproductive number Rm to be greater than one (Fig 2). However, the
mixture of selective advantages or disadvantages of the mutant strain that give rise to Rm > 1
depends in a complex manner on the pathogen’s life history traits, such as the duration of the
infection (Fig 2A,B vs. C,D) and the transmission bottleneck width (Fig 2A,C vs. B,D). Notably,
for long-term infections with a large transmission bottleneck size, the emergence probability can
be effectively zero (i.e. < 10−16) for mutant strains whose reproductive number exceeds one (white
region bounded by the solid red curve in Fig 2D) – a finding not explained by classical theory. As
we shall show, this outcome is predicted by a new quantity, the cross-scale reproductive number
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Figure 2. The joint effects of within-host and between-host selective advantage of
the mutant on the probability of emergence for pathogens with short-term (A,B)
and long-term (C,D) infectious periods, and with transmission bottlenecks of size
N = 1 (A,C) and N = 25 (B,D). Colorations correspond to log10 of the emergence
probability. The critical value of the mutant reproductive number Rm equaling one is
drawn in solid red. Black contour lines correspond to log10 of the number of mutant
virions transmitted by an individual initially only infected with the wild strain. In D,
the critical value of the cross-scale reproductive number, α = 1, of a mutant virion
is shown as a red dashed line and the white circles correspond to the τ and s values
used in Fig 3. Parameters: K = 107, βT = 30, T = 7.5 < 12.9 = Te (short-term
infection) and T = 30 > 12.9 = Te (long-term infection), bw chosen so that R0 = 0.75
for wild type, rw = 1.25 and µ = 10−7.

(α) of a mutant virion – the mean number of mutant virions transmitted to susceptible individuals
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by an infected individual whose initial viral load contains 1 mutant virion and N − 1 wild type
virions. When α is less than one, evolutionary emergence becomes unlikely.

To understand these complexities, we determine the conditions under which the mutant’s
reproductive number Rm exceeds one, and then present analytic approximations for the emergence
probability when Rm > 1.

Cross-scale selection and the mutant reproductive number Rm. The reproductive
numbers of the wild-type strain (Rw) and mutant strain (Rm) can be calculated as the product of
the contact rate, the average transmissibility of the strain during the infectious period, and the
infection duration (see, Coombs et al. [73] and Appendix). These reproductive numbers are
positively correlated with the contact rate, infection duration, transmissibility, and viral
per-capita growth rates. The influence of the maximal viral load K depends on the infection
duration. For short-term infections, defined here as infections with a relatively short saturated
phase (i.e. T − Te � Te), increasing K has little effect on a strain’s reproductive number. For
long-term infections, defined here as as infections with a long saturated phase (i.e. T − Te � Te),
reproductive numbers increase with K.

Whether a selective advantage at either scale results in the mutant reproductive number Rm

exceeding one depends on the duration of the infection. For short-term infections, most
transmissions occur towards the end of the infectious period T , when the infectious load is the
highest. By the end of the infectious period, the mutant viral density has increased approximately
by a factor of esT more than the wild-type, and transmission for each mutant virion is exp(τ) more
likely than for a wild-type virion. Refining this intuition, we derive the approximation (Appendix)

(2) logRm ≈ logRw + τ + s(T − 1/rw).

This approximation shows that a sufficiently strong selective advantage at either scale can result
in the mutant reproductive number exceeding one (Rm > 1) despite a selective disadvantage at
the other scale (confirmed by exact calculations in Fig 2A,B). For short-term infections where
viral dynamics are dominated by the exponential phase, the longer the duration of infection, the
greater the influence of the within-host selective advantage compared to the between-host selective
advantage (e.g., steep contours in Fig 2A).

For long-term infections, the viral load will tend to K for both purely wild-type or purely
mutant infections. Thus, the only difference will be in transmissibility and we get the
approximation (Appendix)

(3) logRm ≈ logRw + τ.

This approximation implies that a between-host selective advantage is required for a long-term
infection to be capable of evolutionary emergence (confirmed by exact calculations in Fig 2C).
When viral dynamics are dominated by the saturated phase at fixed K, a within-host selective
advantage has little impact on the average viral load during the infectious period of an individual
solely infected with the mutant strain and, consequently, provides a minimal increase in the
mutant reproductive number.

Going beyond the mutant reproductive number. When the mutant strain has a
reproductive number greater than one, there is a non-zero probability of a major outbreak that is
well-approximated by the product of three terms (compare Fig. 2 to Fig. Appendix–6):

(4) Sw × Iw→m × Pm
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where Sw is the mean size of a minor outbreak due to the wild type, Iw→m is the mean number of
individuals infected with a mutant virion by an individual initially only infected with the wild
type, and Pm is the probability an individual infected with one mutant virion causes a major
outbreak. The magnitude of the probability Pm depends on the mutant reproductive number, Rm,
as in previous theory; however we show below that it is also determined strongly by a new
quantity, the cross-scale reproductive number α of a mutant virion. Our approximation (4), which
can be viewed as a multiscale extension of earlier theory [12, 13], highlights three key ingredients,
in addition to Rm > 1, for evolutionary emergence.

First, the size of the minor outbreak produced by the wild type determines the number of
opportunities for the mutant strain to appear within a host. The average size of this minor
outbreak equals Sw = 1

1−Rw
, as noted by earlier studies [12, 13]. If the wild strain is badly

maladapted, then it is expected not to spread to multiple individuals (e.g. if Rw < 1/2, then
1

1−Rw
< 2) and opportunities for transmission of mutant virions are very limited. Alternatively, if

the wild strain is only slightly maladapted to the new host, then, even without any mutations, the
pathogen is expected to spread to many individuals (e.g. if Rw = 0.95, then 1

1−Rw
= 20), thereby

providing greater opportunities for evolutionary emergence. Our analysis implies that higher
contact rates, within-host viral growth rates, viral transmissibility, and maximal viral loads (for
long infectious periods) facilitate these larger reproductive values.

Second, the mutant strain must be transmitted successfully to susceptible individuals — the
second term Iw→m of our approximation (4). For an individual initially infected only with the
wild-type strain, Iw→m equals the product of the contact rate, the infection duration, and the
likelihood that a mutant virion is transmitted during a contact event, averaged over the full course
of infection (Appendix). The likelihood of transmitting mutant virions on the tth day of infection
is proportional to the product of the transmission bottleneck width (N), the within-host frequency
of the mutant strain, and the transmissibility bm of the mutant strain. This highlights an
important distinction between short-term and long-term infections. For short-term infections
where sT is small, there is insufficient time for the frequency of mutants to rise within a host, so
transmission events with mutant virions are rare (< 1/1, 000 for all black contour lines in
Fig 2A,B). This is a key obstacle to evolutionary emergence in short-term infections. In contrast,
for long-term infections where the mutant strain has a substantial within-host selective advantage,
the mutant strain is transmitted frequently (e.g. the expected number of events > 1 for some
contours in Fig 2C,D).

Finally, even if the mutant strain is successfully transmitted, an individual infected with the
mutant strain needs to give rise to a major outbreak which occurs with probability Pm, see
equation (4). This requires the mutant strain to rise in frequency in the infected host population.
A mean field analysis for larger bottleneck sizes (N > 5 in the simulations) reveals that mutant
frequency initially grows geometrically by the cross-scale reproductive number α of a mutant
virion–the number of mutant virions, on average, transmitted by an individual initially infected
with a single mutant virion and N − 1 wild type virions (Appendix). If this cross-scale
reproductive number is greater than one, then each mutant virion replaces itself with more than
one mutant virion in the next generation of infection, and the frequency of mutant virions
increases in the infected host population. If the cross-scale reproductive number α is less than
one, the frequency of mutants decreases, thereby hindering evolutionary emergence.
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For short-term infections, the cross-scale reproductive number α is equal to the ratio of the
basic reproductive numbers:

(5) α =
Rm

Rw

Thus for short-term infections there is no additional condition required for emergence. Whenever
the mutant reproductive number Rm exceeds one, there is a mean tendency for the mutant strain
to increase in frequency once it has been successfully transmitted to susceptible individuals (i.e.
α > 1 because Rm > 1 > Rw). The greater the ratio Rm/Rw, the more rapid the increase in
frequency.

For long-term infections, there is sufficient time for within-host selection to change the
frequency of the mutant strain within a host. Larger transmission bottlenecks increase the
likelihood that these changes in frequency are transmitted between hosts. For these long infectious
periods and larger bottlenecks, a within-host selective disadvantage reduces the cross-scale
reproductive number α (Appendix):

(6) α ≈ exp(τ + sT/2) for s sufficiently small.

Hence, the cross-scale reproductive number α may be less than one even when the mutant
reproductive number Rm is greater than one. This phenomenon, which arises from the interplay of
dynamics at within-host and between-host scales, moderated by the transmission bottleneck
width, explains the puzzling behavior about the emergence probabilities noted earlier (the white
region bounded by solid and dashed red lines in Fig 2D).

The importance of these frequency dynamics can be visualized via individual-based outbreak
simulations, and cobwebbing diagrams summarizing the mean field dynamics. When the mutant
reproductive number Rm is greater than one but its cross-scale reproductive number α is less than
one, mutant virions may be transmitted but the resulting mixed infections are invariably taken
over by purely wild-type infections (Fig 3A). Only pure mutant infections can escape this
“relapse” to wild-type, and then only if the mutation rate µ is low enough that new wild-type
virions are very slow to appear. When the within-host selective disadvantage is weak and the
between-host selective advantage is strong, the cross-scale reproductive number α may be slightly
greater than one and the mutant strain can drift to higher frequencies within the infected host
population (Fig 3B). For large within-host selective advantages, the cross-scale reproductive
number α is large and the mutant strain can sweep rapidly to fixation in the infected host
population (Fig 3C). Thus, in addition to revealing a new condition needed for evolutionary
emergence, the cross-scale reproductive number α summarizes the conditions under which
evolution occurs swiftly or gradually within chains of transmission.

The dueling effects of transmission bottlenecks. Wider bottlenecks increase the likelihood
of evolutionary emergence for pathogens with a short infectious period, but can hinder or
facilitate evolutionary emergence of long-term infections (Fig 4A,B). For short-term infections,
evolutionary emergence is constrained primarily by the transmission of mutant virions by
individuals initially infected with only the wild strain. Wider transmission bottlenecks alleviate
this constraint, especially when the mutant strain is expected to increase rapidly within the
infected population (α� 1; Fig 4A). When the mutant strain rises slowly in the infected host
population (α slightly greater than one), the emergence probability is insensitive to the bottleneck
size, regardless of infection duration.

For long-term infections for which the mutant strain’s reproductive number Rm is greater than
one, but the cross-scale reproductive number α is less than one, emergence probabilities decrease
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Figure 3. Frequency dynamics of the mutant strain in the host population. For long-
term infections with moderate to large transmission bottlenecks (N > 5), individual-
based simulations corresponding to three values of the cross-scale reproductive num-
ber α of a mutant virion illustrate (A) the mutant strain decreasing in frequency
(despite an index case initially only infected with the mutant strain) when the cross-
scale reproductive number α is less than one, (B) a gradual sweep to fixation of the
mutant strain when α ≈ 1, and (C) fast sweeps to fixation for large values of α > 1.
In these individual based simulations, each horizontal line marks the infectious pe-
riod of an individual whose infection was initiated with that percentage of the mutant
strain and the vertical arrows represent transmission events between individuals. In
the bottom half of the figure, the mean field dynamics corresponding to each of the
individual-based simulations are plotted as cobwebbing diagrams. The solid black
curves correspond to the expected frequency of the mutant strain in the infected host
population in the next generation given the frequency in the current generation. Thin
blue lines indicate how the expected frequencies change across multiple generations.
The colored backgrounds represent the expected number of individuals infected with
a certain percentage of the mutant strain (vertical axis) by an individual with an ini-
tial percentage of the mutant strain (horizontal axis). Parameter values as in Fig 2D
indicated with black asterisks.
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Figure 4. Effects of bottleneck size and mixed infections of the index case on evolu-
tionary emergence of short-term and long-term infections. Different curves correspond
to different tendencies, as measured by the cross-scale reproductive number α, for the
mutant strain to increase in frequency in the infected host population. In (A) and
(B), bottleneck size has negative effect on emergence when the cross-scale reproduc-
tive number α is less than one and a positive effect when α is greater than one. In (C)
and (D), index cases initially infected with higher percentages of the mutant strain
are more likely to lead to emergence. −∞ corresponds to numerical values of 10−16

or smaller. Parameters: K = 107, βT = 150, T = 7.5 for short-term infections and
T = 30 for long-term infections, bw chosen so that R0 = 0.75 for the wild strain,
rw = 1.25, τ = 1, s chosen to achieve the α values reported in the legend, and
µ = 10−7. N = 25 in (C) and (D).

sharply with bottleneck size (Fig 4B and Appendix). Because a mutant reproductive number Rm

greater than one requires a between-host selective advantage (τ > 0) for a long-term infection, the
cross-scale reproductive number α is less than one only if there is a within-host selective
disadvantage (s < 0) so that mixed infections tend to be taken over by the wild-type.
Consequently, the mutant virus can start an epidemic only when a host is infected with an initial
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Figure 5. The major steps and barriers for evolutionary emergence.

viral load composed of mutant particles only, an event that becomes increasingly unlikely for
larger bottleneck sizes N .

Mutant spillover events hasten evolutionary emergence. When the mutant strain is
circulating in the reservoir, the index case can begin with a mixed infection which invariably
makes evolutionary emergence more likely (Fig 4C,D). For short-term infections, spillover doses
that contain low or high frequencies of mutants have a roughly equal impact on emergence, and
the magnitudes of these increases are relatively independent of the cross-scale reproductive
number α (Fig 4C). This arises because the initial production and transmission of the mutant
strain is the primary constraint on evolutionary emergence for short-term infections with Rm > 1
(black contours in Fig 2A,B). Consequently, mutant spillover events of any size are sufficient to
overcome this constraint.

For long-term infections, the impact of mutant spillover depends on the cross-scale reproductive
number α. When α is less than one, only spillover doses with high frequencies of mutants have a
significant effect on emergence (i.e. bottom three curves in Fig 4D). When the cross-scale
reproductive number α is greater than one, the effect mimics short-term infections and mutant
spillover events of any size can substantially increase the chance of emergence (top three curves in
Fig 4C,D).
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Discussion

We presented a cross-scale model for evolutionary emergence of novel pathogens, linking
explicit representations of viral growth and competition within host individuals to viral
transmission between individuals. Our work identifies four steps to evolutionary emergence
summarized in Figure 5 and four ingredients (see, equation (4)) that govern these steps: (i) the
reproductive number of the wild type which determines the size of a minor outbreak of this strain,
(ii) the rate at which individuals infected initially with the wild-type strain transmit the mutant
strain, and (iii) the cross-scale reproductive number α of a mutant virion which corresponds to the
mean number of mutant virions transmitted by an individual whose initial infection only included
one mutant virion, and (iv) the reproductive number of the mutant strain. Prior studies of
evolutionary emergence [12–15] identified the importance of the single strain reproductive
numbers, Rm and Rw, and a phenomenological ‘mutation rate’, but ingredients (iii)–(iv) are new
mechanistic insights arising from the cross-scale dynamics. By analyzing these ingredients of
evolutionary emergence, we show how the probability of emergence is governed by selection
pressures at within-host and between-host scales, the width of the transmission bottleneck, and
the infection duration. We also map the conditions under which different broad-scale patterns are
observed, from rapid selective sweeps to slower diffusion of new types. While our study has
focused on within-host and between-host scales of selection, it could be generalized readily to
other types of cross-scale dynamics where selection may act differently at different scales, such as
within-farm and between-farm scales where genetic data have given insights into the emergence of
high-pathogenicity avian influenza strains [93].

Previous theoretical studies of evolutionary emergence of novel pathogens [12–15] have assumed
infected individuals are, at any point in time, infected primarily by a single pathogen strain.
Consequently, shifts from infection with one strain to infection with another must occur abruptly,
relative to other processes. Such abrupt shifts could correspond to within-host selective sweeps or,
if mutant strains remain at low frequency, to rare events in which only the mutant strain is
transmitted. The seminal studies [12, 13] showed that under these conditions the probability of
emergence is proportional to the frequency of these events, which they bundled together into a
phenomenological “mutation rate”.

Our cross-scale analysis identifies the mechanistic counterpart to this phenomenological
“mutation rate”, which is the probability that an individual infected initially with the wild-type
strain ends up transmitting at least one virion of the mutant strain (Step 3 in Fig 5). This
quantity, which is approximated by the black contours in Fig 2, is governed chiefly by the ability
of the mutant strain to reach an appreciable frequency within the host over the course of an
infection. This is evident from the strong dependence on the strength of within-host
selection—which surprisingly is much stronger than the dependence on the transmission
advantage of mutant virions—and the higher values found for larger bottleneck widths, which
favor transmission of low-frequency mutants through a straight-forward sampling effect. This
sampling effect is consistent with the theoretical work of Geoghegan et al. [17], and the
experimental study of Frise et al. [42], who found larger bottlenecks increased the likelihood of
mutant viral strains being transmitted between hosts. The duration of infection plays a crucial
role, and our analysis showed that achieving this first transmission of the adaptive mutant is a key
barrier to evolutionary emergence for short-term infections (Fig 2A,B). This finding aligns with
the recent observation that putative immune-escape mutants of pandemic H1N1 influenza, which
should have a within-host fitness advantage, were generated readily in infected humans but did
not reach high within-host frequency and have been detected very rarely at the consensus level
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(i.e. they have failed to emerge) [94]. While more investigation is needed to determine the
relevant s and τ parameters for these strains, these data are consistent with the mechanism we
identify whereby these variants may be adaptive but have insufficient time to reach high enough
frequencies to avoid being lost in transmission bottlenecks.

Our analysis highlights an additional factor, the cross-scale reproductive number α of a mutant
virion, previously unrecognized in models neglecting within-host diversity and analyses centered
on R0 for pure infections. Even after the mutant strain has been transmitted, it needs to increase
in frequency at the scale of the infected host population (Step 4 in Fig 5). Specifically, each
transmitted mutant virion, on average, needs to replace itself with more than one transmitted
mutant virion in the next generation of infected hosts. When this occurs, it sets up a positive
feedback along chains of infections: individuals with a higher frequency of the mutant strain tend
to infect more individuals, which in turn provides more opportunities to transmit, on average,
higher frequencies of the mutant strain to the next generation. Conversely, when this
between-generation cross-scale reproductive number α is less than one, the positive feedback leads
to lower and lower frequencies of the mutant strain within the infected host population. This
positive feedback mechanism is stronger for wider transmission bottlenecks (≥ 5 virions in our
numerical explorations), which better preserve the mutant frequency from one host to the next.
Interestingly, this 5 virion threshold to define a wider transmission bottleneck is consistent with
an earlier modeling study, which found that bottleneck sizes above 5 virions eliminated fitness
losses in serial transfers of RNA viruses between cell culture plates [40].

The directionality of the positive feedback is more complex, and depends on multiple factors
including the infection duration and the presence or absence of cross-scale conflicts. For long-term
infections, mutant frequencies can drop deterministically within a host, and hence prevent
emergence, even if the mutant strain has a reproductive number greater than one. This occurs
when the mutant strain has a within-host selective disadvantage and between-host selective
advantage (upper left quadrant of Fig 2D); the long infectious period allows time for the
within-host disadvantage to drive the mutant strain to lower frequency and, thereby, set up the
positive feedback effectively preventing evolutionary emergence. In contrast, for short-term
infections the mutant strain tends to rise in frequency whenever the mutant reproductive number
is greater than one, because there is insufficient time for any within-host disadvantage to act. In
particular, evolutionary emergence may occur despite within-host selective disadvantages, a
possibility excluded by previous theory [15]. Collectively these two results imply that, in the face
of cross-scale conflict and wide transmission bottlenecks, longer infectious periods can inhibit,
rather than facilitate [14], evolutionary emergence (Fig 2B,D). Related to this result, Geoghegan
et al. [17] found that longer durations of the infectious period would lower the probability that a
donor would infect the recipient. In their case, this occurred because fitness of the mutant was
assumed to be lower in the donor host species and higher in the recipient species. Hence, a longer
infectious period could purge any mutants arising in the donor and result in the recipient only
receiving wild-type virions.

Previous theoretical studies examining the evolutionary consequences of cross-scale conflict [e.g.
65, 72, 73] differ from ours in several ways. Notably, they consider longer-term evolution for
endemic diseases using deterministic models, rather than the inherently stochastic, shorter-term
dynamics of evolutionary emergence. Using multiscale endemic SIR models, Coombs et al. [73]
found that pathogen strains competitively superior at the within-host scale could be displaced by
competitively inferior strains that had higher reproductive numbers at the epidemiological scale.
This phenomenon was driven by non-equilibrium within-host dynamics, where early fluctuations
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in strain frequencies could have disproportionate influence if host survival was short. Our work
reveals the converse case, where strains with lower reproductive numbers at the epidemiological
scale (in fact, less than one) can prevent evolutionary emergence if they have a within-host
advantage, by causing the adapted strains to have a cross-scale reproductive number α of less
than one. Consistent with our result, Lythgoe et al. [65] showed found that deterministic,
multistrain models could produce equilibrium states dominated by strains that were competitively
superior at the within-host scale, despite reducing the reproductive number at the epidemiological
scale. Parallel to our finding that cross-scale conflict occurred only for long-term infections,
Lythgoe et al. [65]’s short-sighted evolution was most pronounced when within-host dynamics
occurred at a faster time-scale.

Our cross-scale analysis also enables us to address two long-standing and interrelated questions
in emerging pathogen research, regarding the influence of transmission bottleneck size on
emergence probability and the importance of “pre-adapted” mutations circulating in the animal
reservoir [17, 71, 76–78, 95]. In both cases, the answer depends on the cross-scale reproductive
number α of a mutant virion that governs the frequency feedback. Under most circumstances,
wider bottlenecks boost the probability of emergence (Fig 4A,B), because they favor the onward
transmission of mutant virions when they are rare; this is particularly vital for the first
transmission of mutant virions (i.e. Step 3 in Fig. 5). The exception is for long-term infections
with α < 1, such that the mutant tends to decline in frequency in the infected host population.
Under these circumstances, wider bottlenecks hinder emergence by propagating reductions in the
frequency of the mutant strain more efficiently from host to host (Step 4 in Fig. 5). Conventional
thinking about the influence of bottlenecks on viral adaptation emphasizes fitness losses due to
genetic drift and the effects of Muller’s ratchet [35–37, 39, 40], which become more severe for
narrower bottlenecks. Contrary to these negative effects of narrow bottlenecks, our findings
highlight that narrower bottlenecks can aid emergence in long-term infections with a cross-scale
conflict in selection (Fig 4B). Here the adaptive gain in transmissibility at population scales can
be impeded by the selective disadvantage at the within-host scale, but, intriguingly, this
disadvantage is neutralized by genetic drift arising from narrow bottlenecks. Given the evidence
for cross-scale evolutionary conflicts for HIV-1 [58, 63, 64, 96], our results suggest the possibility
that HIV-1’s narrow transmission bottleneck [44] could play a role in the emergence of novel
strains (e.g. drug resistant strains).

Similar mechanisms dictate the influence of mutant viral strains circulating in the reservoir,
particularly for long-term infections (Fig 4C,D). If the cross-scale reproductive number α of a
mutant virion is greater than one, so that the mutant frequency rises easily in the infected host
population, then even low frequencies of mutants in the reservoir lead to substantial risk of
emergence. Indeed, for long-term infections with α > 1, emergence becomes almost certain when
there are mutants in the initial spillover inoculum. Conversely, when the cross-scale reproductive
number α is less than one, emergence probability scales with the proportion of mutants in the
initial dose, and when α� 1, the initial dose must consist almost entirely of the mutant strain in
order to pose any major risk. These findings yield direct lessons for the growing enterprise of
conducting genetic surveillance on zoonotic pathogens in their animal reservoirs [97–100]. A
crucial requirement for effective genetic surveillance is the ability to identify genotypes of concern;
the integration of various research approaches to address this question, and estimate key
quantities, is an on-going research challenge [101–103]. Risk to humans increases if there is any
non-zero proportion of mutant viruses in the spillover inoculum, so tracking the presence of such
mutants is beneficial. Surprisingly, the quantitative frequency of mutants in the initial dose has
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little impact on emergence probability in most scenarios, with the one exception of long-term
infections with α < 1. Collectively, these results suggest that any knowledge of the cross-scale
reproductive number α and mutant reproductive numbers can help to refine our goals for genetic
surveillance, and that in many circumstances presence/absence detection is sufficient.

While there are not sufficient data from past emergence events to test our model’s conclusions,
recent studies combining animal transmission experiments with deep sequencing have exhibited
many phenomena aligned with our findings. Moncla et al. [43] conducted deep sequencing
analyses of H1N1 influenza viruses, in the context of ferret airborne transmission experiments that
examined the adaptation of avian-like viruses to the mammalian host. Their results provide
in-depth insights into selection within hosts and at transmission bottlenecks, for a range of
mutations on genetic backgrounds that change as adaptation proceeds (i.e. equivalent to
numerous separate implementations of our model of a single mutational step). They observe a
fascinating range of dynamics: some mutations appeared to have α moderately above 1, exhibiting
modest increases in frequency between generations, but achieved this outcome with different traits
(e.g. S113N on the HA190D225D background exhibited strong within-host selection and no
evident transmission advantage, while D265V showed weak within-host selection but its frequency
rises in transmission). Another mutation (I187T on the ‘Mut’ background) appeared to have
α� 1 and exhibited strong selection at both scales; notably, this mutation is widespread in 17/17
human-derived isolates of the post-emergence 1918 virus, consistent with the successful and rapid
emergence our model would predict. Moncla et al. also present substantial evidence of cross-scale
conflict in selection, as one mutation (G225D on ‘Mut’ background) exhibited declining frequencies
within ferrets but rose to fixation in 2/2 transmission events, while numerous mutations in the
HA2 region rose in frequency within the host but were eliminated in transmission. Another study
examined a set of ‘gain-of-function’ mutations in H5N1 influenza in ferrets, and reported a slow
rise in frequency when the virus was passaged between ferrets by intranasal inoculation, then
rapid fixation of these mutations during airborne transmission [24]; the airborne transmission data
are consistent with strong between-host selection and a high α value (though we emphasize that
circulating H5N1 viruses required substantial modification to the favorable genetic background
used in those experiments). Intriguingly, Moncla et al. synthesized their results with those of
earlier studies [41, 49, 62] to hypothesize that the ‘stringency’ of the transmission bottleneck
varies systematically during the course of viral adaptation, with loose bottlenecks prevailing when
viruses first encounter a new host species (and perhaps again when the virus is host-adapted), and
much tighter bottlenecks at the key juncture in host adaptation when a genotype with greater
transmissibility is available to be selected. If this hypothesis is correct, then our findings can be
applied to each adaptive step independently, and may help to identify which viral traits are most
crucial to adaptive steps subject to tighter or looser bottlenecks.

Our results focus on systems where there is one major rate-limiting step to emergence, and the
viral population can be represented by one wild-type and one mutant strain. This is a
simplification of most viral emergence problems, but will apply directly to systems where a single
large-effect mutation is the primary barrier to emergence of a supercritical strain, as for
Venezuelan equine encephalitis virus emerging from rodents to horses [104]. While it is possible to
extend our exact computations and analysis of the cross-scale reproductive number of a mutant
virion to systems with multiple mutational steps, the present analysis already provides insights
into more complex evolutionary scenarios. For evolutionary trajectories that proceed through a
fixed series of genotypes, the probability of emergence can be approximated by extension of our
equation (4), as in previous work [12, 13, 15]. If emergence requires multiple mutational steps
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which pass through a fitness valley, then the scale at which this valley occurs matters. A
within-host fitness valley in replication rates would hinder pathogens with long-term infections and
larger bottleneck widths, more than those with smaller bottlenecks. A between-host fitness valley
in transmissibility could hinder evolutionary emergence of pathogens causing long-term infections
more than those causing short-term infections, unless the within-host landscape is sufficiently
favorable to allow traversing the valley within a single host’s long-term infection. Recent studies
have also highlighted the importance of considering the broader genotype space, which can reveal
indirect paths that circumvent fitness valleys [105], alternative genotypes that yield similar
phenotypes [43], and the costs imposed by deleterious mutants on higher mutation rates [106].

Our analysis also focuses on a simple “logistic-like” model for within-host viral dynamics. This
simplification allows us to study how evolutionary emergence is limited by different factors for
pathogens dominated by exponential versus saturated phases of viral growth, while maintaining
analytical tractability. Future important extensions would be to allow within-host fitness to alter
the carrying capacity in the saturated phase, as well as identifying the relative contributions of
stochastic within-host dynamics [17], immune responses, and host heterogeneity on viral
emergence. Some of these aims would be addressed by using a more mechanistic model for the
within-host dynamics, incorporating resource limitation [72, 73] or immune pressure [107]. We
have assumed that the bottleneck width N is fixed for a given pathogen. This is broadly
consistent with currently available data [44, 47, 48], but it will be important to explore the
consequences of variation in bottleneck width arising from different routes of transmission, or
possibly from changing viral loads [38, 39]. Among other possible impacts, this may alter the
conclusion that emergence probability is minimally affected by the functional dependence of
transmission probability on viral load. The computational and analytical framework developed
here can be extended to account for these additional complexities. Other important extensions
can explore the impact of clonal competition on emergence probabilities [108–111] or the potential
for complementation to rescue pathogen strains from deep fitness valleys–a mechanism that
depends on wide transmission bottlenecks [112].

Our cross-scale analysis opens the door for a new generation of integrative risk assessment
models for pathogen emergence, which will integrate growing streams of data collected in
laboratories and field surveillance programs [100, 101, 103]. At present we rely on the intuition of
individual scientists to link together the discoveries from targeted experiments, massively parallel
phenotypic screens, experimental evolution, clinical medicine, and field epidemiology and disease
ecology. Mathematical and computational models that connect biological scales using mechanistic
principles can make unique contributions to this transdisciplinary enterprise, by formally
integrating diverse empirical findings and by identifying the crucial knowledge gaps to focus future
research. The work presented here is a step on the path to realizing this potential.

Acknowledgments. The authors thank two anonymous reviewers and Joshua Weitz for providing
valuable feedback that greatly improved the quality of this paper. This work was supported by
U.S. National Science Foundation Grants EF-0928987 and DMS-1716803 to SJS, and EF-0928690
and DEB-1557022 to JLS, and DARPA PREEMPT D18AC00031 to JLS. The content of the
information does not necessarily reflect the position or the policy of the U.S. government, and no
official endorsement should be inferred.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2020. ; https://doi.org/10.1101/066688doi: bioRxiv preprint 

https://doi.org/10.1101/066688


20

References

[1] K.E. Jones, N.G. Patel, M.A. Levy, A. Storeygard, D. Balk, J.L. Gittleman, and P. Daszak.
Global trends in emerging infectious diseases. Nature, 451:990–993, 2008.

[2] M. Woolhouse, F. Scott, Z. Hudson, R. Howey, and M. Chase-Topping. Human viruses:
discovery and emergence. Philosophical Transactions of the Royal Society B: Biological
Sciences, 367:2864–2871, 2012.

[3] S.S. Morse, J.A.K. Mazet, M. Woolhouse, C.R. Parrish, D. Carroll, W.B. Karesh,
C. Zambrana-Torrelio, W.I. Lipkin, and P. Daszak. Prediction and prevention of the next
pandemic zoonosis. The Lancet, 380:1956–1965, 2012.

[4] C.R. Howard and N.F. Fletcher. Emerging virus diseases: can we ever expect the
unexpected? Emerging Microbes and Infections, 1:e46, 2012.

[5] J. Steel, A.C. Lowen, S. Mubareka, and Palese P. Transmission of influenza virus in a
mammalian host is increased by pb2 amino acids 627k or 627e/701n. PLOS Pathogens, 5:
e1000252, 2009.

[6] B.V. Lowder, C.M. Guinane, N. L. Ben Zakour, L.A. Weinert, A. Conway-Morris, R.A.
Cartwright, A.J. Simpson, A. Rambaut, U. Nübel, and J.R. Fitzgerald. Recent
human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus.
Proceedings of the National Academy of Sciences, 106:19545–19550, 2009.

[7] L. Xu, L. Bao, W. Deng, H. Zhu, F. Li, T. Chen, Q. Lv, J. Yuan, Y. Xu, Y. Li, Y. Yao,
S. Gu, P. Yu, H. Chen, and C. Qin. Rapid adaptation of avian h7n9 virus in pigs. Virology,
452-453:231–236, 2014.

[8] M. Jonges, M.R.A. Welkers, R.E. Jeeninga, A. Meijer, P. Schneeberger, R.A.M. Fouchier,
M.D. de Jong, and M. Koopmans. Emergence of the virulence-associated pb2 e627k
substitution in a fatal human case of highly pathogenic avian influenza virus a (h7n7)
infection as determined by illumina ultra-deep sequencing. Journal of virology, 88(3):
1694–1702, 2014. ISSN 0022-538X.

[9] W. Zhu and Y. Shu. Genetic tuning of avian influenza A (H7N9) virus promotes viral fitness
within different species. Microbes and Infection, 17:118 – 122, 2015.

[10] T. Lam, B. Zhou, J. Wang, Y. Chai, Y. Shen, X. Chen, C. Ma, W. Hong, Y. Chen,
Y. Zhang, L. Duan, P. Chen, J. Jiang, Yu Zhang, Lifeng Li, Leo Lit Man Poon, Richard J.
Webby, David K. Smith, Gabriel M. Leung, Joseph S. M. Peiris, Edward C. Holmes,
Yi Guan, and Huachen Zhu. Dissemination, divergence and establishment of H7N9 influenza
viruses in china. Nature, 522:102–105, 2015.

[11] Dan Xiang, Xuejuan Shen, Zhiqing Pu, David M Irwin, Ming Liao, and Yongyi Shen.
Convergent evolution of human-isolated h7n9 avian influenza a viruses. The Journal of
infectious diseases, 217(11):1699–1707, 2018.

[12] R. Antia, R.R. Regoes, J.C. Koella, and C.T. Bergstrom. The role of evolution in the
emergence of infectious diseases. Nature, 426:658–661, 2003.

[13] Y. Iwasa, F. Michor, and M.A. Nowak. Evolutionary dynamics of invasion and escape.
Journal of Theoretical Biology, 226:205–214, 2004.
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Appendix

Derivation of the Single Strain Reproductive Numbers. When the within-host dynamics
only exhibit exponential growth (i.e. N exp(riT ) < K) and there is a linear transmission function,
the basic reproductive numbers equal

(A–1) Ri = βbiN
exp(riT )− 1

ri
, for i = w,m.

When the within-host dynamics saturate (i.e. N exp(riT ) > K), the basic reproductive number
equals

(A–2) Ri = βbi

(
K −N
ri

+KTs

)
where Te = log(K/N)/ri is the length of exponential phase and Ts = T − Te is the length of
saturated phase. These expressions for the single strain reproductive numbers are equivalent to
evaluating the integral presented in equation (22) of Coombs et al. [73] for our within-host model.
We also note that our assumption of small mutation rates and Rw < Rm implies that the
multiscale reproductive number R0 in the sense of Coombs et al. [73] and Lythgoe et al. [65] (i.e.
the dominant eigenvalue of the next generation matrix of DG(1, 1, . . . , 1) is (approximately) Rm.

We derive two approximations of Ri under the assumption that s is small, exp(riT )� 1, and
K � N . First, assume that the infection is short-term in which case Te = T . Then provided s is
sufficiently small to ensure that the mutant type doesn’t saturate, Ri are given by (A–1). The log
ratio, provided exp(riT )� 1, satisfies

log
Rm

Rw

≈ log
βbmN exp((rw + s)T )/(rw + s)

βbwN exp(rwT )/rw

= τ + sT + log
rw

rw + s

≈ τ + s(T − 1/rw)

which yields (2) in the main text.
Now assume that the infection is long-term in which case Te < T , and that if s < 0, |s| is

sufficiently small to ensure that the mutant type also saturates before time T . Then the basic
reproductive numbers Ri are given by (A–2). If K � N , then

log
Rm

Rw

≈ log
βbmK

(
1

rw+s
+ T − 1

rw+s
log K

N

)
βbwK

(
1
rw

+ Ts

)
= τ + log

rw
rw+s

+ Trw − rw
rw+s

log K
N

1 + rwTs
.

Assume that |s| � rw. Then

log
Rm

Rw

≈ τ + log
1− s

rw
+ Trw − (1− s

rw
) log K

N

1 + rwTs
.

As T = Ts + Te and

(1− s

rw
) log

K

N
=
rw − s
rw

log
K

N
= (rw − s)Te,
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it follows that

log
Rm

Rw

≈ τ + log

(
1 +

s

rw

rwTe − 1

1 + rwTs

)
.

As log(1 + x) ≈ x for small x and |s| � rw by assumption, we obtain

log
Rm

Rw

≈ τ +
s

rw

rwTe − 1

rwTs + 1
.

Equation (3) in the main text follows in the case that Ts � Ts in which case the second term is
approximately zero.

Derivation of the Emergence Probability Approximation. For small mutation likelihood
µ, we derive a mathematically explicit version of the approximation (4) for the emergence
probability from the main text. As stated in the main text, this approximation is given by the
product of three terms: the expected number of secondary, wild-type cases produced during a
fade-out, the mean number of individuals infected with mutant virions by an individual initially
infected only with the wild-type, and the probability of emergence from an individual infected
with a single mutant virion. As noted in the main text, the first term is given by 1

1−Rw
. The

second term requires more work. To derive an analytic approximation for this term, notice that
the mean number of individuals infected with ` mutant virions by an individual only infected with
the wild type equals ∫ T

0

βp (vw(t)bw + vm(t)bm)ψ((vw(t), vm(t)), (N − `, `))dt

where vw(t), vm(t) is the solution of the within host viral dynamics with vw(0) = N, vm(0) = 0,
and ψ((vw, vm), (ṽw, ṽm)) is the probability of an individual with viral load (vw, vm) infecting an
individual with a viral load of (ṽw, ṽm) where ṽw + ṽm = N . The solution (vm(t), vm(t)) is given by

vi(t) = Vi(t) if Vw(t) + Vm(t) ≤ K and K
Vi(t)

Vw(t) + Vm(t)
otherwise

where Vw(t), Vm(t) are the solutions to

dVw
dt

= rw(1− µ)Vw + rmµVm Vw(0) = N

dVm
dt

= rm(1− µ)Vm + rwµVw Vm(0) = 0.

Ignoring back mutations (i.e. setting rmµ = 0 and rm(1− µ) to rm), the solutions for Vw(t), Vm(t)
are approximately

Vw(t) ≈ N exp(rwt)

Vm(t) ≈ µN
rw

rw − rm
(exp(rwt)− exp(rmt))

if rw 6= rm, and
Vm(t) ≈ µNrwt exp(rwt)

if rw = rm = r. Since x
a+x
≈ x/a to first order near 0, the weighted frequency, xm(t), of mutant

strain is approximately

xm(t) =
bmVm(t)

bwVw(t) + bmVm(t)
≈ exp(τ)µrw

exp(st)− 1

s
where s = rm − rw and

bm
bw

= exp(τ)
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if s 6= 0, and
xm(t) ≈ µrwt exp(τ)

if s = 0. We have

ψ((vw(t), vm(t)), (N − `, `)) =
N !

`!(N − `)!
xw(t)N−`xm(t)`.

For ` ≥ 2, these terms are of order µ2 and therefore will be ignored. Hence, the only term of
interest is ` = 1:

ψ((vw(t), vm(t)), (N − 1, 1)) ≈ µNrw exp(τ)
exp(st)− 1

s
if s 6= 0 and µNrwt exp(τ) otherwise

We also can approximate (assuming p is differentiable)

p(bwVw(t) + bmVm(t)) ≈ p(bwVw(t)) +O(µ) = p(bw min{K,N exp(rwt)}) +O(µ)

We drop the O(µ) term as it will only lead to higher order terms in the approximation.
Putting all of this together gives the following approximation for the mutant force of infection

(A–3) β

∫ T

0

µp(bw min{K,N exp(rwt)})Nrw exp(τ)
exp(st)− 1

s
dt

if s 6= 0, and

(A–4) β

∫ T

0

µp(bw min{K,N exp(rwt)})Nrw exp(τ)tdt

if s = 0.
In the case of a linear transmission function p(x) = x, we can write down explicit expressions

for (A–3) and (A–4). There are two cases to consider. First suppose that N exp(rwT ) ≤ K i.e. the
infection is short-term. Then, integrating and simplifying yields the following approximation for
the mutant force of infection

βµN2bw
rw
s

exp(τ)

(
exp((rw + s)T )− 1

rw + s
− (exp(rwT )− 1

rw

)
.

Assuming rw � s (and thus rw/(rw + s) ' 1− s/rw),

(A–5) βµN2bw exp(τ)

 exp(sT )− 1

s︸ ︷︷ ︸
≈ (for small s) (1+sT/2)T

exp(rwT )− exp((rw + s)T )− 1

rw


if s 6= 0 and

βµN2bw exp(τ)

(
T exp(rwT )− exp(rwT )− 1

rw

)
if s = 0. Now rather than writing out the entire expression for the case N exp(rwT ) ≥ K, lets
write down things for when the time in the saturated phase is much, much longer than the time in
the exponential phase. Then, integrating and simplifying yields the following approximation for
the mutant force of infection

(A–6) βµNKbwrw exp(τ)

(
exp(sT )− 1

s
− T

)
/s︸ ︷︷ ︸

≈ (small s) (1+sT/3)T 2/2
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if s 6= 0, and

βµNKbwrw exp(τ)T 2/2

otherwise.
Putting this all together, (4) for an short-term (respectively long-term) infection with s 6= 0

becomes the product of 1
1−Rw

, (A–5) (respectively (A–6)), and the probability of an outbreak
starting with one individual infected with N − 1 wild type virions and 1 mutant type virions. The
final probability term can be calculated exactly using the generating functions described in the
Models and Methods section of the main text. Fig Appendix–6 illustrates the effectiveness of this
approximation, and Fig Appendix–7 plots the the error in the approximation.

Derivation of the Mean Field Frequency Dynamics. To understand how the viral
composition of infected individuals change across generations, we derive a mean field
approximation for the dynamics of the mean mutant viral load at the beginning of each generation
of disease spread. To this end, we define a map from h : [0, 1]→ [0, 1] where x ∈ [0, 1] represents
the current mean mutant viral load in the population at the beginning of the infectious period and
h(x) is the mean at the beginning of infectious period in the next generation. Our derivation of
this mean field dynamic is done in the limit of large N ↑ ∞ and µ ↓ 0. None-the-less, as shown by
the dashed red line in Fig 2D, this approximation works quite well away from this limit.

We begin by approximating the mean initial mutant viral count in individuals infected by an
individual with Vw(0) = N − ` and Vm(0) = `. Recall, the force of infection for producing
individuals initially infected with j mutant viral particles is given by

F ((N − `, `), (N − j, j)) = β

∫ T

0

p(
∑
i

bivi(t))
N !

(N − j)!j!
y(t)j(1− y(t))jdt

where y(t) = bmvm(t)
bwvw(t)+bmvm(t)

is the within-host frequency of the mutant strain, and (vw(t), vm(t)) is

the solution of the within-host viral dynamics with initial condition vw(0) = N − `, vm(0) = `.
Weighting this term by j and summing over j yields the expected number of mutant viral
particles in an individual infected by our type (N − `, `) infected individual:

β

∫ T

0

p(
∑
i

bivi(t))
∑
j

j
N !

(N − j)!j!
y(t)j(1− y(t))jdt = β

∫ T

0

p(
∑
i

bivi(t))Ny(t)dt

Now if we let x = `/N denote the initial fraction, then dividing the previous integral by the net
number of viral particles infecting new individuals yields our desired update rule

(A–7) h(x) :=
β
∫ T
0
p(
∑

i bivi(t))Ny(t)dt

β
∫ T
0
p(
∑

i bivi(t))Ndt
=

∫ T
0
p(
∑

i bivi(t))y(t)dt∫ T
0
p(
∑

i bivi(t))dt

Note that h(x) is a function of x as the solution of (Vw(t), Vm(t)) depends on its initial condition
Vw(0) = (1− x)N, Vm(0) = xN .

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2020. ; https://doi.org/10.1101/066688doi: bioRxiv preprint 

https://doi.org/10.1101/066688


Appendix-5

The points x = 0 and x = 1 are fixed points for h corresponding to a mutant-free and
wild-type-free states. Stability of the fixed point x = 0 is determined by

h′(0) =

∫ T
0

∂
∂x
p(
∑

i bivi(t))y(t)dt
∫ T
0
p(
∑

i bivi(t))dt
∣∣∣
x=0(∫ T

0
p(
∑

i bivi(t))dt
)2 ∣∣∣

x=0

−

∫ T
0
p(
∑

i bivi(t))dt
∫ T
0
p(
∑

i bivi(t))y(t)dt
∣∣∣
x=0(∫ T

0
p(
∑

i bivi(t))dt
)2 ∣∣∣

x=0

=
β
∫ T
0

∂
∂x
p(
∑

i bivi(t))y(t)dt
∣∣∣
x=0

β
∫ T
0
p(bwvw(t))dt

≈
β
∫ T
0
p(
∑

i bivi(t))y(t)dt
∣∣∣
x=1/N

β
∫ T
0
p(bwvw(t))dt

for N � 1. h′(0) corresponds to α described in the main text and the final expression has the
verbal interpretation given in the main text.

In the special case of a linear transmission function, p(x) = x, we get the simplified expression

(A–8) h(x) =

∫ T
0
bmvm(t)dt∫ T

0

∑
i bivi(t)dt

where

vw(t) = N(1− x)erwt if vw(t) + vm(t) ≤ K, otherwise K
(1− x)erwt

(1− x)erwt + xermt

vm(t) = Nxermt if vw(t) + vm(t) ≤ K, otherwise K
xermt

(1− x)erwt + xermt

Carrying out the integration, in general, is complicated by the fact that the time at which
Vw(t) + Vm(t) = K has no explicit formula when s 6= 0 and, in general, this saturation time will
depend on x.

In the special case of short-term infections (i.e. there is only exponential growth), we get

h(x) =
ηx

(η − 1)x+ 1

where

η = exp(τ)
rw

exp(rwT )− 1

exp(rmT )− 1

rm
=
Rm

Rw

α is defined as h′(0), which here is equal to η, thus for short-term infections, α = Rm/Rw.
Since Rw < 1 by assumption and Rm > 1 is necessary for emergence, we always have α > 1 and

so the frequency dependent dynamics at the scale of the host population can not significantly
impede emergence.

Now, lets consider the more difficult case of a long-term infection with a saturated phase to the
within-host viral dynamics. Then

h′(0) = bm

∫ T
0

∂vm(t)
∂x

∣∣∣
x=0

dt∫ T
0
bwvw(t)

∣∣∣
x=0

dt
.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2020. ; https://doi.org/10.1101/066688doi: bioRxiv preprint 

https://doi.org/10.1101/066688


Appendix-6

For x close to 0, we have the time at which the dynamics saturate, Te, is given approximately by

Te ≈
1

rw
log

K

N

in which case

∂vm(t)

∂x

∣∣∣
x=0
≈
{
N exp(rmt) for t ≤ Te
K exp(st) else.

Let Ts = T − Te and assume that T � Te, T̃e where T̃e is the length of the exponential phase for
an individual infected only with the mutant strain. Then

α = h′(0) ≈ eτ
0 +K exp(sT )−1

s

0 +KT
= eτ

exp(sT )− 1

sT
≈ eτ (1 + sT/2)

as claimed in the main text.

Estimating the Probability of Emergence when α < 1. When α is less than 1, the
frequency of mutant virus decrease in an infected host, and consequently, even if the adapted virus
may emerge, the probability of emergence is very low, and even lower when the bottleneck size, N ,
increases. Here, we provide an approximation for the emergence probability when α < 1, which
explains why the probability of emergence decreases dramatically when N increases.

When the outbreak starts, the first individual is infected with wild-type only. When s < 0, the
mutation-selection balance can be reached relatively quickly, and for s negative enough, the
proportion of mutant is small. So the probability to transmit at least one mutant is roughly equal
to the probability to transmit one mutant, which is N exp(τ)rwµ/|s| where rwµ/|s| is the
proportion of the mutant type, and exp(τ) is its relative transmissibility. Then, if s is small
enough, then the reproductive number of an individual with a mixed transmission is close to Rw

of the wild-type. Thus, the number of transmissions in a wild-type outbreak can be used
(Rw/(1−Rw)). For an individual infected with a mixed infection, what will lead to emergence are
the contacts for which only the mutant is transmitted. The number of such contacts is:

(A–9) β

∫ T

0

(bwVw + bmVm)
(bmVm)N

(bwVw + bmVm)N
dt.

This can be re-written as:

(A–10) β

∫ T

0

bwVw
(exp(τ)Vm/Vw)N

(1 + exp(τ)Vm/Vw)N−1
dt.

As most cases of mixed infection will be cases started with a mix of one mutant and N − 1
wild-type viral particles, Vm/Vw = exp(st)/(N − 1). Thus previous expression is equal to:

(A–11) β

∫ T

0

bw min{K, (N − 1) exp(rwt)}
(exp(τ + st)/(N − 1))N

(1 + exp(τ + st)/N − 1)N−1
dt.

Last, an individual infected with mutant viruses alone has to lead to a successful outbreak, which
happens at approximately the same probability than in the case with no back mutations, with

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2020. ; https://doi.org/10.1101/066688doi: bioRxiv preprint 

https://doi.org/10.1101/066688


Appendix-7

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0

−
14

−
10

−
6

Tmax=30, tau=2

s

lo
g1

0(
em

er
ge

nc
e)

N=2
N=3
N=5
N=7

0.5 1.0 1.5 2.0 2.5 3.0

−
14

−
10

−
8

−
6

Tmax=30, s=−0.3

tau

lo
g1

0(
em

er
ge

nc
e)

N=2
N=3
N=5
N=7

Figure Appendix-1. Approximation (A–12) (dashed lines) vs. numerical resolu-
tion of the generating maps (R code) (solid lines)

probability pm. So overall, the approximation will be:

(A–12) pemergence =
Rw

1−Rw

µ exp(τ)rw
−s

pmβbw
N

N − 1

×
∫ T

0

min{K, (N − 1) exp(rwt)} exp(τ + st)

(
exp(τ + st)/(N − 1)

1 + exp(τ + st)/(N − 1)

)N−1
︸ ︷︷ ︸

=:f(t,N)

dt.

Now we can ask, which parts of this expression depend on N? The mutant reproductive

number Rw = bw
∫ T
0

min{K,N exp(rwt)}dt is independent from N , because we have chosen bw to

keep Rw the same for all N values. Thus bwN/(N − 1)
∫ T
0

min{K, (N − 1) exp(rwt)}dt is almost
independent from N . Therefore, most of the dependence of

bwN/(N − 1)
∫ T
0

min{K, (N − 1) exp(rwt)}f(t, N)dt with N stems from the dependence of f(t, N)
with N . Since a 7→ a/(1 + a) is an increasing function bounded above by 1 for positive a, the
expression

exp(τ + st)/(N − 1)/(1 + exp(τ + st)/(N − 1))

decreases when N increases. As N 7→ (a/(1 + a))N−1 is a decreasing function of N ≥ 1 for a > 0,
we get that the probability of emergence decreases at least exponentially with the bottleneck size,
as claimed in the main text. Fig Appendix-1 illustrates that these approximations work especially
when s is sufficiently negative.

Numerics with Nonlinear Transmission Functions

To explore the robustness of our numerical results to the assumption of a linear transmission
function, we redid our numerical analysis with two non-linear transmission functions
p(x) = 1− exp(−x) in Fig Appendix–2 and p(x) = log(1 + x) in Fig Appendix–4. Differences
between the emergence probabilities for the nonlinear and linear transmission functions are shown
in Figs Appendix–3 through 4. As these figures demonstrate, we nearly get the same results.
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Figure Appendix–2. Emergence probabilities for the transmission function p(x) =
1− exp(−x) with all other parameters as indicated in Fig 2.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2020. ; https://doi.org/10.1101/066688doi: bioRxiv preprint 

https://doi.org/10.1101/066688


Appendix-9

Figure Appendix–3. Contour plots of 1, 000 × the absolute value of the difference
between the emergence probabilities for the transmission functions p(x) = 1−exp(−x)
and p(x) = x. Parameters as indicated in Fig 2.
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Figure Appendix–4. Emergence probabilities for the transmission function p(x) =
log(1 + x) with all other parameters as indicated in Fig 2.
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Figure Appendix–5. Contour plots of 1, 000 × the absolute value of the difference
between the emergence probabilities for the transmission functions p(x) = log(1 + x)
and p(x) = x. Parameters as indicated in Fig 2.
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Figure Appendix–6. The analytic approximation based on (4) for the exact com-
putations of the emergence probabilities in Fig 2 in the main text.
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Figure Appendix–7. Contour plots of 1, 000 × the absolute value in the difference
between the analytic approximation from (4) and the exact computations for the
emergence probabilities. Parameters as in Fig 2 in the main text.
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