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Abstract  

The aim of this study was to examine the impact of well-controlled uncomplicated type 2 

diabetes (T2D) on exercise performance. Six obese sedentary men with T2D and 7 control 

participants without diabetes matched for age, sex and body mass index were recruited.  

Anthropometric characteristics, blood samples, resting cardiac and pulmonary functions and 

maximal oxygen uptake (VO2max) and ventilatory threshold were measured on a first visit. On 

the four subsequent visits, participants performed step transitions (6 min) of moderate-intensity 

exercise on an upright cycle ergometer from unloaded pedaling to 80 % of ventilatory threshold. 

VO2 (τVO2) and HR (τHR) kinetics were characterized with a mono-exponential model. 

VO2max (27.8±4.0 vs. 27.5±5.3 ml kg
-1

 min
-1

; p=0.95), τVO2 (43±6 vs. 43±10 s; p=0.73) and 

τHR (42±17 vs. 43±13 s; p=0.94) were similar between diabetics and controls respectively. The 

remaining variables were also similar between groups. These results suggest that well-controlled 

T2D is not associated with a reduction in VO2max or slower τVO2 and τHR. 

Key words: maximal oxygen uptake, oxygen uptake kinetics, heart rate kinetics, type 2 diabetes 
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Introduction 

The presence of type 2 diabetes, with or without cardiovascular complications, is often 

associated with reduced maximal oxygen uptake (VO2max) (1-14). Type 2 diabetes also seems to 

affect submaximal VO2 response, however, results are equivocal. A study conducted in older 

men (65 ± 5 years) with well-controlled type 2 diabetes and long disease duration (> 5 years) (9) 

reported no difference in VO2 kinetics compared to control participants without diabetes, while 

others reported a slower VO2 kinetics in pre- and postmenopausal women (4, 7, 10), adolescents 

with type 2 diabetes (6) and middle-aged men with type 2 diabetes  (10, 15).   

 

The adjustment of heart rate (HR) at the onset of exercise (e.g. HR kinetics), provides additional 

insights regarding the influence of the central component [central blood flow adjustment and O2 

delivery (16)] on exercise capacity and, to our knowledge, only a few studies have evaluated HR 

kinetics in men with type 2 diabetes (9, 10). Recently, O’Connor et al.  (15) have demonstrated 

slowed HR kinetics in older men with type 2 diabetes.  

 

Taken together, these findings support the fact that this metabolic disorder eventually affects 

negatively numerous human body functions depending on patients’ glycemic control, disease 

duration as well as the presence of comorbidities due to diabetes. Whether abnormal exercise 

capacity is the result of type 2 diabetes per se or a consequence of its associated comorbidities is 

not clear, as most of the studies on men have been conducted in patients with type 2 diabetes 

without optimal glycemic control (9, 10). Evidence of subclinical abnormalities in autonomic 

(17) and cardiac function (18-21) have been reported in patients with diabetes. Reduced heart 

rate variability (22), left ventricular diastolic dysfunction (23) and lower lung capacity (24) have 
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all been associated with reduced maximal exercise capacity in patients with type 2 diabetes. Still, 

the influence of type 2 diabetes per se on VO2 and HR kinetics in uncomplicated well-controlled 

middle-aged men remains unknown. 

 

The aim of this study was to evaluate the impact of well-controlled, uncomplicated type 2 

diabetes on VO2max as well as VO2 and HR kinetics in obese sedentary middle-aged type 2 

diabetes men compared to control participants matched for sex, age and body mass index. A 

secondary objective of this study was to provide an integrative view of the impact of type 2 

diabetes, including metabolic control, lipid profile, cardiopulmonary function, cardiac structures, 

and heart rate variability, in relationship to exercise performance. We hypothesized that the 

presence of well-controlled, uncomplicated type 2 diabetes would be associated with a reduction 

in VO2max but similar VO2 and HR kinetics compared to participants without diabetes.  

 

Methods 

Study population 

Six sedentary men with type 2 diabetes and 7 control participants without diabetes matched for 

age, sex, and body mass index were recruited for this study. This control group, which represents 

a real life situation considering the impacts of an inactive lifestyle, age and overweight/obesity 

on human body systems and exercise performance (25-27), strengthen the study design. Type 2 

diabetes was diagnosed according to American Diabetes Association criteria (28). All subjects 

with diabetes were managed with diet, except two who were treated with metformin alone.  No 

participants were using insulin or any cardiovascular drug regimen for the treatment of other 

diseases/comorbidities. Exclusion criteria for both groups were the documented presence of 
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cardiovascular disease, a documented office blood pressure above 140/90 mmHg and clinically 

significant end-organ complications related to diabetes, i.e. renal failure (creatinine above normal 

upper limit), macroalbuminuria, proliferative retinopathy, clinically significant sensitive, motor 

or autonomic neuropathies as well as the participation to a structured exercise training program. 

The local ethics committee approved the study, in accordance with the Helsinki declaration, and 

all participants gave signed informed consent. 

 

Study design 

Participants visited our laboratory on 5 different occasions. Blood profile and a resting 

echocardiographic variables, pulmonary function, heart rate variability, and VO2max were 

evaluated on the first visit (V1). Then, participants performed square-wave transitions from 

unloaded pedaling to moderate-intensity exercise on four different visits separated by 48 hours 

(V2-V5) to determine VO2 and HR kinetics. 

 

Measurements 

Blood samples 

Upon participant arrival at the laboratory (V1), a 20-gauge polyethylene catheter was inserted 

into a forearm vein for blood sampling.  Blood samples were drawn at rest after an overnight 

fasting. Fasting blood glucose was measured using the hexokinase method (Roche Diagnosis, 

Indianapolis, IN). Glycated hemoglobin was assayed using the ion-exchange high-performance 

liquid chromatography method (Bio-Rad, Hercules, CA). Serum cholesterol, triglycerides and 

high-density lipoprotein-cholesterol were analyzed as previously described (21, 29). Low-density 
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lipoprotein-cholesterol was calculated using Friedewald’s formula (30). The cholesterol/high-

density lipoprotein ratio was also calculated.  

 

Echocardiography  

Standard parasternal, short- and long-axis and apical views were performed in accordance with 

the recommendations of the American Society of Echocardiography (31) with the same observer 

obtaining all recordings and measurements (Sonos 5500; Hewlet Packard, Andover, 

Massachusetts) (29). Left atrial volume (LAV) and left ventricular (LV) systolic and diastolic 

volumes were calculated using the modified Simpson’s method. Left ventricular mass (LVM) 

and wall thickness were evaluated by M-mode Doppler. LVM was calculated using the following 

formula (32): LVM (g) = 0.8 × 1.04 [(LVEDD + IVST + PWT)3 − (LVEDD)3] + 0.6, where 

LVEDD is the LV end diastolic dimension, IVST the interventricular septal thickness, and PWT 

the posterior wall thickness. LAV and LVM were indexed for body surface area (33). Ejection 

fraction was evaluated using the Simpson’s method.  

 

Resting left ventricular diastolic dysfunction (LVDD) was evaluated using standardized criteria 

(29, 34). First, transmitral pulsed Doppler recordings were obtained to measure the following 

parameters: peak E velocity in cm/s (peak early transmitral filling velocity during early diastole), 

peak A velocity in cm/s (peak transmitral atrial filling velocity during late diastole), deceleration 

time in ms (time elapsed between peak E velocity and the point where the extrapolation of the 

deceleration slope of the E velocity crosses the zero baseline) and E/A ratio (peak E wave 

velocity divided by peak A wave velocity). In order to reduce the high filling pressures 

encountered in the pseudonormalized pattern of LV filling, the same measurements were 
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repeated during phase II of the Valsalva maneuver (29). Tissue Doppler velocities were 

measured at the mitral annular level of the LV septum, to provide additional information about 

filling pressure. Early (Ea) and late (Aa) velocities were measured and E/Ea ratio was calculated 

(35). LVDD was characterized as normal, abnormal relaxation, pseudonormal pattern and 

restrictive pattern. Subjects had a normal LV diastolic function if a deceleration time between 

140-240 msec, an E/A ratio between 1 and 2 and an E/Ea ratio < 8 were present. LVDD was 

characterized as abnormal relaxation if subjects had a deceleration time > 240 msec and an E/A 

ratio < 1. LVDD was characterized as a pseudonormal filling pattern if subjects had a 

deceleration time between 150-240 msec, an E/A ratio between 1 and 2 and an E/Ea ratio > 15 

(36), or a reduction in the E/A ratio > 0.5 following the Valsalva maneuver. Finally, LVDD was 

characterized as a restrictive filling pattern if subjects had a deceleration time < 140 msec and 

E/A ratio > 2. 

 

Pulmonary function tests 

Standard pulmonary function tests, including body plethysmography, spirometry and single-

breath diffusing capacity of the lung for carbon monoxide [DLCO] were performed in participants 

(37). 

 

Heart rate variability  

Heart rate variability was derived from a 24-hour Holter monitoring system (Marquette 

Electronics, Milwaukee, WI) in all participants during normal daily life activity. Heart rate 

variability derived from 24-hour ambulatory monitoring is reproducible and free of placebo 

effect (38). Within the 24-hour evaluation, three periods were arbitrarily assessed: 1) 24 hours, 2) 
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daytime period defined as 8:00 AM to 8:00 PM and, 3) night-time period defined as 12:00 AM to 

6:00 AM (23). In the frequency domain, power in the low-frequency (0.04 to 0.15 Hz), and high-

frequency (0.15 to 0.4 Hz) ranges were calculated. The low frequency/high frequency ratio, 

considered to be a marker of the ratio of sympathetic to parasympathetic balance, was also 

determined (39). Using time domain analysis, the standard deviation (SD) of the RR intervals 

(SDNN), the square root of the mean squared differences of successive RR intervals (rMSSD), 

and the SD of the average RR intervals were calculated over 5-minute periods (SDANN) and the 

average of the SD of RR intervals for all 5-minute periods (ASDNN) were determined. pNN50 is 

the proportion of interval differences of successive NN intervals >50 ms. rMSSD and pNN50 are 

indices of parasympathetic modulation. NN intervals are the normal-to-normal intervals that 

include all intervals between adjacent QRS complexes resulting from sinus node depolarizations 

in the entire 24-hour electrocardiogram recording. The complete signal was carefully edited 

using visual checks and manual corrections of individual RR intervals and QRS complex 

classifications. 

 

Blood pressure  

Following 15 minutes of quiet rest in a supine position, resting arterial blood pressure was 

measured with the participants seated using an automated sphygmomanometer with headphone 

circuit option before the maximal exercise protocol (Model 412, Quinton Instrument Co., 

Bothell, WA, USA).  
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Maximal exercise protocol 

VO2max was evaluated using a ramp incremental exercise protocol of 20 watts/min following a 

warm-up period of 1 minute of unloaded pedaling, performed on an electromagnetically braked 

upright cycle ergometer (Lode Corival, Lode, Groningen, Netherlands) at a pedaling rate of 50 to 

70 rpm.  Expired air was continuously collected for the determination of pulmonary VO2, carbon 

dioxide production (VCO2), pulmonary ventilation (VE) and the respiratory exchange ratio 

(RER) (VCO2/VO2), on a breath-by-breath basis (Medgraphics, CPX Ultima, St Paul, MN). 

Heart rate was measured using electrocardiographic monitoring during the test. Participants 

exercised until volitional exhaustion. VO2max was defined as the mean VO2 recorded in the last 

15 seconds of the ramp protocol concurrent with a RER ≥ 1.15. The ventilatory threshold was 

evaluated with the V-slope method (40). The exercise protocol was always performed at the 

same time of the day at a room temperature of 19 °C. 

 

Square-wave exercise protocol 

Each participant performed four square-wave exercise protocols, from unloaded pedaling to 80% 

ventilatory threshold, on four different visits separated by at least 48 hours. Pulmonary gas 

exchange and HR were continuously monitored during exercise.  

 

Data analysis and statistics 

VO2 and HR kinetics analysis 

Breath-by-breath data were filtered and linearly interpolated to provide second-by-second values, 

then time-aligned to the onset of exercise and ensemble-averaged into 5-s bins. The phase 1 
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response (approximately 20 seconds) was omitted (41) and a mono-exponential equation was 

used to fit the data (Origin software, OriginLab, Northampton, MA, USA): 

 

VO
2 (t) = 

VO
2 Baseline+

 Amp (1-e
-(t-TD)/ז

) 

 

where VO2 (t) represents VO2 as a function of time t; VO2baseline represents the mean VO2 in the 

baseline period (unloaded pedaling); Amp is the amplitude or the difference between the baseline 

and steady-state VO2, TD is the time delay before the onset of exercise and τVO2, the phase 2 

time constant, representing the time required to reach 63 % of the steady-state response.  

The same equation was used for the HR kinetics analysis, starting at time 0. Accordingly, there 

was not time delay incorporated into the model employed to describe HR kinetics.  

 

Statistical analysis 

The Mann-Whitney Rank Sum test was used to compare variables between groups. All data is 

presented as mean ± standard deviation unless otherwise specified. A p value < 0.05 was 

considered statistically significant.  A sample size calculation was based on previous work that 

studied VO2 kinetics (7, 42) in women with type 2 diabetes. Accordingly, 8 participants per 

group were necessary in order to report a statistically significant difference of 15±10 sec in τVO2 

between our two groups with a power of 80% and a p<0.05. 
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Results 

Anthropometric characteristics, resting hemodynamics, metabolic profile (Table 1), cardiac 

structures, baseline LV systolic function, heart rate variability (Table 2) and pulmonary function 

(Table 3) were all similar between groups. A higher peak early E wave velocity during the 

Valsalva maneuver (56±4 vs. 47±5 ms; p<0.05) and lower tissue Doppler septal early velocities 

(7.6±1.3 vs. 10.9±2.9 cm s -1; p<0.05) were observed in diabetics vs. controls. Three participants 

with diabetes and four control participants had LVDD. There was a trend toward higher LV 

filling pressure (measured by the septal E/Ea ratio) (9.1±2.8 vs. 7.0±1.6; p=0.06) in diabetics vs. 

controls. 

 
Table 1. Baseline characteristics, blood profile and resting hemodynamics in participants with type 2 
diabetes compared to control participants 
Values are means ± SD; *Data presented as median (minimum-maximum) 
BMI: Body mass index; Hb: hemoglobin HR: Heart rate; SBP: Systolic blood pressure; DPB: Diastolic blood 
pressure; FBG: Fasting blood glucose; HbA1c: Glycated hemoglobin; HDL-C: High-density lipoprotein 
cholesterol; LDL-C: Low-density lipoprotein cholesterol 
 

 Diabetes group Control group p 

N 6 7 - 

Age (yrs)   58±2 54±9 0.43 

Height (m)   1.76±0.07 1.77±0.03 1.00 

Body weight (kg)   90±17 97±15 0.29 

BMI (kg/m2) 29±4 31±5 0.53 
Diabetes duration (month)* 50 (4-138) - - 
FBG (mmol l-1) 6.3±2 5.1±0.4 0.19 
HbA1c (%) 6.2±0.8 5.7±0.3 0.25 
HR (bpm) 68±9 66±9 0.52 
SBP (mmHg) 133±9 143±10 0.12 
DPB (mmHg) 87±7 88±7 0.77 
Cholesterol (mmol l-1) 5.3±1.2 5.3±0.6 0.72 
Triglycerides (mmol l-1) 1.7±0.9 1.8±0.8 1.0 
HDL-C (mmol l-1) 1.3±0.2 1.2±0.3 0.14 
LDL-C (mmol l-1) 3.1±1.0 3.4±0.6 0.73 
Total-Cholesterol/HDL  4.1±1.2 4.9±1.2 0.29 
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Table 2. Cardiac structure and function and heart rate variability in participants with type 2 diabetes 
compared to control participants 
Values are means ± SD; LV: Left ventricular; LA; Left atrial; LVOT: Left ventricular outflow track; E: Mitral 
early diastolic velocity; A: Mitral late diastolic velocity; DT: Deceleration time; Ea: Mitral annulus early diastolic 
velocity; Aa: Mitral annulus late diastolic velocity;  NN: Normal to normal interval; SDNN: Standard deviation of 

 Diabetes group Control group p 

Baseline 

Septum (mm) 10.3±1.0 10.4±1.3 0.88 

LV diameter diastolic (mm) 52.0±4.9 51.2±3.0 0.94 

LV diameter systolic (mm) 31.2±5.7 33.4±7.0 0.94 

Posterior wall (mm) 8.8±0.8 9.8±1.2 0.46 
LV mass index (g/m2) 87.8±6.3 90.0±15.0 1.00 
LVOT diameter (mm) 22.0±1.1 23±1.5 0.31 
LA volume (mm) 25.0±5.7 20.8±6.3 0.28 
E wave (cm s-1) 70.5±12.7 72.6±11.0 0.9 
A wave (cm s-1) 53.3±7.3 67±14.0 0.32 
E/A 1.3±0.2 1.1±0.3 0.42 
DT (ms) 229±55 227±33 0.57 
EF (%) 58±7 61±6 0.83 
Valsalva 
E wave (cm s-1) 56.0±3.6 47.3±5.1 0.02 
A wave (cm s-1) 53.7±14.2 51.0±13.2 0.26 
E/A  1.3±0.5 1.0±0.3 0.3 
DT (msec) 240±44 248±77 0.55 
Tissue Doppler 
Ea septal (cm s-1) 7.6±1.3 10.9±2.9 0.02 
Ea lateral (cm s-1) 11.4±3.0 11.0±2.6 0.94 
Aa septal (cm s-1) 11.6±0.5 11.9±1.8 0.93 
Aa lateral (cm s-1) 11.0±2.9 12.8±2.3 0.21 
E/Ea septal  9.1±2.8 7.0±1.6 0.06 
E/Ea lateral   6.6±2.4 6.7±1.4 0.95 
Heart rate variability    
Time domain    
Average of all NN (n) 805±94 749±88 0.39 
SDNN (ms) 140±55 142±26 0.53 
SDANN (ms) 125±56 131±22 0.18 
ASDNN (ms) 55±16 45±14 0.23 
rMSSD (ms) 25±5 24±12 0.43 
pNN50 (%) 5.0±2.7 6.0±8.0 0.22 
Frequency domain    
LFln (ms2) 6.7±0.7 6.3±0.5 0.18 
LFln (ms2) 6.0±0.8 5.6±0.7 0.45 
HFln (ms2) 4.3±0.8 4.4±1.0 0.95 
LF/HF ratio 4.9±1.0 3.9±2.5 0.45 
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all NN intervals; SDANN: SD of the average NN intervals for all 5-min segments; ASDNN: average of the 
standard deviationof NN intervals for all 5-min segments; rMSSD: Square root of the mean of the squared 
differences between adjacent NN intervals; pNN50: NN50 count divided by the total number of all NN intervals; 
VLF: Very low frequency; LF: Low frequency; HF: High frequency; LF/HF ratio: Low frequency to high 
frequency ratio 
 
VO2max and cardiopulmonary responses at maximal exercise were similar between groups 

(Table 3). Both τVO2 (43±6 vs. 43±10 s; p=0.73; Figure 1) and τHR (42±17 vs. 43±13 s; p=0.94; 

Figure 2) were similar between diabetics and control participants. Heart rate amplitude was 

greater in diabetics (p<0.05; Table 4). However, the other VO2 and HR kinetics variables were 

similar between groups (Table 4). 

 
Table 3. Pulmonary function at rest and maximal exercise parameters in participants with diabetes and 
control participants 
Values are means ± SD; FEV1: Forced expiratory volume-second; DLCO: Diffusion capacity to carbon 
dioxide; VO2: Oxygen uptake; HR: Heart rate SBP: Systolic blood pressure; DBP: Diastolic blood pressure; 
VE: Minute-ventilation; BF: Breathing frequency; RER: Respiratory exchange ratio 

 Diabetes group Control group p 
Pulmonary function 
Total lung capacity (l) 6.9±0.8 7.4±0.8 0.8 

Vital capacity (l) 5.2±0.5 5.5±0.7 0.4 

Forced vital capacity (l) 5.1±0.6 5.3±0.9 0.8 

FEV1 (l) 3.7±0.4 3.95±0.70 0.5 

Residual volume (l) 1.7±0.4 1.9±0.6 0.9 

Inspiratory capacity (l) 3.8±0.9 3.95±0.4 0.7 

DLCO (ml mm Hg-1 min-1) 30.6±6.3 27.6±2.3 0.3 
Exercise capacity 
VO2max (l min-1) 2.59±0.44 2.62±0.33 0.95 

VO2max (ml·kg-1·min-1) 27.8±4.0 27.5±5.3 1.00 

Work rate at VO2 max (W) 217±24 217±22 1.00 

Ventilatory threshold (L/min) 1.6±0.2 1.3±0.2 0.10 

Maximal HR (beat min-1) 164±17 165±18 1.00 

Maximal SBP (mmHg) 210±16 231±18 0.07 

Maximal DBP (mmHg) 84±11 86±9 0.5 

Maximal VE (l min-1) 120±35 106±23 0.7 
RER 1.2±0.1 1.3±0.1 0.4 
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Table 4. VO2 and heart rate kinetics during exercise in participants with type 2 diabetes compared to control 
participants 
Values are means ± SD; HR: Heart rate; VO2: Oxygen uptake; VT: Ventilatory threshold 
 

 
Figure 1. VO2 kinetic response of a representative participant with type 2 diabetes vs. a control participant 
Full circles represent single breath by control participant and overall response is characterized by the grey line. 
Empty circles represent single breath by participants with type 2 diabetes while the overall response is 
characterized by the black line. No significant difference between groups in the phase 2 VO2 kinetic response. 
 

 Diabetes group Control group p 

Work at 80% VT 73±17 64±15 0.4 

Baseline VO2 (l min-1) 548±63 595±71 0.3 

τVO2 (s) 43±6 43±10  0.7 

VO2 time delay (s) 17±2 16±3 0.6 

VO2 amplitude (l min-1) 671±16 613±194 0.7 

End-exercise VO2 (l min-1)  1219±193 1208±252 0.9 

Baseline HR (bpm) 83±12 82±8 0.9 

τ HR  (s) 42±17 43±13 0.9 

HR amplitude (bpm) 27±5 21±4 0.04 

End-exercise HR(bpm) 110±11 102±11 0.2 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 5, 2016. ; https://doi.org/10.1101/073205doi: bioRxiv preprint 

https://doi.org/10.1101/073205


 

 

 

15

 
Figure 2. HR kinetic response of a representative participant with type 2 diabetes vs. a control participant 
Full circles represent single breath by control participants and overall response is characterized by the grey line. 
Empty circles represent single breath by participants with type 2 diabetes while the overall response is 
characterized by the black line. No significant difference between groups in the phase 2 HR kinetic response. 
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Discussion 

The results of this study suggest that obese sedentary men with well-controlled type 2 diabetes 

without clinical complications or comorbidities do not show a reduction in VO2max or slower 

VO2 and HR kinetics compared to participants without diabetes matched for sex, age and body 

mass index. In addition, diabetics and control participants had similar metabolic profile and 

resting cardiorespiratory function, which may explain the similar submaximal and maximal 

exercise capacity responses reported in this study. 

 

Type 2 diabetes has been associated with reduced maximal exercise performance (2, 4-11, 14). 

However, the exact underlying pathophysiological mechanisms are still ambiguous. In our study 

including well-matched participants, no difference in VO2max was observed between groups, in 

contrast to previous reports. It is noteworthy that in most of the studies that reported a reduction 

in VO2max in patients with diabetes, other important variables may have contributed to the 

reduced VO2max, such as poor glycemic control (14, 43, 44), presence of LVDD (20, 21), 

reduced heart rate variability (20, 45), impaired lung diffusion capacity or early signs of cardiac 

impairment altering pumping capacity (46, 47) and the presence of comorbidities associated with 

type 2 diabetes (13). The presence of type 2 diabetes did not add additional burden to the 

majority of variables related to resting cardiopulmonary function in the present study. Since the 

cardiopulmonary function has an important influence on exercise performance in healthy 

individuals (47), the absence of a deleterious impact of well-controlled, uncomplicated type 2 

diabetes on VO2max in this study is not surprising. It is noteworthy that our participants with 

type 2 diabetes were treated with diet (n=4) or metformin alone (n=2) reinforcing the fact that 
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their diabetes was not longstanding which may have required a more aggressive pharmacological 

intervention.  

 

In addition, type 2 diabetes is usually associated with altered LV diastolic function (18, 45, 48, 

49). The negative impact of LVDD on submaximal exercise responses (8) and maximal exercise 

capacity (21) has been reported. Although a trend toward higher LV filling pressure was 

observed in diabetics vs. controls, a similar number of participants in both groups had LVDD, 

which could partly contribute to the comparable maximal exercise capacity between the two 

groups. What is still ambiguous pertaining to LVDD in diabetics is whether its appearance 

coincides with the development of diabetes or occurs earlier, since several variables such as 

blood pressure, age, sedentary lifestyle, obesity, hyperinsulinemia and LV systolic failure may 

modulate the development of LVDD (26, 27, 50). Accordingly, the results of this study do not 

exclude that LVDD has a negative influence on exercise capacity in patients with type 2 diabetes 

(51). Further research is necessary to isolate the influence of LVDD on VO2max in these 

patients.   

 

The evaluation of VO2 and HR kinetics provides supplemental mechanistic information on how a 

clinical population, in this case well-characterized men with well-controlled type 2 diabetes with 

short known disease duration, adapt to a transition from low to moderate intensity exercise. 

Compared to VO2max, VO2 and HR kinetics provide a more accurate evaluation of how 

participants adapt to everyday life activity, considering that they rarely perform activities at 

maximal exercise intensity. As VO2 kinetics represents the efficiency of the cardiovascular and 

metabolic systems to respond to changes in demand, a slower VO2 or HR adjustment at the onset 
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of exercise is associated with a lower functional capacity and harder perceived effort when 

performing regular activities (16). A slower response may be the result of impaired O2 delivery, 

inappropriate distribution of O2 to the working muscles, other muscular factors (metabolic 

inertia), or more likely, a combination of these factors (16). 

 

In our study, no difference in VO2 kinetics was observed between groups. This contrasts with 

previous studies conducted in patients with type 2 diabetes, in which slower VO2 kinetics has 

been reported (4, 6, 7, 15). Factors that could have contributed to the slower VO2 kinetics 

reported in previous studies include non-optimal short and long-term glycemic control, 

comparison with a lean control group, reduced heart rate variability and/or other signs of cardiac 

impairment, such as the presence of LVDD in diabetics. Of note, LVDD was not associated with 

slower VO2 kinetics in this study, but this could be related to our small sample size. However, 

our results support those of Wilkerson et al. (9) who reported similar VO2 kinetics between older 

men with diabetes of longer disease duration vs. control subjects. This similar VO2 adjustment 

was attributed to altered blood flow compensated by adaptive mechanisms with long-disease 

duration, such as O2 extraction (52). Interestingly, the slowed VO2 kinetics reported in 

uncomplicated type 2 diabetics could attain a plateau early following the onset of the disease, 

without a further detrimental impact of aging (15).  

 

The evaluation of HR kinetics provides a measure of central blood flow adjustment, and O2 

delivery, at the onset of moderate exercise (16). Previous studies having investigated HR kinetics 

in type 2 diabetics provided equivocal observations. The adjustment of HR seems slower in pre 

and post-menopausal women (7, 10), as well as in older men with type 2 diabetes with longer 
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disease duration (9) or with sub-optimal glycemic control (10). The difference between those 

results and ours may be attributable to the shorter disease duration of our cohort (< 5 years), the 

mean age of our participants and the optimal short and long-term glycemic control. In addition, 

diabetics involved in this study were treated with diet or metformin alone, compared to more 

advanced treatment (10), which often reflects a more advanced form of diabetes or the presence 

of complications or comorbidities. To our knowledge, the present study is the first to show that 

well-characterized optimally-controlled men with type 2 diabetes and of a relatively short known 

disease duration (< 5 years) do not have slower HR kinetics compared to control subjects. In 

addition, it appears that the slowed HR kinetics may be influenced to a greater extent by other 

variables, such as age, fitness or the presence of comorbidities rather than the disease processes, 

at least in the early stage of diabetes.  

 

This study has limitations that need to be discussed. We acknowledge that the number of 

participants in the present study was relatively low, only composed of men and the study did not 

include a lean control group. These factors limit the generalization of our results. Although 8 

participants per group would have been necessary to report a statistically significant difference of 

15±10 sec in τVO2 between our groups based on previous reported data (7, 42), we did not reach 

such a sample size (diabetic group: n=6 and control group: n=7). However, it is highly unlikely 

that τVO2 would have been different with the addition of 2 participants in the diabetic group and 

1 participant in the control group taking into consideration that the difference in τVO2 between 

groups was far from the ∼15 sec reported in the literature. By study design, participants in both 

groups had similar age and body mass index. They also had similar glycemic control, lipid 

profile, resting blood pressure, pulmonary function as well as cardiac autonomic system 
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modulation. The majority of participants with diabetes were recently diagnosed, and all of them 

were well-controlled, while control participants may not be considered as completely “healthy” 

participants, considering their age, the presence of obesity in a majority of participants and the 

fact that they were physically inactive. We consider that the similarities observed between our 

groups is a strength of this study which permit to assess the impact of type 2 diabetes per se, and 

not the related complications, on submaximal and maximal exercise performance.  

 

The number of square-wave exercise protocols used to model VO2 and HR kinetics is also a 

strength of this study. Indeed, at least 3 transitions seem necessary to get an adequate signal-to-

noise ratio (53) and previous studies that investigated VO2 or HR kinetics in patients with type 2 

diabetes did not all reach that prerequisite, which considerably reduces the precision in the 

modeling of the underlying physiologic responses during an exercise transition.  Another 

important issue is that we allowed 48 hours between each exercise trial for the evaluation of VO2 

and HR kinetics, to ensure that insulin sensitivity-induced exercise returned to baseline value 

(54), and that fatigue would not interfere with the results, considering the low level of physical 

fitness of our population. Finally, these results warrant further studies investigating the influence 

of well-controlled, uncomplicated type 2 diabetes on exercise performance. Still, these results 

have potential clinical implications. If the presence of type 2 diabetes eventually leads to a lower 

capacity to perform exercise (14), the present study suggests that well-controlled type 2 diabetes 

is not always associated with a reduction in submaximal (VO2 and HR kinetics) or maximal 

exercise performance (VO2 max).  A more likely interpretation of these results may be that 

exercise performance is already impaired prior to the diagnosis of type 2 diabetes, as observed in 

participants with metabolic syndrome and healthy first-degree relatives of patients with type 2 
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diabetes, in whom subclinical metabolic and/or cardiovascular abnormalities are present (55-57). 

In the eventuality that these findings are supported in further studies, it will reinforce the 

importance of strong early therapeutic actions in individuals prone to develop type 2 diabetes in 

order to delay the appearance of this metabolic disorder and preserve the individual’s exercise 

capacity and quality of life.  

 

In conclusion, the findings from this study suggest that well-controlled type 2 diabetes does not 

necessarily result in a reduction of VO2 max and a slowing of VO2/HR kinetics over and above 

what can be expected in obese and sedentary individuals.  
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