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We propose an analytic solution for the stochastic dynamics of a binary biologi-

cal switch, defined as a DNA unit with two mutually exclusive configurations, each

one triggering the expression of a different gene. Such a device could be used as a

memory unit for biological computing systems designed to operate in noisy environ-

ments. We discuss a recent implementation of an exclusive switch in living cells, the

recombinase addressable data (RAD) module. In order to understand the behavior

of a RAD module we compute the exact time dependent distributions of the two

expressed genes starting in one state and evolving to another asymptotic state. We

consider two operating regimes of the RAD module: fast and slow stochastic switch-

ing. The fast regime is “aggregative” and produces unimodal distributions, whereas

the slow regime is “separative” and produces bimodal distributions. Both regimes

can serve to prepare pure memory states when all cells are expressing the same gene.

The slow regime can also separate mixed states by producing two sub-populations

each one expressing a different gene. Our model provides a simplified, general phe-

nomenological framework for studying biological memory devices and our analytic

solution can be further used to clarify theoretical concepts in bio-computation and

for optimal design in synthetic biology.
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Biological machines are a promising new paradigm in computation [11]. By using syn-

thetic biology it is now possible to design memory units and logic gates operating in living

cells [6, 7]. Contrarily to their silicon counterparts, biological computing units (BCU) can

evolve their computation capacities by proliferation and auto-organization. Furthermore,

parallel computing with large number of BCU could be used to performing distributed com-

putation in living environments for medical applications such as implants for augmenting

capacities or for health monitoring [4].

However, there are prices to pay when replacing the silicon substrate with biological cells.

BCUs are submitted to stochastic fluctuations that are ubiquitous in the realm of molecular

machines [8, 10]. Within cell communities, the result of a computation can vary from one

cell to another and therefore this result should be represented as a probability distribution

between the different states of the system. In order to optimize the design of BCUs, precise

calculations of time dependent population distributions is extremely useful. In this paper

we show how to solve this problem in the context of the set and reset of a reversible and

stochastic, rewritable biological unit.

Synthetic biological memory devices have been engineered based on different mechanisms.

Some systems use feedback loop in order to achieve data storage via bistability. For example,

double negative feedback systems inspired by the phage lambda Cro/CI circuit and using

two repressor mutually repressing each others have been implemented in the bacterium

Escherichia coli [9, 12]. Positive feedback based memory devices have also been engineered

in the baker’s yeast Sacharomyces cerevisiae [2]. Recently, genetic memory systems using

recombinases from the integrase family, enzymes that catalyze strand exchange between

specific DNA sequences [4], have been implemented into living cells. DNA data storage has

the advantage that only two discrete states are possible. The state of the system can be

interrogated by direct DNA sequencing but also by measuring the intensity of a fluorescent

protein (FP) whose expression is controlled by the invertible DNA sequence (called the

DNA register). Fluorescent reporters of two colors, for instance Green Fluorescent Protein

(GFP) and Red Fluorescent Protein (RFP), can be used to signify binary DNA register

states of single cells. Although the majority of DNA data storage devices are single-write

units, a particular architecture called the recombinase addressable data (RAD) module using

two proteins, an integrase and a recombination directionality factor (or excisionase) enables
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rewritable digital data storage in bacteria [5] (Fig.1).

FIG. 1: Schematic architecture and operational principle of the Recombinase Addressable Data

(RAD) module. A. The DNA register is composed of a DNA sequence containing a promoter

(driving transcription) flanked by the two recombination sites recognized by the integrase (Int). B.

In state 0, the promoter drives expression of GFP. Integrase catalyzes the SET reaction, inverting

the DNA register and enables transition towards state 1, in which the promoter has been inverted

and now drives transcription of RFP. Concomitant expression of Integrase and Excisionase (Xis)

catalyze the RESET reaction by enabling transition from state 1 to state 0.

The RAD module proposed by Bonnet et al [5] is composed of a DNA sequence which can

exist in two configurations inverted one with respect to the other. The transition between

the configurations is reversible. Depending on the configuration, single cells produce one of

the two reporters, a GFP or RFP (Fig.1). Although the two internal states of the memory

defined by the DNA configurations are mutually exclusive, the expression of the two reporter

genes depends on how fast the unit switches between the two configurations. As we will

prove later in this letter, fast switching between the two configurations allow that both GFP

and RFP are expressed by the same cell. In this work, we are interested in the conditions

enabling the generation of cell populations residing in a pure state (when all the cells

express the same reporter gene) or separated mixed state (when sub-populations express an

unique reporter gene but not necessarily the same). To this end, we introduce a mathematical

model to describe the stochastic dynamics of the system. Our model is based on two coupled

master equations governing the evolution of the joint probability distributions carrying the

information about switch status and numbers of GFP (g) and RFP (r) at a given instant of
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time:

dφ0
g,r(t)

dt
= kg[φ

0
g−1,r(t)− φ0

g,r(t)] + ρ[(g + 1)φ0
g+1,r(t)− gφ0

g,r(t)] , (1)

+ ρ[(r + 1)φ0
g,r+1(t)− rφ0

g,r(t)]− hφ0
g,r(t) + fφ1

g,r(t)

dφ1
g,r(t)

dt
= kr[φ

1
g,r−1(t)− φ1

g,r(t)] + ρ[(r + 1)φ1
g,r+1(t)− rφ1

g,r(t)] . (2)

+ ρ[(g + 1)φ1
g+1,r(t)− gφ1

g,r(t)] + hφ0
g,r(t)− fφ1

g,r(t)

The random variables are g and r. Production of GFP and RFP is controlled by the rates

kg and kr, respectively. Degradation/dilution rate of both reporters is given by ρ and the

switching between the two states is encoded in the rates h (SET) and f (RESET).

Introducing the generating functions, φ0(z, y, t) =
∑∞

g,r=0 φ
0
g,r(t)z

gyr and

φ1(z, y, t) =
∑∞

g,r=0 φ
1
g,r(t)z

gyr, we transform the master equations in a set of partial

differential equations:

∂φ0

∂t
= (z − 1)[kgφ

0 − ρ∂φ
0

∂z
]− (y − 1)ρ

∂φ0

∂y
− hφ0 + fφ1, (3)

∂φ1

∂t
= (y − 1)[krφ

1 − ρ∂φ
1

∂y
]− (z − 1)ρ

∂φ1

∂z
+ hφ0 − fφ1.

The desired joint probability distributions are obtained from the generating functions by

applying the formulas:

φ0
g,r(t) =

1

r!

1

g!

∂r

∂yr
∂g

∂zg
φ0(z, y, t)

∣∣∣∣
z=y=0

, φ1
g,r(t) =

1

r!

1

g!

∂r

∂yr
∂g

∂zg
φ1(z, y, t)

∣∣∣∣
z=y=0

. (4)

In order to solve the system of PDEs in Eq.(3) we propose a set of transformations, that

will lead to an integrable system of ODEs. To do so, we perform a first change of variables:

w =
(z − 1)

(y − 1)
, x = (z − 1)(y − 1). (5)

In the new set of variables (w, x) the equations read:

∂φ0

∂t
+ 2xρ

∂φ0

∂x
=
√
wxkgφ

0 − hφ0 + fφ1 (6)

∂φ1

∂t
+ 2xρ

∂φ1

∂x
=

√
x

w
krφ

1 + hφ0 − fφ1.

Note that this transformation let time (t) unchangeable and had the effect of eliminating

one of the partial derivatives. To eliminate another partial derivative and obtain a set of
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ordinary differential equation with respect to the remaining variable we propose a second

transformation,

ν =

√
x

w
µ =

√
x

w
e−ρt, (7)

which leads to the set of ordinary differential equations in the variable ν:

νρ
∂φ0

∂ν
= νwkgφ

0 − hφ0 + fφ1 (8)

νρ
∂φ1

∂ν
= νkrφ

1 + hφ0 − fφ1.

Now, solving the first equation of the system (8) for φ1(ν, µ, w), gives

φ1(ν, µ, w) =
1

f

(
νρ
∂φ0

∂ν
− νwkgφ0 + hφ0

)
, (9)

and by substituting the result in the second equation of the system, we arrive to the second

order ordinary differential equation with respect to the variable ν for φ0(ν, µ, w) :

νρ2∂
2φ0

∂ν2
+ ρ[f + h+ ρ− ν(kr + kgw)]

∂φ0

∂ν
− [wkg(ρ+ f) + krh− νwkgkr]φ0 = 0 (10)

This equations has a regular singularity at ν = 0 and a irregular one at infinity. This

structure suggest solutions in terms of confluent hypergeometric functions. To make it more

clear, let us use the ansatz φ0(ν, µ, w) = exp(νwkg/ρ)ψ(ν, µ, w), and a last transformation

of variables: ν = ηρ/(kr − wkg). Putting all together, we arrive to the equation in the new

variable η for ψ(η, µ, w):

η
∂2ψ

∂η2
+ (b− η)

∂ψ

∂η
− aψ = 0 , (11)

where: a = h/ρ, b = (h+ f + ρ)/ρ and η = ν(kr − wkg)/ρ.

Now, Eq.(11) is in the canonical form of the confluent hypergeometric equation, or Kum-

mer equation, and the general solution is straightforward:

ψ(η, µ, w) = F (µ,w)M(a, b, η) +G(µ,w)η1−bM(1 + a− b, 2− b, η). (12)

where M stands for Kummer function, F (µ,w) and G(µ,w) are arbitrary functions that will

be determined by the initial conditions.

To obtain the expressions for the generating functions we have to multiply the solution in

Eq.(12) by the exponential factor, exp(νwkg/ρ), to obtain φ0(η, µ, w) using this result and

Eq.(9) we can obtain the generating function for φ1(η, µ, w), in the variables (η, µ, w):

φ0(η, µ, w) = e

(
kgwη

kr−kgw

)
[F M(a, b, η) +Gη1−b M(1 + a− b, 2− b, η)] ,

φ1(η, µ, w) = e

(
kgwη

kr−kgw

)
[F

h

f
M(1 + a, b, η)−Gη1−bM(2 + a− b, 2− b, η)] .

(13)
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The last task remaining is to find F (µ,w) and G(µ,w). As said before, these functions

are determined by the initial conditions. To accomplish that, one can see that setting t = 0

in the second transformation Eq.(7) leads to ν = µ, which in the variables (η, µ, w) implies

in η = η̃ = µ(kr −wkg)/ρ. Specifying the functions φ0(η = η̃, µ, w) and φ1(η = η̃, µ, w) that

will appear in the left hand side of Eq.(13) one can find the expressions for F (µ,w) and

G(µ,w). To do so, let us use vector and matrix notation to express the solutions in Eq.(13)

as: ~φ = U ~F , where, ~φ = (φ0(η, µ, w), φ1(η, µ, w))T, ~F = (F (µ,w), G(µ,w))T and the entries

of the matrix U are given by:

U1,1 = exp

(
kgwη

kr − kgw

)
M(a, b, η) ,

U1,2 = exp

(
kgwη

kr − kgw

)
η1−bM(1 + a− b, 2− b, η) ,

U2,1 = exp

(
kgwη

kr − kgw

)
h

f
M(1 + a, b, η) ,

U2,2 = − exp

(
kgwη

kr − kgw

)
η1−bM(2 + a− b, 2− b, η) .

(14)

Inverting ~φ = U ~F we obtain the expression ~F = U−1~φ. Setting η = η̃ bring us to the position

of determining the vector ~F = (F,G)T through the initial conditions C0 = φ0(η = η̃, µ, w)

and C1 = φ1(η = η̃, µ, w). One final observation, before presenting F and G, concerns the

determinant of the matrix U which is necessary because we need this determinant (det(U) =

U1,1U2,2−U1,2U2,1) to compute U−1 (the inverse matrix of U). The inspection of (14) reveals

that det(U) is a product of Kummer functions with a exponential envelope. At a first glance,

no problem arise, however, as we will deal with the inverse of matrix U the inverse of this

determinant is required. Due to the well known properties of the Kummer functions [1] this

determinant assumes a very simple formula:

det(U) =
(b− 1)e

η(kr−wkg)
(kr−wkg) η1−b

1 + a− b
,

which is used to compute U−1. The explicitly expressions for F and G are:

F = exp

(
−krη̃

kr − wkg

)
f

h+ f
[M(2 + a− b, 2− b, η̃)C0 + M(1 + a− b, 2− b, η̃)C1] ,

G = exp

(
−krη̃

kr − wkg

)
η̃b−1

[
h

h+ f
M(a+ 1, b, η̃)C0 −

f

h+ f
M(a, b, η̃)C1

]
.

(15)

Where initial conditions are encoded in C0 = φ0(η = η̃, µ, w) and C1 = φ1(η = η̃, µ, w).
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At this point we are in position to exhibit the biological features of our model encoded

in the time dependent joint distributions of three variables: the two-valued DNA register

state and the numbers of GFP (g) and RFP (r). However, before doing that, let us rephrase

our parameter space in adimensional biological terms. The two numbers Ng = kg/ρ and

Nr = kr/ρ are the protein production efficiencies. The asymptotic occupancy probabilities

are p0 = f/(f+h) and p1 = h/(f+h). We call switching flexibility the important parameter

ε = (h+ f)/ρ, representing the sum of the frequencies of the SET and RESET transitions.

The two situations ε < 1 and ε > 1 correspond to slow and fast switching, respectively.

Although we have the time dependent solutions at hand we will first illustrate the role

of the biological parameters by analyzing their influence in the shape of the asymptotic

distributions of the model. The generating function for the the steady-state distributions is

obtained by performing the limit t→∞ in Eqs.(13), resulting in:

φ0(η, w) = p0 exp

(
− Ngwη

Ngw −Nr

)
M(a, b, η) ,

φ1(η, w) = p1 exp

(
− Ngwη

Ngw −Nr

)
M(1 + a, b, η) ,

(16)

where, in the biological parameter space we have: a = p1ε, b = ε+ 1, and η = ν(Nr −wNg).

Applying formulas (4) we obtain the steady-state joint probability distributions as

φ0
g,r =

f

f + h

∆g+re−∆

r!g!

g∑
s=0

(
g

s

)
(−1)s

(a)s
(b)s

(a+ s)r
(b+ s)r

,

φ1
g,r =

h

f + h

∆g+re−∆

r!g!

g∑
s=0

(
g

s

)
(−1)s

(a+ 1)s
(b)s

(a+ 1 + s)r
(b+ s)r

, (17)

where we have used Ng = Nr = ∆ and the symbol (•)s is the Pochhammer’s symbol [1].

With Eqs.(17), we have computed the total joint probability distribution in the asymp-

totic regime of the system for different values of p0, p1 and ε keeping ∆ constant. The

steady-state distributions are represented in Figs.2a-c. In order to expand the regions of

small expression we made a change of variables in the distributions from g, r variables to

log(g), log(r) variables. As said before, we are doing this exercise to show the influence of the

parameters in the shape of the distributions and, moreover, to distinguish between mixed

and pure states of the DNA register. This concept is important for the relation between

hidden memory states and visible (readable) phenotype. Let us define a mixed state by

0 < p0 < 1 and 0 < p1 < 1, whereas a pure state means that either p0 = 1 or p1 = 1. Also,
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pr=1

pg=1

pr=0.5

pg=0.5

prg=1

Lo
g(
r)

Log(g) Log(g) Log(g) Log(g)

p
d
f

a) b) c) d)

FIG. 2: Computed steady state distributions of GFP and RFP for a) pure p1 = 1 red state (all

cells express RFP) and ε = 0.5 (slow switching); b) pure p1 = 1 green state (all cells express

GFP) ε = 0.5 (slow switching); c) mixed p0 = p1 = 0.5 unimodal state (all cells express both GFP

and RFP) and ε = 10 (fast switching); d) mixed p0 = p1 = 0.5 bimodal state (half of the cells

express only GFP and half only RFP) and ε = 0.5 (slow switching). In logarithmic variables, the

double integral of the probability distribution is normalized to one. The remaining parameters

are: ∆ = 40 and ρ = 1. The probabilities pr, pg and prg indicate the fractions of cells with

log(g) < 2, log(r) > 2, log(g) > 2, log(r) < 2 and log(r) > 2, log(g) > 2, respectively, where the

threshold 2 corresponds to the middle of the expression dynamical interval.

we define three types of sub-populations regarding the level of expression of: GFP only;

RFP only and both GFP and RFP. The corresponding state occupancies are pg, pr, prg,

respectively. A well separated population has low values of prg. The state occupancies are

not necessarily the same as the occupancy probabilities p0 and p1 encoding the probability

to find the DNA register in state 0 or 1, respectively. A RAD unit in a pure state has a

pure phenotype (pg = 1 or pr = 1), in other words all the bacteria express GFP in state 0 or

RFP in state 1, as show in Fig.2a,b. The readout of a mixed state will depend on the switch

flexibility. A fast switch (ε > 1) will correspond to unimodal distribution of expressed genes,

Fig.2c (each bacteria expressing both genes in different proportions) whereas a slow switch

(ε < 1) corresponds to bimodal population, Fig.2d, where some cells are green and others

are red.

In order to illustrate the dynamical behavior of the RAD module we will first set the

initial conditions (C0 and C1) of the system. To do so, we use the steady-state solutions

as initial conditions but with different values for the occupancy probabilities and switch
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Log(g)

a)

b)

c)

t=0 t=2 t=10

t=0

t=0

t=2

t=2

t=10

t=10

Lo
g(
r)

Lo
g(
r)

Log(g) Log(g)

Lo
g(
r)

p
ro
b
ab
ili
ty

p
ro
b
ab
ili
ty

p
ro
b
ab
ili
ty

time

pg

pg

pg

pr

pr

pr

prg

prg

prg

d)

e)

f)

FIG. 3: Time dependent distributions of a RAD unit (time is measured in units of ρ−1). In a),b)

we illustrate setting of a pure state. The t = 0 state corresponds to a pure distribution with p̃0 = 1

(green) and switch flexibility ε̃ = 0.5. During set operation (for t > 0) the unit evolves towards

a pure state p1 = 1 (red) but with different switch parameters: ε = 10 for a) (fast switching)

and ε = 0.5 for b) (slow switching). In c) we illustrate separation of a unimodal mixed state.

An unimodal mixed state with p̃0 = p̃1 = 0.5 and ε̃ = 10 (fast switching) is transformed to a

bimodal mixed state by lowering the switch flexibility, ε = 0.1 (slow switching). Also, in c) one can

see that for fast switching the phenotype is unimodal: bacteria express both GFP and RFP. The

t = 10 phenotype, is bimodal: 50% of the cells express RFP and 50% express GFP. The remaining

parameters are: Ng = Nr = 40 and ρ = 1. The rightmost columns d-f) show the time dependence

of the state occupancies.

flexibility (p̃0, p̃1, ε̃), leading to the initial generating functions:

φ0(η̃, w) = p̃0 exp

(
− Ngwη̃

Ngw −Nr

)
M(ã, b̃, η̃) ,

φ1(η̃, w) = p̃1 exp

(
− Ngwη̃

Ngw −Nr

)
M(1 + ã, b̃, η̃) ,

(18)

At t = 0 we abruptly change the occupancy probabilities and switch flexibility from (p̃0, p̃1, ε̃)

to (p0, p1, ε), keeping them constant for t ≥ 0. To study set and reset dynamics of the RAD
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unit we consider three distinct experiments and we show the corresponding time dependent

joint probability distributions for each one of these experiments in Fig.3. The first two

experiments correspond to setting a pure state. We start with initial condition corresponding

to a pure state p̃0 = 1 where all cells are producing GFP (in the setting described in Fig.1

this means that a strong excisionase signal is applied together with the integrase), and at

time t = 0 we change the asymptotic occupancy parameter to the complementary pure state,

p1 = 1, driving all the cells to be producing RFP in the asymptotic configuration (excisionase

is washed-out). During the setting we use fast switching (ε = 10) for the first experiment

Fig.3(a) and slow switching (ε = 0.5) for the second one Fig.3(b) (corresponding to high

and low concentrations of integrase). In the third experiment, Fig.3(c), we start with an

unimodal mixed steady-state configuration, in the fast switch regime (ε = 10, corresponding

to high integrase and excisionase concentrations) and change the switch flexibility to low

values (ε = 0.1, lower concentrations). We call this last experiment “developing” because

it transforms the initial unimodal mixed state in which single cells express both GFP and

RFP (state occupancy prg = 1) into a bimodal, “separated” mixed state when two sub-

populations have pure phenotypes, expressing either RFP or GFP (pr = pg ≈ 0.5 in Fig.2).

More generally, the final state occupancies are given by the DNA occupancy probabilities

pr ≈ p1, pg ≈ p0. Therefore, lowering the switching frequencies by lowering the integrase

and excisionase concentrations reveals previously hidden information about the DNA register

occupancy probabilities. The last column of Fig.3 shows the time dependence of the state

occupancies (pg(t), pr(t) and prg(t)) corresponding to each one of the three experiments.

These experiments emphasize a clear distinction between slow and fast switches. Slow

switches are “separative”, they tend to transform unimodal distributions into bimodal ones.

They can be used as developers of mixed states, as occupancy probability can be read on

bimodal distributions by counting cells in the two sub-populations, whereas it is much more

difficult to estimate it from unimodal distributions. This can also be seen from the values

of the state occupancies prg(t) that remain low (indicating separated population) during the

dynamics. For slow switches there is a trade-off between good separation and bandwidth

because the time needed to reach a final unimodal, pure state distributions is longer. Fast

switches are “aggregative”, they tend to transform bimodal distributions into unimodal

distributions.

The analytic time dependent solutions for the master equations describing the RAD
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memory unit can be used to quantitative and qualitatively establish the basis for the design

of such biological devices. All the necessary information about the system is encoded in the

time dependent joint probability distributions which are obtained by applying formulas (4)

in the analytic solutions of the model. The solutions are expressed in closed form in terms of

the well known Kummer functions and packages in softwares of symbolic computation, such

as Maple, are available for direct computation of their series expansions leading to the desired

joint distributions. If, instead of evaluating the derivatives of the solutions in z = y = 0

as in formulas (4), one evaluates them at z = y = 1, closed expressions for any desired

moment of the joint distributions, such as mean values, variance and covariance are easily

obtained. A special word should be said about “developing” of a mixed state using slow

switching. Although this procedure has no direct interest for storing information, it could

be used as a biological implementation of a p-switch. A p-switch [13] is a stochastic element

that takes two values, one and zero with probabilities p and 1 − p, respectively. In other

words, it is a physical implementation of a Bernoulli random variable, which is the basic

element in stochastic computing [3], an hybrid, digital/analog form of computation in which

real numbers are represented as random finite sequences of zeros and ones, the represented

real number p being the frequency of occurrence of ones. In our case, each random bit in a

sequence would be a cell. Although redundant from an information theoretic point of view,

this representation was shown to be particularly robust and protected against random faults

[3].

Although the discussion is based on the RAD switch setting illustrated in Fig.1, our

model provides a simplified phenomenological framework for studying other implementations

of two states memories, including toggle-switches based on positive feedback. In the latter

case, simplified switching models corresponding to stochastic transitions between the two

attractors of the system can be justified by low noise approximations as discussed in [10].
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