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Abstract 1

Most mutations are deleterious and cause a reduction in population fitness known 2

as the mutational load. In small populations, weakened selection against slightly- 3

deleterious mutations results in an additional fitness reduction. Many studies have 4

established that populations can evolve a reduced mutational load by evolving muta- 5

tional robustness, but it is uncertain whether small populations can evolve a reduced 6

susceptibility to drift-related fitness declines. Here, using mathematical modeling and 7

digital experimental evolution, we show that small populations do evolve a reduced 8

vulnerability to drift, or “drift robustness”. We find that, compared to genotypes 9

from large populations, genotypes from small populations have a decreased likelihood 10

of small-effect deleterious mutations, thus causing small-population genotypes to be 11

drift-robust. We further show that drift robustness is not adaptive, but instead arises 12

because small populations preferentially adapt to drift-robust fitness peaks. These re- 13

sults have implications for genome evolution in organisms with small population sizes. 14

One consequence of the power of adaptation is that the majority of mutations reduce 15

their bearer’s fitness [1]. The recurring nature of these deleterious mutations results in an 16

equilibrium reduction of population fitness at mutation-selection balance. At the population 17

level, this reduction in fitness is known as the genetic or mutational load [2–5]. As selection 18

generally acts to increase a population’s mean fitness, one avenue for selection to increase 19

mean fitness is to reduce the mutational load by altering mutation-selection balance and 20

increasing mutational robustness [6, 7]. The evolution of mutational robustness has been 21

demonstrated using theoretical modeling [8–11], digital experimental evolution [12–14], and 22

microbial experimental evolution [15–17]. 23

Recurring deleterious mutations are not the only strain on fitness. In small populations, 24

genetic drift leads to the fixation of slightly-deleterious mutations that bring about a reduc- 25

tion in fitness [18, 19]. Over time, genetic drift can lead to continual fitness declines and 26

ultimately population extinction [20,21]. In asexual populations, this phenomenon of fitness 27

decline is known as Muller’s ratchet [22] and is thought to play a role in the evolution of 28
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Figure 1: Conceptual diagram of drift robustness. a) A single-peak fitness landscape. In this
landscape, the large population (red circles) can climb to the top of the fitness peak, while
the small population (black circles) can only climb to an intermediate part of the peak. b)
A multi-peak fitness landscape. The large population evolves to the same fitness peak as
in panel a. The small population evolves to the steeper, drift-robust peak. While this peak
is still lower than the drift-fragile peak, the small population attains greater fitness than it
would have on the drift-fragile peak in the single-peak fitness landscape.

mitochondria [23], bacterial endosymbionts [24], the Y chromosome [25], and other obligate 29

asexual lineages. Muller’s ratchet may explain why there are few long-lived obligate asexual 30

species and may provide a selection pressure for the evolution of sexual recombination [26]. 31

However, it was recently proposed that small populations do not continuously decline in 32

fitness, but only do so until they reach drift-selection balance when the fixation of beneficial 33

mutations counteracts the fixation of slightly-deleterious mutations [18, 19, 27, 28]. Further- 34

more, Muller’s ratchet may be limited in strength if small populations can alter drift-selection 35

balance and evolve drift robustness. However, it is unknown if populations can evolve drift 36

robustness, or what genetic and evolutionary mechanisms could cause drift robustness. 37

Here, we propose a hypothesis concerning the evolution of drift robustness in small popu- 38

lations. Consider evolution on a single-peak fitness landscape (Fig. 1a). In a large population 39

(defined here such that its effective population size is larger than the inverse of every selec- 40

tion coefficient in the landscape), natural selection will lead to the fixation of all beneficial 41

mutations and this population will evolve to the top of the fitness peak. For a small popu- 42

lation, selection will lead to the fixation of beneficial mutations with a selection coefficient 43

greater than the inverse of the population size. However, this small population will not oc- 44

cupy the top of the fitness peak, but some lower area where the fixation of slightly-beneficial 45

mutations and the fixation of slightly-deleterious mutations balance out [28]. 46

Now, consider a fitness landscape with two fitness peaks, with one peak slightly higher 47

than the other peak (Fig. 1b). We will denote the higher peak as the “drift-fragile” fitness 48

peak. A population evolves towards this peak by fixing a sequence of small-effect beneficial 49

mutations. As a consequence, the genotype at the top of the peak will have many small- 50

effect deleterious mutations in its mutational neighborhood. We will denote the lower peak 51

as the “drift-robust” fitness peak. A population evolves to this peak by fixing a sequence 52
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of large-effect beneficial mutations and the genotype at the top of the peak will have many 53

large-effect deleterious mutations in its mutational neighborhood. The question is: how will 54

small and large populations evolve on this fitness landscape? 55

According to this hypothesis large populations will evolve towards the drift-fragile fit- 56

ness peak and that small populations will evolve towards the drift-robust fitness peak. This 57

hypothesis is similar to the idea of the “Survival of the Flattest” effect, where mutationally- 58

robust genotypes will out-compete fitter, but more mutationally-fragile genotypes at high 59

mutation rates [12]. However, we stress that the evolutionary mechanism behind this trend 60

is not the out-competition of drift-fragile genotypes by drift-robust genotypes in small pop- 61

ulations. Instead, we propose that small populations evolve to drift-robust fitness peaks 62

because these populations can only maintain themselves on drift-robust areas of the fitness 63

landscape. If a small population would evolve towards a drift-fragile part of the fitness land- 64

scape, it would subsequently fix deleterious mutations and decrease in fitness until it evolved 65

back to a drift-robust area. Large populations can easily maintain fitness in drift-fragile 66

areas, and thus we expect them to evolve to the higher fitness peak. 67

Here, we demonstrate that small populations should evolve drift robustness in accordance 68

with our hypothesis. We first confirm the logic behind this hypothesis with a two-peak 69

fitness landscape mathematical model and show that drift robustness will evolve in small, 70

but not large, populations in a fitness landscape with a drift-fragile fitness peak and a 71

lower-fitness drift-robust fitness peak. Then, we use digital experiment evolution with the 72

Avida system [29] to test this hypothesis in a complex fitness landscape. We find that 73

small populations of digital organisms evolve towards fitness peaks with a low likelihood of 74

slightly-deleterious mutations, while large populations evolve towards fitness peaks with a 75

high likelihood of slightly-deleterious mutations. We end by discussing the implications of 76

these results for organisms exposed to strong genetic drift, including bacterial endosymbionts 77

and RNA viruses. 78

Results 79

A mathematical model of drift robustness To test our drift robustness hypothesis, 80

we designed a minimal mathematical model in order to test the conditions under which 81

drift robustness will evolve in small populations, while drift fragility will evolve in large 82

populations (see Methods). We designed a fitness landscape with a wild-type genotype with 83

fitness w1 = 1 and two fitness peaks with w3 = 1+s and w4 = 1+s−ε, respectively (Fig. 2a). 84

The lower of these peaks is the drift-robust fitness peak, as it can be reached from the wild- 85

type genotype by fixing a strongly-beneficial mutation of size s − ε. As a consequence, 86

this peak’s mutational neighborhood only consists of strongly-deleterious mutations. The 87

drift-fragile peak is, in contrast, reached by first fixing an intermediate genotype with fitness 88

w2 = 1+ s
2

and then fixing another mutation with the same fitness effect. Both these mutants 89

are slightly-beneficial and thus the drift-fragile peak will have a mutational neighborhood 90

of slightly-deleterious mutations. In an extended model (Fig. 2b), the drift-fragile peak has 91

n− 1 intermediate steps that are reached with mutations of step size s/n, so that choosing 92

n allows us to vary the steepness of the slope of the drift-fragile peak. 93

When disregarding landscape structure, population genetics arguments imply that large 94
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Figure 2: The fitness landscapes for the Markov model to test for the evolution of drift
robustness. Each circle represents one genotype and is labeled with its fitness. Each arrow
represents the transition between one genotype to another (including the identical genotype)
and is labeled with the transition probability. a) The fitness landscape for the minimal model.
s represents the selection coefficient of the drift-fragile peak and ε represents the small fitness
difference between the drift-fragile peak and the drift-robust peak. uij and πij represent the
mutation rate between genotypes and probability of fixation from one genotype to another,
respectively. b) The fitness landscape for the extended model. Variables as in panel a.
Transition probabilities omitted for clarity.
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populations will fix on the higher of the two peaks, while if the population size is small, the 95

difference in fitness between peaks is irrelevant and a population should fix on either peak 96

with approximately equal probability. Instead, our model predicts that when deleterious 97

mutations are more abundant than beneficial mutations, there is a broad range of parameter 98

values where the small populations evolve to predominantly fix at the drift-robust fitness 99

peak (even though it is of lower fitness) and the large populations evolve to the drift-fragile 100

fitness peak (Fig. 3). For the minimal model, we derive a critical population size at which the 101

small population shifts from fixing at the higher peak to the lower one instead (see Methods) 102

Ncrit = 1 +
log κ−1

2ε
(1)

where κ = ub
s̄
< 1 is the ratio between the beneficial mutation rate and the beneficial fitness 103

effect. 104

In the extended model, where n (and thus the slope of the drift-fragile peak) can vary, 105

we find the critical population size to be: 106

Ncrit = 1 + (n− 1)
log κ−1

2ε
(2)

where n is the number of mutations required to reach the top of the drift fragile peak. This 107

general equation makes the following predictions concerning how populations should shift 108

from drift-fragile peaks to drift-robust peaks. As the fitness deficit of the drift-robust fitness 109

peak increases (ε), the critical population size, and thus range of population sizes that lead to 110

the evolution of drift robustness, also decrease (Fig. 3). As the shallowness of the slope of the 111

drift-fragile peak increases (i.e., n, or the number of mutations to reach the drift-fragile peak, 112

increases), the critical population size also increases. This result argues that the range of 113

population sizes leading to the evolution of drift robustness is greater as the mutations that 114

lead to the drift-fragile peak are more frequent, with a decreased beneficial effect. Finally, 115

as κ decreases [either by a decrease in the beneficial mutation rate (ub) or a increase in the 116

height of the fitness peaks (s)] the critical population size increases, demonstrating that the 117

larger the differential between the flux of beneficial mutations towards the peaks, the larger 118

the critical population size. 119

Drift robustness in digital organisms The mathematical model supports our hypoth- 120

esis for the evolution of drift robustness in small populations, but it rests on a number of 121

assumptions that may alter the evolution of drift robustness in complex fitness landscapes. 122

For instance, we assumed that populations can be viewed as monomorphic and evolution 123

proceeds as transitions from one genotype to another (these models are broadly known as 124

origin-fixation models [30]). We also used a fitness landscape with only two fitness peaks, 125

while biological fitness landscapes certainly contain many fitness peaks. 126

To test if small populations evolve drift robustness in a complex fitness landscape, we 127

used the digital evolution system Avida [29]. In Avida, a population of self-replicating 128

computer programs (“avidians”) compete for the memory space and CPU time necessary 129

for reproduction. During self-replication, random mutations occur, potentially altering the 130

new avidian’s reproduction speed. When an avidian successfully reproduces, its offspring 131

replaces a random individual in the population, resulting in genetic drift. As avidians that 132

replicate faster will produce more offspring per unit time than avidians with slower replication 133
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Figure 3: Critical population size for shift between robust and fragile peaks. a) Results for
various n values with κ = 0.01. b) Results for various κ values with n = 2.

speeds, faster replicators are selected for and spread mutations that enable faster replication. 134

Because Avida populations undergo selection, mutation, and drift, they represent a digital 135

model system to study fundamental questions concerning evolutionary dynamics. 136

To test for the evolution of drift robustness in small Avidian populations, we evolved 100 137

replicate populations at small (102 individuals) and 100 populations at large (104 individuals) 138

population sizes for 105 generations. From each population, we isolated the most abundant 139

genotype at the end of the experiment; we will refer to these genotypes as the 100 small- 140

population genotypes and the 100 large-population genotypes. Small populations evolved 141

a lower relative fitness than large populations (median = 1.85 vs. median = 2.05, Mann 142

Whitney U=2237.0, n = 100, p = 7.31× 10−12 one-tailed), as expected for populations that 143

experience a decreased beneficial mutation supply over the course of the experiment. 144

Small populations evolve an altered DFE To look for signs of drift robustness, we 145

studied differences in the Distribution of Fitness Effects (DFE) of de-novo mutations for 146

small-population genotypes and large-population genotypes. First, we generated every pos- 147

sible point mutation for all genotypes and combined these data into one DFE (Fig. 4a). Both 148

show the typical properties of DFE’s found in biological organisms: most mutations are ei- 149

ther lethal or have little effect [1]. However, there are some differences. Small-population 150

genotypes have an excess of neutral, beneficial, and strongly deleterious mutations (defined 151

as viable deleterious mutations with a fitness effect greater than or equal to 5%; Fig. 4b), 152

while large-population genotypes have an excess of small-effect deleterious mutations (de- 153

fined as deleterious mutations with a fitness effect less than 5%; Fig. 4b). We confirmed that 154

these trends hold when we calculated a DFE for each genotype (rather than one DFE for all 155

genotypes from a given population size) as follows. Small population genotypes had a greater 156

likelihood of beneficial mutations (median = 0.0256 vs. median = 0.0008, Mann Whitney 157

U=413.5, n = 100, p = 6.26 × 10−30 one-tailed), neutral mutations (median = 0.40 vs. me- 158

dian = 0.26, Mann Whitney U=321.0, n = 100, p = 1.45 × 10−30 one-tailed), large-effect 159

deleterious mutations (median = 0.084 vs. median = 0.054, Mann Whitney U=2854.0, n = 160

100, p = 7.90×10−8 one-tailed), and a lesser likelihood of lethal mutations (median = 0.33 vs. 161

median = 0.37, Mann Whitney U=4031.5, n = 100, p = 9.00 × 10−3 one-tailed) and small- 162
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effect deleterious mutations (median = 0.11 vs. median = 0.31, Mann Whitney U=124.5, 163

n = 100, p = 5.13 × 10−33 one-tailed; Fig. 4c). Additionally, there was no difference in the 164

average single-mutant relative fitness for small-population genotypes and large-population 165

genotypes, even though there were fitness differences between the population-size treatments 166

(median w = 0.612 vs. median w = 0.611, Mann Whitney U=4890.0, n = 100, p = 0.39 167

one-tailed; Fig. 4d). 168

Small population genotypes are drift-robust. The lack of small-effect deleterious mu- 169

tations in small populations suggests that these populations adapted to drift-robust fitness 170

peaks and that the large populations adapted to drift-fragile peaks. To test if these small- 171

population genotypes are drift-robust, we took the 100 small-population genotypes and 100 172

large-population genotypes and measured these genotypes’ change in fitness when placed in 173

an environment with strong genetic drift (i.e., low population size). We evolved 10 popu- 174

lations of 50 individuals for each genotype for 103 generations and measured their change 175

in fitness. Small-population genotypes clearly declined less in fitness than large-population 176

genotypes (median decline = 1% vs. median decline = 6%; Mann Whitney U=43959.5, n 177

= 1000, p = 1.44 × 10−273 one-tailed; Fig. 5a). Furthermore, a genotype’s decline in fit- 178

ness is correlated with its likelihood of a small-effect deleterious mutation, supporting the 179

idea that small populations have evolved to fitness peaks with a low likelihood of small- 180

effect deleterious mutations due to the peak’s drift robustness (Spearman’s ρ = 0.80, p ≈ 0; 181

Fig. 5b). 182

Drift robustness is not due to fitness differences. The above results are consistent 183

with the hypothesis that small populations evolve to drift-robust fitness peaks and large 184

populations evolve to drift-fragile fitness peaks. However, one could argue the results are 185

also consistent with evolution on a single-peaked fitness landscape (Fig. 1a). The small 186

populations we examined have lower fitness than the large populations and thus could have 187

a decreased likelihood of small-effect deleterious mutations and more robustness to drift 188

because they are further down on the fitness peak and cannot climb the rest of the peak. 189

To test if our results were due to the lower fitness of the small-population genotypes, we 190

isolated genotypes of the same fitness from the evolutionary lineages of the small and large 191

populations (see Methods for details). We then compared these genotypes’ likelihood of 192

small-effect deleterious mutations. Genotypes from the small populations had a decreased 193

likelihood of small-effect deleterious mutations compared to genotypes from large populations 194

for every examined fitness value (Fig. 6). These results support the hypothesis that small 195

populations have evolved to different fitness peaks than large populations and are not merely 196

occupying a lower region of the same fitness peak. 197

Epistatic mutations lead to drift robustness Next, we examined the mutations that 198

enabled small populations to evolve towards drift-robust peaks. Our mathematical model 199

has a drift-robust peak accessible by strongly-beneficial mutations and a drift-fragile peak 200

accessible by slightly-beneficial mutations. Therefore, we first examined the distribution of 201

fitness effects for maintained beneficial mutations (beneficial mutations whose fitness gain 202

was at-least partially maintained during subsequent evolution) to see if small populations 203

fixed more strongly-beneficial mutations (Fig. 7a). While small populations did fix a sig- 204

nificantly large proportion of maintained strongly-beneficial (s > 0.05) mutations (median 205

= 0.06 vs. median = 0.05, Mann Whitney U=4067.5, n = 100, p=0.01 one-tailed), the 206

difference was slight. 207
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Figure 4: Differences in mutational effects between small-population genotypes and large-
population genotypes. Gray and red represent small-population and large-population geno-
types, respectively. a) The combined distribution of fitness effects (DFE) across all 100
small-population genotypes and 100 large-population genotypes. b) Same data as in panel
a, but grouped into different classes of mutations. See main text for descriptions of small-
effect deleterious mutations and large-effect deleterious mutations. c) The likelihood of a
small-effect deleterious mutation for small-population and large-population genotypes. Red
lines are medians, edges of the box are first and third quartile, whiskers are at most 1.5
times the interquartile range, and the plus signs are outliers. d) The relative fitness of every
possible point mutation (1250 mutations) for each genotype.
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Figure 5: Small-population genotypes are drift-robust due to a decreased likelihood of small-
effect deleterious mutations. Gray and red data points represent small-population genotypes
and large-population genotypes, respectively. a) Relative fitness of the most-abundant geno-
type from every population during the drift robustness test. Each circle represents the
relative fitness of one genotype from one replicate. b) Relationship between relative fitness
in the drift robustness test (panel a) and the likelihood of small-effect deleterious mutations
(Fig. 4c).
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Figure 6: Fraction of small-effect deleterious mutations for genotypes from small populations
and large populations with equal fitness. Boxplots as previously described. Each area
separated by a dashed line shows genotypes with equal fitness (w). S and L represent small-
population and large-population genotypes, respectively. Differences for each fitness value
are significant. (Mann-Whitney U-test; Bonferroni-corrected p < 3 × 10−3.)
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Figure 7: Evidence of small-population adaptation to drift-robust fitness peaks. a) Distri-
bution of maintained beneficial mutational effects for small-population genotypes (gray) and
large-population genotypes (red). b) Spearman correlation coefficients between fitness and
the likelihood of a deleterious mutation for each maintained beneficial mutation from each
population c) The likelihood of deleterious (magenta) and lethal (green) mutations in a rep-
resentative small population’s lineage. The strong decrease in the likelihood of a deleterious
mutation early in the population’s history is evidence of epistatic mutations resulting in
drift robustness. d) Number of populations that fixed a maintained beneficial mutation that
decreased the likelihood of a deleterious mutation by at least a specified amount. Colors as
in panel a.
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The fixation of strongly-beneficial mutations is not the only way small populations could 208

climb drift-robust peaks. Small populations could also climb drift-robust fitness peaks 209

through epistatic beneficial mutations that decreased the likelihood of small-effect delete- 210

rious mutations. By decreasing the likelihood of small-effect deleterious mutations, the 211

likelihood that a future small-effect deleterious mutation will arise and fix is also decreased. 212

Thus, these epistatic beneficial mutations can be maintained by small populations. 213

To see if these types of mutations were fixed in the small populations, we first looked at 214

the correlation between the fitness of maintained beneficial mutations and their genotypes’ 215

likelihood of deleterious mutations for each population. In a non-epistatic fitness landscape, 216

we would expect the likelihood of deleterious mutations to increase as fitness increases due 217

to the fixation of, and the subsequent decrease in the likelihood of, beneficial mutations. 218

However, in some epistatic fitness landscapes, this correlation is not guaranteed to exist, as 219

the fixation of beneficial mutations may alter the fitness effects of mutations at other loci. In 220

fact, small populations showed a significant decrease in the correlation between fitness and 221

deleterious mutational likelihood when compared to large populations (median Spearman’s ρ 222

= 0.24 vs. median Spearman’s ρ = 0.73, Mann Whitney U=2082.0, n = 100, p = 5.07×10−13
223

one-tailed; Fig. 7b). This result is consistent with small populations evolving towards fitness 224

peaks with a decreased likelihood of deleterious mutations through the fixation of epistatic 225

mutations. 226

Next, we looked for specific mutational signatures of the fixation of epistatic beneficial 227

mutations in small populations. We found that 22 small populations had fixed beneficial 228

mutations that reduced the likelihood of a deleterious mutation by 50%, while only 4 large 229

populations did so. All of these mutations increased the likelihood of lethal mutations (mean 230

increase = 72%, 2×S.E. = 11%; Fig. 7c). We then studied the magnitude of the decrease 231

in the likelihood of deleterious mutations. Forty-five small populations fixed mutations that 232

decreased this deleterious likelihood by at least 0.1, while only 13 large populations did so 233

(Fig. 7d). All of these mutations also increased the likelihood of lethal mutations. Finally, 234

we confirmed that these epistatic mutations specifically decreased the likelihood of small- 235

effect deleterious mutations. Most of the decrease in the likelihood of deleterious mutations 236

consisted of a decrease in small-effect deleterious mutations (median percentage of decrease 237

= 83.9%, interquartile range = 20.6% - 97.1%), further suggesting that small populations 238

evolve drift robustness by fixing beneficial mutations that decrease the likelihood of small- 239

effect deleterious mutations and increase the likelihood of lethal mutations. 240

Deleterious mutations drive the evolution of drift robustness. Finally, to test 241

whether drift robustness evolves in small populations because these populations can only 242

maintain fitness in drift-robust areas of the fitness landscape, we performed further evolu- 243

tion experiments where deleterious mutations were prevented from occurring (see Methods 244

for further details). In this environment, populations cannot decline in fitness, so small pop- 245

ulations do not maintain fitness differently on drift-robust and drift-fragile fitness peaks. We 246

evolved 100 small populations without deleterious mutations under the main experimental 247

conditions. Small population genotypes evolved greater relative fitness without deleterious 248

mutations than in the treatment with deleterious mutations (median = 2.05 vs. median = 249

1.85, Mann Whitney U=2464.5, n = 100, p = 2.92× 10−10 one-tailed; Fig. 8a). As expected 250

in an environment where fitness maintenance was not a factor, small-population genotypes 251

had a greater likelihood of small-effect deleterious mutations (median = 0.19 vs. median 252
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= 0.11, Mann Whitney U=1769.0, n = 100, p = 1.47 × 10−15 one-tailed; Fig. 8b). These 253

small-population genotypes were less robust to genetic drift (median fitness decline of 5% 254

vs. median fitness decline of 1%, Mann Whitney U=118333.0, n = 100, p = 2.25 × 10−192
255

one-tailed; Fig. 8c) and this decreased robustness correlates with there increased frequency of 256

small-effect deleterious mutations (Spearman’s ρ = -0.43, p = 2.07 × 10−45; Fig. 8d). These 257

results suggest that small populations evolve to alternative areas of the fitness landscape if 258

they can maintain small-effect beneficial mutations. 259

Discussion 260

Our results suggest the following explanation for the evolution of drift robustness in small 261

populations. Small populations cannot adapt to fitness peaks with a high likelihood of 262

small-effect deleterious mutations. If small populations climb these peaks, genetic drift 263

will cause them to fix those deleterious mutations, leading to a decrease in fitness. In 264

other words, small populations cannot maintain themselves on drift-fragile fitness peaks. 265

Thus, small populations, if they do adapt, must adapt to drift-robust fitness peaks. Large 266

populations do not face this constraint, due to the relative increased strength of selection in 267

these populations, and adapt to drift-fragile peaks. Therefore, our results argue that small 268

populations and large populations should evolve to different areas of the fitness landscape 269

and evolve qualitatively-different genetic architecture. 270

We should emphasize here that there are certain requirements for the evolution of drift 271

robustness in small populations. First, the fitness landscape must contain multiple peaks; 272

some peaks must be drift-robust with few small-effect deleterious mutations and some must 273

be drift-fragile with many small-effect deleterious mutations. If there is only one fitness peak, 274

small populations would still likely have a decreased likelihood of small-effect deleterious 275

mutations. However, this would occur because these populations have failed to fix small- 276

effect beneficial mutations, not because they have evolved to drift-robust peaks. Second, 277

the requirement of multiple fitness peaks further implies that this effect will only be seen in 278

fitness landscapes with strong epistasis in parts of the landscape, as (sign) epistasis leads 279

to multiple fitness peaks [31]. Third, there must be evolutionary trajectories between drift- 280

robust fitness peaks and drift-fragile fitness peaks. Otherwise, small populations would only 281

evolve downwards on a drift-fragile fitness peak. Finally, there must be more trajectories to 282

drift-fragile fitness peaks than drift-robust fitness peaks. 283

We are not the first to propose that small populations will evolve robustness mechanisms 284

in response to their deleterious mutational burden. However, these mechanisms are usu- 285

ally discussed in terms of mutational robustness, not robustness to drift. Previous studies 286

provided two characteristics of the evolution of mutational robustness in small populations. 287

First, small populations should preferentially evolve to lower fitness peaks with more “redun- 288

dancy,” defined as a decreased average deleterious mutational effect and large populations 289

should evolve to fitness peaks with a high average deleterious mutational effect [9, 14]. Our 290

results suggest opposite evolutionary trajectories for small and large populations. While 291

our results concerning the evolution of drift robustness do suggest that small populations 292

evolve to lower fitness peaks, and small populations do evolve more redundancy in terms of 293

exactly-neutral mutations, these small populations do not evolve towards fitness peaks with 294
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Figure 8: The evolution of drift robustness in small populations with or without deleterious
mutations in the initial adaptation experiments. Gray and blue data points represent small-
population genotypes adapted with deleterious mutations and small-population genotypes
adapted without deleterious mutations, respectively. a) Relative fitness to the ancestral
genotype after 105 generations of adaptation. Box plots as previously described. b) Likeli-
hood of small-effect deleterious mutations. c) Relative fitness of the most-abundant genotype
from every population during the drift robustness test. Each circle represents the relative
fitness of one genotype from one replicate. d) Relationship between relative fitness in the
drift robustness test (panel b) and the likelihood of small-effect deleterious mutations (panel
c).
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a decreased deleterious mutational effect (Fig. 4d). In fact, they evolve towards fitness peaks 295

with a minimal likelihood of small-effect deleterious mutations. This discrepancy likely exists 296

due to the fitness landscape used to study the evolution of redundancy in small populations: 297

the mutations in that fitness landscape were all small-effect deleterious mutations [9]. Thus, 298

small populations could not maintain fitness except on the flattest of fitness landscapes [9]. 299

In a version of this model with multiple fitness peaks (e.g., one with small-effect deleterious 300

mutations and one with large-effect deleterious mutations), we expect that small popula- 301

tions would evolve to the peak with large-effect deleterious mutations. Such an outcome 302

was recently predicted for populations evolving at very high mutation rates [32], although 303

a different model predicts that small populations should evolve to areas that minimize the 304

deleterious effect of mutations [33], in accordance with Krakauer and Plotkin’s model [9]. 305

The second characteristic of mutational robustness in small populations is that these 306

populations should evolve “global” robustness mechanisms, such as error-correction mech- 307

anisms, that affect many loci [10, 11, 34]. There are no global error-correction mechanisms 308

available to the avidian genomes here (although one could allow the evolution of mutation 309

rates, e.g., [35]). However, we did find that small populations preferentially fixed epistatic 310

mutations that strongly altered the likelihood of deleterious mutations (Fig. 6c,d). These 311

mutations are global in the sense that they alter the fitness effects of mutations at multi- 312

ple loci. However, unlike previous work that suggested small populations should fix global 313

solutions that reduce the effect of deleterious mutations [10, 11, 34], we found that these 314

mutations increased the likelihood of lethal mutations. We do not have strong evidence 315

that this increased lethality is essential and expect that small populations could also fix 316

mutations that increased the likelihood of neutral mutations while reducing the likelihood 317

of deleterious mutations if they exist in the Avida fitness landscape. Generally, our results 318

emphasize that the evolutionary process behind drift robustness is the trend to reduce the 319

likelihood of small-effect deleterious mutations, which can be achieved in multiple ways. 320

As the evolution of drift robustness relies on a number of conditions, we may ask which 321

empirical fitness landscapes, or which organisms, meet these criteria? Candidates for or- 322

ganisms with drift-robust genomes include those that undergo severe bottlenecks during 323

their lifecycle, including bacterial endosymbionts [24] and RNA viruses [36]. There is evi- 324

dence that both bacterial endosymbionts [17, 37–39] and RNA viruses [40, 41] have evolved 325

alternate genome architectures in response to their population-genetic environment. In en- 326

dosymbionts, drift robustness could be achieved by choosing rare codons in such a way that 327

substitutions are highly deleterious, and indeed proteins in Buchnera have been found to be 328

exceptionally resistant to drift [42]. However, there has been to date no systematic study of 329

how different organisms respond to strong genetic drift. Future work with biological organ- 330

isms should establish the circumstances that cause organisms to vary in their robustness to 331

genetic drift. Furthermore, experimental evolution may be able to produce organisms with 332

drift-robust genomes whose architecture can be studied directly. 333

Materials and Methods 334

Mathematical model of drift robustness. 335

We describe a model to study the minimal conditions required for the evolution of drift 336

14

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2017. ; https://doi.org/10.1101/071894doi: bioRxiv preprint 

https://doi.org/10.1101/071894
http://creativecommons.org/licenses/by-nd/4.0/


robustness. Based on our hypothesis, we need to study evolution on a fitness landscape with 337

at least two fitness peaks: one drift-robust peak with few small-effect deleterious mutations 338

and one drift-fragile peak with many small-effect deleterious mutations. We assume that 339

deleterious mutations are more frequent than beneficial mutations and that beneficial muta- 340

tions of large-effect are less frequent than beneficial mutations of small-effect. Finally, there 341

must also be a mutational path between the drift-fragile peak and the drift-robust peak. 342

Drift robustness on such a landscape would manifest itself when a population that predom- 343

inantly occupies a high (drift-fragile) fitness peak when under selection at large population 344

sizes, switches instead to the lower (drift-robust) fitness peak when the population is small. 345

Below we will calculate the critical population size at which this switch occurs. 346

We design a fitness landscape with four genotypes, represented by four nodes (Fig. 2a). 347

Genotype 1 (the wild-type) has fitness w1 = 1 and is the ancestral genotype for our popula- 348

tions. Genotypes 2 and 3, with fitness w2 = 1 + s
2

and w3 = 1 + s, respectively represent the 349

genotypes on the drift-fragile fitness peak. Genotype 4, with fitness w4 = 1 + s − ε, illus- 350

trates the drift-robust fitness peak at lower fitness. In the extended version of this model we 351

present later, we discuss the case where an arbitrary number of mutations lie “on the path” 352

towards the drift-fragile peak (thus increasing the peak’s fragility). 353

The likelihood that a mutation on the genetic background of genotype i leads to genotype 354

j is denoted by uij and the probability of fixation of that mutation is denoted by πij, with 355

0 < uij, πij ≤ 1. Therefore, the probability the population will evolve from genotype i to 356

genotype j is uijπij and the probability the population will not change is 1 − ∑
j uijπij. 357

Mutations cannot occur from the drift-fragile peak to the drift-robust peak and vice-versa, 358

but an indirect path between them exists. To allow for this dynamic, back-mutations can 359

occur. 360

We assume that evolution occurs in a mutation-limited environment (weak mutation, 361

strong selection limit), where the population is almost always monoclonal. When a mutation 362

arises, it will either go extinct or takeover the population. This assumption allows us to treat 363

evolution as a Markov chain [43]. We then solve for the stationary distribution of mutants 364

in the population, to calculate the likelihood a population with defined characteristics will 365

evolve to either one fitness peak or the other. 366

To solve the Markov chain, we first write down the transition matrix T as : 367

T =


1 − u12π12 − u14π14 u12π12 0 u14π14

u21π21 1 − u21π21 − u23π23 u23π23 0
0 u32π32 1 − u23π23 0

u41π41 0 0 1 − u41π41

 . 368

The stationary distribution ~x∗ = (x∗1, x
∗
2, x

∗
3, x

∗
4) is the left eigenvector of the transition

matrix with eigenvalue 1, i.e. ~xT = ~x. We are interested in the relative fraction R = x∗3/x
∗
4,

which is the fraction of occupation between the drift-robust and drift-fragile peaks and turns
out to be

R =
u41π41u12π12u23π23

u14π14u21π21u32π32

. (3)

We first calculate the fractions Pij =
πij
πji

. Using Kimura’s probability of fixation [44] 369

(a small s approximation of the exact formula of Sella and Hirsh [45, 46]) for an asexual 370
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Wright-Fisher process (N is the population size) we find 371

P14 = e2(s+ε)(N−1) , (4)

P12 = P23 = es(N−1) , (5)

(6)

so that 372

R =
u41

u14

u12

u21

u23

u32

P12P23/P14 ≡Me2ε(N−1) , (7)

where we introduced M = u41
u14

u12
u21

u23
u32

, which we now estimate. 373

For simplicity, we assume that a deleterious mutation rate (for example, the “back muta- 374

tion rate” u41) is given by µ, the overall mutation rate (thus assuming that most mutations 375

are deleterious) while the beneficial mutation rate is pb(s) = ubµρ(s), where ρ(s) is the 376

distribution function of mutations with benefit s, and ub is the likelihood that a mutation 377

is beneficial. If mutations with larger benefit s are exponentially more unlikely (see, e.g., 378

[47–49]), we can use the distribution function ρ(s) = 1
s̄
e−s/s̄ (here s̄ is the average beneficial 379

effect) to show that 380

p2
b(s/2)

pb(s)
=
ub

s̄
. (8)

Then, for ε small we find u14
u41

= pb(s− ε) ≈ pb(s), while u12
u21

= u23
u32

= pb(s/2), so that 381

M = pb(s/2)2/pb(s) =
ub

s̄
≡ κ < 1 . (9)

This result is expected to be general, as it simply states that the flux of beneficial mutations 382

towards the peak with a shallower slope (smaller s, here 1 + s/2) is larger than the flux into 383

the branch with steeper slope (larger s, here 1 + s− ε). 384

The critical point at which both the drift-fragile and the drift-robust peak are equally 385

populated is determined from setting R = 1 in Eq. (7), which gives 386

Ncrit = 1 +
log κ−1

2ε
. (10)

We show the critical population size as a function of the fitness deficit of the drift robust 387

peak ε in Figure 2. We see that, depending on the fitness deficit, the evolutionary dynamics 388

prefer the drift-robust peak at small population sizes even though its peak height is inferior 389

to the drift-fragile peak. These results do not depend on the explicit function we used to 390

describe the distribution of beneficial mutations as long as that function is decreasing, nor 391

does it depend on the specifics of the construction of the fitness landscape. 392

Next, we created an extended version of our fitness-landscape model. Drift-fragility 393

could be exacerbated by subdividing the height w3 = 1 + s into n increments (Fig. 2b, in 394

the previous model n = 2). In this case, 395

pnb(s/n)

pb(s)
= (

ub

s̄
)n−1 , (11)
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and the critical population size becomes 396

Ncrit = 1 + (n− 1)
log κ−1

2ε
. (12)

The simple result Eq. (12) relies on an exact cancellation of the fixation probabilities of the 397

intermediate n−1 steps, and occurs for both the Kimura approximation as well as the exact 398

Sella-Hirsh formula. 399

Avida. Experimental evolution was carried out using the digital evolution system Avida 400

version 2.14. Avida has previously been used to study many concepts that are difficult to 401

test with biological systems [50–55]. In Avida, a population of self-replicating computer 402

programs undergoes Darwinian evolution. Each of the programs (“avidians”) consists of a 403

genome of sequential computer instructions, drawn from an alphabet of twenty-six possible 404

instructions. Together, these instructions encode the ability for an avidian to create a new 405

daughter avidian, copy its genome into the new avidian, and divide off the offspring. During 406

this process, mutations can be introduced into the offspring’s genome at a controlled rate, 407

introducing genetic variation into the population. When a new offspring is placed into the 408

population (and the population is at carrying capacity), a random individual is replaced by 409

the new avidian, a process that introduces genetic drift into Avida populations. Avidians 410

differ in their replication speed due to different genomic sequences, so avidians that can 411

replicate faster will out-compete slower-replicating types. Therefore, because variation is 412

heritable, and because this variation leads to differential reproduction, an Avida population 413

undergoes Darwinian evolution by natural selection. 414

The Avida world consists of a toroidal grid ofN cells, whereN is the maximum population 415

size. Each cell can be occupied by at most one avidian, although a cell may be empty. Upon 416

reproduction, the offspring avidian is placed into an empty cell (if the population is below 417

capacity) or into a random cell, where it replaces the already-present avidian. Although 418

the default Avida setting places offspring into one of nine neighboring cells (including the 419

parent) so as to emulate growth on a surface, in the present experiments any cell may be 420

selected for replacement to simulate a well-mixed environment. Reproduction is asexual in 421

all of the experiments performed here. 422

Time in Avida is set according to “updates” (the time it takes for an avidian population 423

to execute a give number of instructions). During each update, 30N instructions are executed 424

across the population, where N is again the population size. In order to be able to execute 425

its code, an avidian must have a resource, measured as “Single Instruction Processing” units 426

(SIPs). At the beginning of each update, SIPs are distributed to programs in the population 427

in proportion to a quantity called “merit”, which is related to a genotype’s ability to exploit 428

the environment (see [29] for details). In the experiments performed here, merit was held 429

constant across all individuals, so on average 30 SIPs were distributed to each individual 430

every update. 431

It should be noted that in most Avida experiments, populations can evolve the ability 432

to perform certain Boolean logic calculations that can improve their merit and hence their 433

fitness [56]. In the experiments performed here, the evolution of these logic calculations 434

was set to be neutral and not under positive selection. Instead, the route for an avidian to 435

improve its fitness was solely by reducing the number of instruction executions needed to 436

copy its genome. A population will typically evolve a faster replication speed by increasing 437
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the number of instructions that copy instructions from the parent genome to the offspring 438

genome. When this copy number increase occurs, more instructions are copied per update, 439

resulting in faster replication and greater fitness. This fitness landscape was used because 440

the fitness landscape where logic calculations are under selection lack small-effect deleterious 441

mutations, which would preclude the observation of drift robustness. 442

Although Avida uses the update as its unit of time, experiments such as those performed 443

here are often run for a given number of generations (the time it takes for the entire popu- 444

lation to be replaced). The experiment ends when the average generation across all of the 445

individuals in the population reaches a pre-specified number. Each individual’s generation 446

counter is equal to its parent’s generation plus one. Therefore, while Avida experiments oc- 447

cur for a set number of generations, the population does not evolve with discrete generations. 448

If fitness differs between individuals and lineages in the population, there can be variation 449

in the individuals’ generations in the population. 450

451

Experimental Design. We performed three sets of experiments here. First, initial adap- 452

tation experiments were performed to generate genotypes adapted to small and large popu- 453

lation size environments. We evolved 100 small populations (102 individuals) and 100 large 454

populations (104 individuals) evolved for 105 generations. The genomic mutation rate was 455

set to 10−1 mutations/generation/genome and these mutations occurred upon division, thus 456

limiting the number of mutations per generation to one. The ancestor organism for the 457

initial adaptation treatments was the default Avida ancestor, but with an altered genome 458

length of 50 instructions. This alteration was performed by removing 50 nop-C instructions 459

from the default genome (these instructions are inert). 460

The second experimental step was to perform a test to measure the drift robustness of 461

individuals evolved at a small population size versus individuals evolved at a large population 462

size. From each small and large population, we used the most abundant individual to form 463

a set of 100 small-population genotypes and 100 large-population genotypes per treatment. 464

For each of these genotypes, we evolved 10 populations (2000 replicates in total) at various 465

small population sizes for 103 generations. We used a population size of 50 individuals for this 466

test. All other treatment parameters were the same as the initial adaptation experiments. 467

The final set of experiments tested whether deleterious mutations were responsible for 468

the evolution of drift robustness in small populations. We repeated the initial adaptation ex- 469

periment and the drift robustness test under the same parameter settings as for the original 470

treatment. However, during the initial adaptation experiment, we reverted any deleterious 471

mutations that appeared in the population [57]. In this setup, the Avida world examines the 472

fitness cost of every new point mutation. If this new mutant has decreased fitness relative 473

to its parent, the mutant is prevented from entering into the population. 474

475

Data analysis. We calculated statistics for the evolved avidians using Avida’s Analyze 476

Mode [29]. In Analyze Mode, the experimenter can run an avidian through its life-cycle 477

(until reproduction) and calculate several genotype characteristics. Fitness was calculated 478

as the ratio between the number of instructions in the genome (the sequence length) to 479

the number of instruction executions needed to copy the genome and reproduce (this is an 480

unbiased predictor of the actual number of offspring). 481

In order to calculate the distribution of fitness effects for each genotype and other related 482
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mutational measures, each point mutation was generated for each genotype (25×Lmutations, 483

where L is the number of instructions in the genome). The fitness effect of each mutation 484

was calculated as s = wm

w0
− 1, where wm is the fitness of the mutant and w0 was the fitness 485

of the genotype. The average mutational effect of each genotype is the arithmetic mean of 486

these fitness effects. The fraction of mutations of a given fitness effect was calculated as the 487

number of mutations with that fitness effect divided by 25L. 488

To estimate the distribution of fitness effects of fixed mutations for each genotype, we 489

analyzed the line-of-descent (LOD) of these genotypes. The LOD of a genotype contains 490

every genotype that led from the ancestral genotype to the genotype of interest; it represents 491

a fossil record of that lineage [56]. We calculated the fitness effect of each mutation along 492

the LOD as above. For calculating the change in the frequency of lethal and deleterious 493

mutations along the LOD as in (Fig. 6c), we performed the calculations detailed above for 494

each LOD genotype. 495

In order to examine possible differences in the distribution of beneficial fixed effects 496

between small populations and large populations, we had to identify the beneficial mutations 497

that contributed to adaptation. This is non-trivial, as small populations fix more beneficial 498

mutations than large populations due to their oscillations in fitness. In order to not include 499

these transient fixed beneficial mutations, we selected the beneficial mutations from each 500

population whose fitness gain was at least partially maintained during the future evolution 501

of the population. We labeled a beneficial mutation on a population’s LOD as maintained if 502

1) it resulted in the lineage attaining a new fitness maximum, and 2) fitness never decreased 503

below the previous fitness value on the LOD except for a transient amount of time. We 504

defined a transient amount of time as less than five consecutive genotypes on the LOD 505

having a lower fitness. This transient fitness decrease allowance is necessary due to the 506

possibility of valley-crossing in Avida fitness landscapes [57]. 507

To compare the fraction of small-effect deleterious mutations between genotypes from 508

small populations and genotypes from large populations (Fig. 7), we first selected one geno- 509

type from each lineage for a given fitness value. If a lineage had multiple genotypes with 510

the same fitness, as was often the case, we took the last genotype that appeared. Then, 511

for each fitness value with more than 20 genotypes from both small and large populations, 512

we calculated the fitness effect of every possible point mutation and the fraction of these 513

mutations that were deleterious with a small effect size as described above. 514

Statistical analyses were performed using the NumPy [58], SciPy [59], and Pandas [60] 515

Python modules. Figures were created with the Matplotlib [61] Python module. The 516

stationary distribution for the mathematical model was solved using Mathematica version 517

11.0.1.0 [62]. 518

519

Code availability. The Avida software is available for free use (https://github.com/devosoft/avida).520

Avida configuration scripts, data from Avida experiments, statistical analysis and figure- 521

generating scripts, and the Mathematica code is available at the Dryad data repository (). 522
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