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Abstract 
Language comprehension engages a cortical network of left frontal and temporal regions. 
Activity in this network is language-selective, showing virtually no modulation by non-
linguistic tasks. In addition, language comprehension engages a second network 
consisting of bilateral frontal, parietal, cingulate, and insular regions. Activity in this 
“Multiple Demand (MD)” network scales with comprehension difficulty, but also with 
cognitive effort across a wide range of non-linguistic tasks in a domain-general fashion. 
Given the functional dissociation between the language and MD networks, their 
respective contributions to comprehension are likely distinct, yet such differences remain 
elusive. Critically, given that each network is sensitive to some linguistic features, prior 
research has assumed – implicitly or explicitly – that both networks track linguistic input 
closely, and in a manner consistent across individuals. Here, we used fMRI to directly 
test this assumption by comparing the BOLD signal time-courses in each network across 
different people listening to the same story. Language network activity showed fewer 
individual differences, indicative of closer input tracking, whereas MD network activity 
was more idiosyncratic and, moreover, showed lower reliability within an individual 
across repetitions of a story. These findings constrain cognitive models of language 
comprehension by suggesting a novel distinction between the processes implemented in 
the language and MD networks. 

Significance Statement: Language comprehension recruits both language-specific 
mechanisms and domain-general mechanisms that are engaged in many cognitive 
processes. In the human cortex, language-selective mechanisms are implemented in the 
left-lateralized “core language network”, whereas domain-general mechanisms are 
implemented in the bilateral “Multiple Demand (MD)” network. Here, we report the first 
direct comparison of the respective contributions of these networks to naturalistic story 
comprehension. Using a novel combination of neuroimaging approaches we find that MD 
regions track stories less closely than language regions. This finding constrains the 
possible contributions of the MD network to comprehension, contrasts with accounts 
positing that this network has continuous access to linguistic input, and suggests a new 
typology of comprehension processes based on their extent of input tracking. 
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Introduction 
A key desideratum for a theory of language comprehension is to specify the division of 
linguistic labor across distinct cognitive mechanisms. Insofar as distinct mechanisms are 
implemented in separable neural populations, one promising approach to advance such 
theories is to functionally characterize brain regions or networks that are engaged in 
comprehension and establish their respective roles. Indeed, high-level language 
processing recruits several large-scale networks, each exhibiting a unique functional 
profile. Among these, the network most critical to comprehension is the “core language 
network”, a set of left frontal and temporal regions. This network is robustly engaged in 
language processing (e.g., Binder et al., 1997; Jung-Beeman, 2005; Fedorenko et al., 
2010; Menenti et al., 2011) across languages (e.g., Sebastian et al., 2011), presentation 
modalities (Chee et al., 1999; Buchweitz et al., 2009; Fedorenko et al., 2010; Braze et al., 
2011; Vagharchakian et al., 2012), and developmental experiences (Neville et al., 1998; 
Bedny et al., 2011). It exhibits sensitivity to linguistic features such as lexico-semantic 
information and syntactic structure (Keller et al., 2001; Fedorenko et al., 2012b; Bautista 
and Wilson, 2016; Blank et al., 2016) but, critically, shows virtually no engagement in 
non-linguistic tasks and is therefore language-selective (Fedorenko et al., 2011; for a 
review, see: Fedorenko and Varley, 2016). 
 In addition, language comprehension engages the “multiple demand (MD)” 
network (Duncan, 2010), consisting of frontal, parietal, cingulate, and insular regions 
bilaterally. Activity in this network is sensitive to comprehension difficulty, increasing in 
response to e.g., temporary ambiguity and non-local syntactic dependencies (for a review, 
see: Fedorenko, 2014). However, this network similarly scales its response with cognitive 
effort across a wide range of non-linguistic tasks (Duncan and Owen, 2000; Miller and 
Cohen, 2001; Braver et al., 2003; Dosenbach et al., 2006; Cole and Schneider, 2007; 
Fedorenko et al., 2013; Hugdahl et al., 2015) and is therefore domain-general. 
 The strikingly different functional profiles of the language and MD networks are 
evident not only in task-based neuroimaging studies but also in relatively unconstrained, 
task-free paradigms where these networks show unsynchronized activity fluctuations 
during naturalistic cognition (Blank et al., 2014). A similar double dissociation is 
reported by neuropsychological studies: damage to the language network leads to 
language impairments (Broca, 1861/2006; Dax, 1863; Wernicke, 1874/1969; Geschwind, 
1970; Bates et al., 2003) but leaves other high-level cognitive functions largely intact 
(Fedorenko and Varley, 2016); whereas damage to the MD network impairs executive 
functions (Luria, 1966/2012; Fuster, 1989; Woolgar et al., 2010), but can leave 
comprehension mostly unimpaired (for a review, see: Fedorenko, 2014). Finally, 
language and executive functions follow different developmental trajectories (Fedorenko, 
2014). These converging findings, of course, do not imply that domain-general executive 
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functions do not play a role in language processing (for discussions, see Fedorenko, 
2014; Geranmayeh et al., 2014). Indeed, a number of studies have provided causal 
evidence linking executive control to language (Wiener et al., 2004; Fridriksson et al., 
2006; Amici et al., 2007; Murray, 2012). However, they provide evidence that the 
language and MD networks support distinct computations and their contributions to 
comprehension fundamentally differ. 
 Nonetheless, the precise nature of the respective contributions remains elusive, as 
most prior neuroimaging studies of comprehension have not couched their findings in 
terms of the functional distinction between the language and MD networks. To the extent 
that available accounts do draw this distinction, however implicitly, they suggest that the 
two networks differ in either the input features that they each track or the operations they 
each engage in while processing such input (e.g., Novick et al., 2005; Thompson-Schill et 
al., 2005; Hickok and Poeppel, 2007; Friederici, 2012; Hagoort, 2013; Fedorenko, 2014). 
Critically, the various postulated roles of these two networks appear to depend on 
continuous access to the unfolding input: such access underlies any suggestion that neural 
activity co-varies with a certain linguistic feature, e.g., lexical information, compositional 
structure, local ambiguity or parsing difficulty. However, this assumption – which is 
crucial for understanding the contributions of the two networks to language processing – 
has not been empirically evaluated. 

Here, we use fMRI to directly test this assumption. Namely, we measure activity 
fluctuations in the language and MD networks during story comprehension and estimate 
how tightly coupled those fluctuations are to the story. Consistent with current views, one 
might hypothesize that both networks exhibit equally close tracking of linguistic input. 
Alternatively, one network might track the input less closely than the other, in which case 
the space of operations such a network could support would be importantly constrained. 
Such a finding would indicate that the contributions of the two networks to 
comprehension differ more fundamentally than is presently assumed. 

Materials and Methods 
Below, we outline and motivate our methodology. Specifically, we describe a novel 
combination of existing approaches that is designed to meet four criteria: (i) high 
functional resolution for identifying brain networks; (ii) a naturalistic paradigm suitable 
for studying comprehension in all its richness (cf. traditional task-based paradigms); (iii) 
direct comparisons of brain networks for valid statistical inferences; and (iv) 
reproducibility of results. 
 In order to evaluate the extent of input tracking in the language and MD networks, 
we first must define the cortical regions of interest that constitute these networks. In this 
process, we must account for the fact that individual brains are highly variable in the 
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mapping of high-level cognitive functions onto macro-anatomical landmarks. This 
variability, evident in the temporal cortex (Jones and Powell, 1970; Gloor, 1997; Wise et 
al., 2001) and especially in the frontal cortex (Amunts et al., 1999; Tomaiuolo et al., 
1999; Chein et al., 2002) where language and MD regions lie side-by-side (Fedorenko et 
al., 2012a), renders anatomical localization precarious (Juch et al., 2005; Poldrack, 2006; 
Fischl et al., 2008; Tahmasebi et al., 2011; Frost and Goebel, 2012). For these reasons, 
we similarly cannot rely on functional localization at the level of an entire sample using 
group-based analyses (Saxe et al., 2006; Fedorenko and Kanwisher, 2009). Therefore, we 
functionally localize language and MD regions individually in each participant. This 
approach allows us to pool data from the same functional regions across participants even 
when those regions do not align well spatially. 
 Following functional localization, we evaluate how closely the language and MD 
networks track linguistic input during naturalistic comprehension. Our interest in 
naturalistic input is threefold: first, some brain regions respond more reliably to richly 
structured natural input compared to experimentally controlled input (Hasson et al., 
2010). Second, unlike traditional experimental paradigms which often require 
participants to perform artificial tasks on linguistic materials, naturalistic comprehension 
more closely approximates language processing “in the wild”, where the primary goal is 
the extraction of meaning. Therefore, this “task free” paradigm provides an important 
complementary approach for evaluating the contributions of the MD regions to 
comprehension, especially given that these regions operate in a task-dependent manner 
(Miller and Cohen, 2001; Sreenivasan et al., 2014; D’Esposito and Postle, 2015). And 
third, naturalistic comprehension requires all aspects of the input to be combined into a 
single rich representation, unlike experimental stimuli and tasks that focus on particular 
linguistic features and have lower ecological validity. Therefore, we record the BOLD 
signal fluctuations of language and MD regions while participants passively listen to 
stories, where the only explicit task is to comprehend the story’s content. 

Following Lerner et al. (2011), we reasoned that if a given network closely 
tracked the story such that fluctuations in its BOLD signal were stimulus-locked, then its 
signal time-course would be similar across participants and would thus show a high Inter-
Subject Correlation (ISC) (Hasson et al., 2004). Hence, we use ISC as an index of input 
tracking. Critically, ISC is a “model-free” measure: instead of testing how well signal 
time-courses can be explained by certain pre-specified, hypothesis-driven predictors, 
each participant’s empirical data serve as the model compared against the data from the 
other participants. 

This data-driven method has been successfully used to demonstrate that broad 
cortical swathes do track stories to significant extents (Wilson et al., 2008; Lerner et al., 
2011; Honey et al., 2012; Regev et al., 2013; Silbert et al., 2014; Schmälzle et al., 2015), 
proposing a neural correlate of “shared understanding” across individuals (Hasson et al., 
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2012). Nevertheless, prior studies have measured ISCs in a voxel-wise fashion, whereby 
brains were first anatomically aligned and, then, each stereotaxic location served in turn 
as a basis for comparing signal time-courses across participants. Relating the resulting 
cortical topology of ISCs to the topology of known functional brain networks could then 
proceed only through “reverse inference” (Poldrack, 2006). Moreover, voxel-wise 
comparisons across participants rely on the invalid assumption that a given anatomical 
location has a common function across individuals. To relax this assumption, here we 
augment the ISC framework by comparing signal time-courses across regions that are 
functionally defined. This allows us to focus on, and compare between, language and MD 
regions, such that we can tie our findings to the wealth of prior literature characterizing 
the response profiles of those networks. 

In addition, we augment the statistical approach adopted in early studies of ISCs 
by directly testing the correlations in the language network against those in the MD 
network. Such an explicit comparison between networks allows for more nuanced 
inferences compared to those licensed when each network is separately tested against a 
null baseline and differences across networks are indirectly inferred (cf. Lerner et al., 
2011, for the latter) (Nieuwenhuis et al., 2011). 

Finally, we demonstrate that our results are reproducible, by reporting two 
replications of our main, story comprehension experiment: the first is a direct replication 
with a subset of the original stories; the second is a conceptual replication with a new, 
even more naturalistic story. 

Participants 
Fifty participants between the ages of 18 and 47, recruited from the MIT student body 
and the surrounding community, were paid for participation. Two participants were 
removed from the analysis due to poor quality of the functional localizer data and three 
more were removed due to poor segmentation of their anatomical scan. Of the remaining 
45 participants (30 females; mean age 23.5, SD 4.8), 19 were tested in the main 
experiment, 13 in the first replication and 19 in the second replication (the first and third 
groups were partially overlapping). In addition, 15 of these participants were tested in a 
control experiment (described below): these included 8 participants from the main 
experiment, 2 from the first replication, and one who participated in both the main 
experiment and the second replication. Forty-one participants were right-handed (based 
on the Edinburgh Handedness Inventory; Oldfield, 1971), and the remaining four left-
handed participants had a left-lateralized language network (for motivation to include 
left-handers in cognitive neuroscience research, see Willems et al., 2014). All participants 
were native English speakers and gave informed consent in accordance with the 
requirements of MIT’s Committee on the Use of Humans as Experimental Subjects 
(COUHES). 
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Design, stimuli and procedure 
Language localizer task. The task used to localize the language network is described in 
detail in Fedorenko et al. (2010). Briefly, we used a reading task contrasting sentences 
and lists of unconnected, pronounceable nonwords (Figure 1a) in a standard, 
deterministic blocked design with a counterbalanced order across runs (for timing 
parameters, see Table 1). Stimuli were presented one word / nonword at a time. For the 
first ten participants only, each trial ended with a memory probe and they had to indicate, 
via a button press, whether or not that probe had appeared in the preceding sequence of 
words / nonwords. The remaining participants instead read the materials passively (we 
included a button-pressing task at the end of each trial, to help participants remain alert). 
Importantly, this localizer has been shown to generalize across task manipulations: the 
sentences > nonwords contrast robustly activates the fronto-temporal language network 
regardless of the task (Fedorenko et al., 2010). The regions identified by this contrast 
engage in a broad range of linguistic processes including (but not limited to) lexico-
semantic processes and combinatorial syntactic and semantic processes (Fedorenko et al., 
2012b; Blank et al., 2016; Fedorenko et al., 2016; Fedorenko et al., 2017). Moreover, this 
localizer identifies the same regions that are localized with a broader contrast, between 
recorded natural speech and its acoustically-degraded version (Scott et al., 2016). 

Table 1. Timing parameters for the different versions of the language localizer task. 

 Version 
 A B C 
Number of participants 35 5 5 
Task: Passive Reading or Memory? PR M M 
Words / nonwords per trial 12 12 12 
Trial duration (ms) 6,000 6,000 6,000 
   Fixation 100 --- --- 
   Presentation of each word / nonword 450 350 350 
   Fixation 500 300 300 
   Memory probe --- 1,000 1,000 
   Fixation --- 500 500 
Trials per block 3 3 3 
Block duration (s) 18 18 18 
Blocks per condition (per run) 8 8 6 
Conditions Sentences 

Nonwords 
Sentences 
Nonwords 

Sentences 
Nonwords 
Word-lists1 

Fixation block duration (s) 14 18 18 
Number of fixation blocks 5 5 4 
Total run time (s) 358 378 396 
Number of runs 2 2 2-3 

1 Used for the purposes of another experiment; see (Fedorenko et al., 2010) 
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 MD localizer task. Regions of the MD network were localized using a spatial 
working-memory task contrasting a hard version with an easy version (Figure 1b). On 
each trial (8s), participants saw a 3×4 grid and kept track of eight (hard version) or four 
(easy version) randomly generated locations that were sequentially flashed two at a time 
or one at a time, respectively (1s per flash). Then, participants indicated their memory for 
these locations in a two-alternative, forced-choice paradigm via a button press (3s total). 
Feedback was immediately provided upon choice (or lack thereof) (250ms). Hard and 
easy conditions were presented in a standard blocked design (4 trials in a 32s block, 6 
blocks per condition per run) with a counterbalanced order across runs. Each run included 
4 blocks of fixation (16s each) and lasted a total of 448s. Thirty-nine participants 
completed 1-2 runs of the localizer. The remaining six participants either provided poor-
quality data (5 participants) or were not run on this task (1 participant). For this latter 
group, MD regions were localized with data from the language localizer task, using the 
(reverse) nonwords > sentences contrast. Both the hard > easy contrast and the nonwords 
> sentences contrast have been previously demonstrated to robustly and reliably identify 
the MD network (Fedorenko et al., 2013) (these participants did not differ from the rest 
of the sample in the dependent variables; see Table 2a). 
 Story comprehension task. In the main experiment, each subject listened to 1-4 
stories (one story: n=7; two: n=3; three: n=2; four: n=7; duration: 270s-364s) over 
scanner-safe headphones (Sensimetrics, Malden, MA). Stories were constructed based on 
publicly available fairy tales and short stories: 

(i) “The Legend of the Bradford Boar” (by E. H. Hopkinson; unedited version: 
www.make4fun.com/stories/British-short-story/3917-The-Legend-of-the-Bradford-
Boar-by-E-H-Hopkinson) 

(ii)  “Aqua; or the Water Baby” (by Kate Douglas Wiggin; unedited version: 
fullreads.com/literature/aqua-or-the-water-baby/) 

(iii) “The King of the Birds” (by The Brothers Grimm; unedited version: 
www.apples4theteacher.com/holidays/bird-day/short-stories/the-king-of-the-
birds.html) 

(iv) “Elvis Died at the Florida Barber College” (by Roger Dean Kiser; unedited version: 
www.eastoftheweb.com/short-stories/UBooks/ElvDie.shtml).  

These stories were edited to include a variety of linguistic phenomena that have been 
shown to increase processing difficulty in numerous prior behavioral sentence processing 
studies and which recruit the MD network (Figure 1c; see also Supplementary Materials). 
As a result of these edits, comprehension difficulty was robustly modulated across each 
story. Namely, self-paced reading times in a separate sample (n=181 participants) were 
reliably predicted by measures of linguistic complexity (Shain et al., 2016). Moreover, in 
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these stories, some measures of complexity influenced online behavior more robustly 
than in studies that have used unedited texts, plausibly because the relevant linguistic 
phenomena do not naturally occur with sufficiently high frequency (Collins, 1996; 
Roland et al., 2007; Futrell et al., 2015). Further, even though the stories in the current 
experiments were presented via the auditory rather than visual modality, we still expect 
them to successfully modulate processing difficulty because reading-time effects 
generalize to on-line listening (Ferreira et al., 1996; Waters and Caplan, 2001) (see also 
Table 2b for evidence that our neuroimaging results generalize to visual story 
presentation). 

 
Figure 1. Experimental tasks. (a) The reading task used to localize language regions, based on the critical 
contrast sentences > nonwords. (b) The spatial working-memory task used to localize MD regions, based 
on the critical contrast hard > easy. (c) An excerpt from a story used in the main comprehension 
experiment. Linguistic phenomena that increase processing difficulty and have been shown to recruit the 
MD network, but are naturally infrequent, were edited into the text. These include non-local syntactic 
dependencies (green; words in this relation have subscripts with the same number but different letters); 
temporary ambiguity (purple), where a likely initial parse is later revealed to be wrong; and low-frequency 
words (brown). 

In the first replication, participants listened to stories (i) and (iii) used in the main 
experiment (these data were originally collected for the purpose of a separate experiment; 
participants also listened to the other two stories, but performed a simultaneous, unrelated 
task during those trials). In the second replication, participants listened to an 
autobiographical story (“Pie-man,” told by Jim O’Grady) recorded at a live storytelling 
event (“The Moth” storytelling event, NYC). This story (duration: 420s) did not undergo 
linguistic editing and was thus even more naturalistic than the previous stories. Each 
story started and ended with 16s seconds of fixation (and music, for the Pie-man story) 
that were not analyzed. 

To test the reliability of signal time-courses in the language and MD networks, 
participants in the control experiment listened to the same stories twice, either within the 
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same scanning session (approximately one hour apart, n=7) or in separate sessions (6.5-
21.5 months apart, n=8) (4 participants listened to the same story twice within the same 
session and then, once more, in a separate session). 

After each story, participants answered 6-12 comprehension questions that 
required attentive listening (i.e., could not have been answered correctly based on 
common knowledge). For the main experiment and the first replication, participants 
answered two-alternative forced-choice (2AFC) questions via a button press while in the 
scanner. For the second replication, participants filled in a 4AFC questionnaire after the 
scanning session. For eight participants, answers to these questions were not recorded due 
to equipment malfunction (these participants did not differ from the rest of the sample in 
the dependent variables; see table 2a). The remaining 37 participants demonstrated good 
comprehension, with a negatively skewed accuracy distribution (mode=100%, 
median=87.5%, semi-interquartile range=12.85%). 

Data acquisition and preprocessing 
Data acquisition. Whole-brain structural and functional data were collected on a whole-
body 3 Tesla Siemens Trio scanner with a 32-channel head. T1-weighted structural 
images were collected in 176 axial slices with 1mm isotropic voxels (repetition time (TR) 
= 2,530ms; echo time (TE) = 3.48ms). Functional, blood oxygenation level-dependent 
(BOLD) data were acquired using an EPI sequence with a 90o flip angle and using 
GRAPPA with an acceleration factor of 2; the following parameters were used: thirty-one 
4mm thick near-axial slices acquired in an interleaved order (with 10% distance factor), 
with an in-plane resolution of 2.1mm × 2.1mm, FoV in the phase encoding (A >> P) 
direction 200mm and matrix size 96mm × 96mm, TR = 2000ms and TE = 30ms. The first 
10s of each run were excluded to allow for steady state magnetization. 

Spatial preprocessing. Data preprocessing was carried out with SPM5 (using 
default parameters, unless specified otherwise) and supporting, custom MATLAB scripts. 
Preprocessing of anatomical data included normalization into a common space (Montreal 
Neurological Institute (MNI) template), resampling into 2mm isotropic voxels, and 
segmentation into probabilistic maps of the gray matter, white matter (WM) and 
cerebrospinal fluid (CSF). Preprocessing of functional data included motion correction 
(realignment to the mean image using 2nd-degree b-spline interpolation), normalization 
(estimated for the mean image using trilinear interpolation), resampling into 2mm 
isotropic voxels, smoothing with a 4mm FWHM Gaussian filter and high-pass filtering at 
200s. 

Temporal preprocessing. Additional preprocessing of data from the story 
comprehension runs was carried out using the CONN toolbox (Whitfield-Gabrieli and 
Nieto-Castanon, 2012) with default parameters, unless specified otherwise. Five temporal 
principal components of the BOLD signal time-courses extracted from the WM were 
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regressed out of each voxel’s time-course; signal originating in the CSF was similarly 
regressed out. Six principal components of the six motion parameters estimated during 
offline motion correction were also regressed out, as well as their first time derivative. 
Next, the residual signal was bandpass filtered (0.008–0.09 Hz) to preserve only low-
frequency signal fluctuations (Cordes et al., 2001). This filtering did not influence the 
results reported below. 

Participant-specific functional localization of language and MD networks 
Modeling localizer data. For each localizer task, a standard mass univariate analysis was 
performed in SPM5 whereby a general linear model estimated the effect size of each 
condition in each experimental run. These effects were each modeled with a boxcar 
function (representing entire blocks) convolved with the canonical Hemodynamic 
Response Function (HRF). The model also included first-order temporal derivatives of 
these effects, as well as nuisance regressors representing entire experimental runs and 
offline-estimated motion parameters. The obtained beta weights were then used to 
compute the functional contrast of interest: for the language localizer, sentences > 
nonwords, and for the MD localizer, hard > easy (or nonwords > sentence for 6 
participants; see Design, stimuli and procedure). 
 Defining functional regions of interest (fROIs). Language and MD fROIs were 
defined based on functional contrast maps from the localizer experiments. These maps 
were first restricted to include only gray matter voxels by excluding voxels that were 
more likely to belong to either the white matter or the cerebrospinal fluid based on SPM’s 
probabilistic segmentation of the participant’s structural data. 

Then, fROIs in the language network were defined using group-constrained, 
participant-specific localization (Fedorenko et al., 2010). For each participant, the map of 
the sentences > nonwords contrast was intersected with binary masks that constrained the 
participant-specific language network to fall within areas where activations for this 
contrast are relatively likely across the population. These masks are based on a group-
level representation of the contrast obtained from a previous sample. We used 8 such 
masks in the left-hemisphere, including regions in the posterior, mid-posterior, mid-
anterior and anterior temporal lobe, as well as in the middle frontal gyrus, the inferior 
frontal gyrus and its orbital part (Figure 2a). These masks were mirror-projected onto the 
right-hemisphere to create 8 homologous masks (the masks cover significant parts of the 
cortex, so their mirrored version is likely to encompass the right-hemisphere homologue 
of the left-hemisphere language network, despite possible hemispheric asymmetries in 
their precise locations). In each of the resulting 16 masks, a participant-specific language 
fROI was defined as the top 10% of voxels with the highest contrast values. This top n% 
approach ensures that fROIs can be defined in every participant and that their sizes are 
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the same across participants, allowing for generalizable results (Nieto-Castañón and 
Fedorenko, 2012). 

fROIs in the MD network were similarly defined (using the “top 10%” approach) 
based on the hard > easy contrast in the spatial working-memory game. Here, instead of 
using binary masks based on group-level functional data, we used anatomical masks 
(Tzourio-Mazoyer et al., 2002; see Fedorenko et al., 2013; Blank et al., 2014). Nine 
masks were used in each hemisphere, including regions in the middle frontal gyrus and 
its orbital part, the opercular part of the inferior frontal gyrus, the precental gyrus, the 
posterior and inferior parts of the partietal lobe, the insula, and supplementary motor area 
and the cingulate cortex (Figure 2b). Based on prior findings (Dosenbach et al., 2006; 
Dosenbach et al., 2007; Nomura et al., 2010; Power et al., 2011; Mantini et al., 2013), we 
grouped the resulting fROIs into two functionally distinct sub-networks: fronto-parietal 
(first 5 masks) and cingulo-opercular (last 3 masks). Similar results were obtained when 
fROIs were instead grouped by hemisphere. (We note that functional masks derived for 
the MD network based on 197 participants significantly overlapped with the anatomical 
masks; we chose to use the anatomical masks in order to maintain comparability between 
our functional data and data from previous studies that have used these masks). 

Any voxels that were identified by both the language and the MD localizer were 
excluded from analysis (this procedure did not influence the results). Language fROIs 
had a median overlap of 0 voxels with the MD network (inter-quartile range: 2.1%). MD 
fROIs also had a median overlap of 0 voxels with the language network (inter-quartile 
range: 1.6%). The resulting fROIs had an average size of 247±77 voxels in the language 
network, and 212±111 voxels in the MD network. 

 Figure 2. Functional regions of the 
language and MD networks. (a) LH 
language regions in 3 individual participants 
are shown in dark red. These regions were 
localized with a reading task (see Figure 1a). 
These regions were constrained to fall within 
eight broad areas where activations for this 
task are common across the population, 
shown in light pink. These areas were 
defined based on group-level data from a 
previous sample (Fedorenko et al., 2010). (b) 
LH MD regions of the same 3 participants 
are shown in dark blue. These regions were 
localized with a spatial working-memory 
task (see Figure 1b). These regions were 
constrained to fall within nine broad areas 
where activations for this localizer are 
common across the population, shown in 
light blue. These areas were anatomically 
defined (Fedorenko et al., 2013). Apparent 

overlap between language and MD fROIs is illusory and due to projection onto the cortical surface. 
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Critical analysis: inter-subject correlations (ISCs) 
Computing ISCs. For each participant and fROI, BOLD signal time-courses recorded 
during story comprehension were extracted from each voxel beginning 6 seconds 
following the onset of the story (to exclude an initial rise in the hemodynamic response 
relative to fixation, which could increase ISCs). These time-courses were first temporally 
z-scored in each voxel and then averaged across voxels. Next, to ensure that the resulting 
signal time-course reflected the tracking of high-level linguistic information and not low-
level sensory information, we removed from it any variance that was explained by 
activity in the auditory cortex. Specifically, the signal was regressed against signals 
extracted from anatomically defined regions around the postero-medial and antero-lateral 
sections of Heschl’s gyrus bilaterally (Tzourio-Mazoyer et al., 2002) (this regression did 
not affect the pattern of results reported here; see Table 2c). Finally, for each story, 
participant, and fROI we computed an ISC value, namely, Pearson’s moment correlation 
coefficient between the residual time-course and the corresponding average residual time-
course across the remaining participants (Lerner et al., 2011). ISCs were Fisher-
transformed prior to statistical testing in order to improve normality (Silver and Dunlap, 
1987). 

Statistical testing. In each fROI, ISCs were then tested for significance against an 
empirical null distribution based on 1,000 simulated signal time-courses that were 
generated by phase-randomization of the original data (Theiler et al., 1992). Namely, we 
generated null distributions for individual participants, fit each distribution with a 
Gaussian, and analytically combined the resulting parameters across participants. The 
true ISCs, also averaged across participants, were then z-scored relative to these empirical 
parameters and converted to one-tailed p-values. 

Critically, ISCs were compared across networks using a linear, mixed-effects 
regression (Barr et al., 2013) implemented with the “lme4” package in R. In each 
experiment, ISCs across all fROIs, participants and stories were modeled with a fixed 
effect of fROI and random intercepts for participant and story. The fixed effect estimates 
were combined across fROIs within each functional network (LH language, RH 
language, fronto-parietal MD, and cingulo-opercular MD) and were pairwise compared to 
each other using the “multcomp” package in R. Hypotheses were two-tailed for the first 
experiment and one-tailed for the replications and control analyses. In each experiment, 
p-values are reported following False Discovery Rate (FDR) correction for multiple 
comparisons (Benjamini and Yekutieli, 2001). 

For all findings based on linear, mixed-effects regression analyses, similar results 
were obtained when data for each participant were first averaged across fROIs within 
each network and pairwise network comparisons (across participants) were then tested 
using exact permutation tests (Gill, 2007). Therefore, our results are independent of 
assumptions regarding data normality. 
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Control analysis: within-subject correlations (WSCs) 
Computing WSCs. For each participant who listened to the same story on two separate 
trials, we computed a within-subject correlation (WSC) value for each fROI by 
correlating the signal time-courses across the two trials. The resulting correlations were 
Fisher-transformed. 

Note that unlike ISCs, which compare the signal from one participant to an 
average signal across all other participants, WSCs compare two single-trial signals. 
Consequently, the two measures are not directly comparable: despite the fact that WSCs 
are not contaminated by inter-individual variability and should thus be higher than ISCs, 
ISCs will de facto be higher because signal averaging removes a lot of noise from the 
data. In order to make ISCs comparable to WSCs we therefore computed “pairwise 
ISCs”: for each participant and fROI, we correlated the signal time-course separately 
with each of the corresponding, individual signal time-courses of the other participants, 
Fisher-transformed the resulting correlation values, and averaged them. 

Statistical tests. Prior to these analyses, we tested whether WSCs in the within-
session and across-session datasets differed from each other. To this end, we performed a 
linear, mixed-effects regression analysis that modeled individual WSCs for all fROIs, 
participants and stories with a fixed effect of the interaction between fROI and dataset, 
random intercepts for participant and story, and a random slope for dataset varying by 
participant (this model was chosen because a fuller model failed to converge). Pairwise 
contrasts tested whether WSCs in each network were stronger across sessions than within 
a session. These two groups did not differ from each other in their network WSCs. 
Therefore, these two sets of data were modeled together in the critical analyses: here, 
WSCs were compared across networks using the same model that was used to test ISCs, 
modeling individual WSCs for all fROIs, participants and stories 

A similar approach was used for comparing WSCs to pairwise-ISCs. Here, 
contrasts tested whether pairwise differences between networks observed with WSCs 
were distinct from those observed with ISCs. 

Results 

Correlations of network activity across individuals listening to the same 
story 
ISC data are presented in Figure 3. Across stories in the main experiment, the left-
hemisphere (LH) language network showed the highest ISCs (Fisher transformed 
r=0.280), stronger than ISCs in the right-hemisphere (RH) language network (r=0.210; 
Cohen’s d=0.73, z=6.25, p<10-9), the fronto-parietal MD (MDfp) network (r=0.136; 
d=1.07, z=14.12, p≈0) and the cingulo-opercular MD (MDco) network (r=0.117; d=1.32, 
z=13.51, p≈0). The RH language network, in turn, showed higher ISCs than both the 
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MDfp network (d=1.07, z=7.27, p<10-11) and the MDco network (d=1.04, z=7.72, p<10-

13). The two MD networks did not differ from each other (d=1.80, z=1.70, p=0.218). The 
difference between the LH language network and the two MD networks was also 
observed for each story separately. 

In both replication experiments, we again found that ISCs in the LH language 
network (replication 1: r=0.252; replication 2: r=0.303) were stronger than in the RH 
language network (r=0.172, d=0.90, z=5.62, p<10-7; r=0.250, d=0.77, z=3.35, p=0.001), 
the MDfp network (r=0.147, d=1.06, z=8.09, p<10-15; r=0.160, d=1.29, z=9.95, p≈0) and 
the MDco network (r=0.114, d=1.33, z=8.95, p≈0; r=0.163, d=1.34, z=8.20, p<10-15). 
ISCs in the RH language network were somewhat stronger than ISCs in the MDfp 
network (d=0.46, z=1.93, p=0.066; d=0.82, z=6.28, p<10-9) and stronger than ISCs in the 
MDco network (d=0.70, z=3.74, p<0.001; d=0.83, z=5.10, p<10-7). The two latter 
networks reliably differed from each other only in the first replication (d=0.53, z=2.28, 
p<0.033). 

Across these three experiments, we find that signals in the language and MD 
networks differ in their ISCs and, thus, in the percentage of variance they share across 
individuals. To further interpret these findings we computed an “upper bound” on ISCs, 
reflecting the highest values that could be expected in our measurements; namely, we 
computed ISCs in low-level auditory regions (see Materials and Methods) that track 
sensory input very closely (Lerner et al., 2011). Combining data across experiments, 
these auditory ISCs are estimated at r=0.450. Thus, signals in the LH language network 
(r=0.287) share 40.8% of this “maximum shareable variance” across individuals; signals 
in the RH language network (r=0.216) share 23%, whereas signals in the MDfp network 
(r=0.153) and MDco network (r=0.134) share only 11.6% and 8.8%, respectively. 
Importantly, however, almost all ISCs – even those in MD regions – are significantly 
greater than expected by chance (Figure 3). Therefore, even domain-general MD regions 
track stories to a non-trivial extent in spite of doing so substantially and reliably more 
weakly than the language regions. 

Is it possible that other sub-regions of the MD network, not identified by our 
localizer, track the stories more strongly? To test this possibility, we computed 
traditional, voxel-based ISCs  (based on anatomical alignment of individual brains) and 
identified, within each mask of the MD network, the voxels that showed the highest ISCs 
during one story. These voxels served as “alternative fROIs”, and we estimated the 
strength of their ISCs using independent data from another story. The resulting ISCs were 
weaker than those reported above (Table 3), and the same finding held in “alternative 
fROIs” identified in the language network. Critically, compared to the original fROIs, the 
alternative fROIs responded less robustly to the language and MD localizers (responses 
in the original fROIs were obtained from runs of the localizers that were held-out during 
fROI definition). For instance, alternative fROIs in the MDco network did not respond 
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differentially to the hard and easy versions of the spatial working memory task; and 
alternative fROIs in the RH language network did not respond differentially to sentences 
and nonwords (Table 3). These decreased functional signatures are likely caused by inter-
individual variability in the precise anatomical locations of the language and MD regions, 
such that a given voxel might belong to a certain network in some participants but not 
others. Therefore, with no means for establishing functional (rather than anatomical) 
correspondence across individual brains in areas that lie outside of our localizer-defined 
fROIs, we do not find evidence for close linguistic tracking of input anywhere in the MD 
network.  

 

Figure 3. ISCs during story comprehension in the language and MD networks. (a) ISC (Fisher-
transformed) for each brain region. Black dots are individual data points. Thick, colored horizontal lines 
show the average ISCs across participants. Gray rectangles show 95% confidence intervals of these average 
ISCs (empirically derived using 1,000 permutations). Colored vertical curves show Gaussian fits to 
empirical null distributions against which average ISCs can be tested (ns, non-significant results at a 
threshold of 0.05; FDR-corrected). Regions are grouped into 4 functional networks, indicated by color. 
Across experiments, a replicable pattern emerges where ISCs are stronger in language regions (red) than in 
MD regions (blue). (b) Mean ISCs within each functional network, same conventions as in (a). Black, 
horizontal lines connect pairs of networks that significantly differ from one another (in each pair, the left 
ISC is greater than the right ISCs and all ISCs that are further to the right). L – left; R – right; Post – 
posterior; Temp – temporal; Mid – middle; Ant – anterior; Inf – inferior; Orb – orbital; Op – opercular; Sup 
– superior; Supp – supplementary. 
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Correlations of network activity within individuals listening to a story twice 
The relatively low ISCs in MD regions could be interpreted in two ways: on the one 
hand, MD regions might closely track linguistic input but do so in an idiosyncratic 
fashion across individuals. For example, if different people find different sections of the 
story difficult to comprehend, they might each recruit their MD network at respectively 
different times. In this case, MD activity time-courses would be stimulus-locked for each 
individual but would differ across individuals. Alternatively, activity in the MD regions 
might not be closely linked to the linguistic input at all. These two interpretations can be 
distinguished by correlating signal time-courses within a given individual who is 
listening to the same story twice (Hasson et al., 2009): if MD activity tracks the story in 
an idiosyncratic manner across individuals, then it should still be similar across two 
instances of the same story within an individual; however, if MD activity does not track 
the story, then it should not exhibit reliable time-courses even within an individual. 

Therefore, we scanned several participants listening to stories twice and computed 
within-subject correlations (WSCs). In line with our findings above, WSCs in the LH 
language network (r=0.160) were stronger than in the RH language network (r=0.129; 
d=0.33, z=3.66, p<0.001), the MDfp network (r=0.083; d=0.83, z=8.5, p≈0) and the 
MDco network (r=0.097; d=1.25, z=6.05, p<10-8). WSCs in the RH language network 
were stronger than those in the MDfp network (d=0.30, z=4.48, p<10-4) and the MDco 
network (d=0.32, z=2.66, p=0.012), but the two latter networks did not differ (Figure 4a). 
When we directly contrasted WSCs to ISCs (the latter re-computed as “pairwise-ISCs” to 
be directly comparable to the former; see Materials and Methods) we found that the 
patterns of results were indistinguishable across the two measures (for all comparisons 
between WSCs and pairwise-ISCs, p>0.52) (Figure 4b). Therefore, even across story 
repetitions within a given individual, MD network activity is significantly less reliable 
than language network activity, indicating that the former, but not the latter, tracks 
linguistic input closely. 

 Figure 4. WSCs (left) and pairwise-ISCs (right) during 
story comprehension in the language and MD networks. 
Same conventions as in Figure 3. 
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Table 2. The patterns of story tracking across the language and MD networks generalize across changes in 
the experimental setup and analysis stream1,2 

(a) Testing whether ISCs are modulated by task characteristics3 

 
Critical 
dataset 

 
Dataset 

size 

 
Stories 

 
Comparison  

dataset 

ISC ~ Network×Dataset + 
Network + Dataset +  
(1 | ID) + (1 | Story) 

χ2 p 
Participants not 
administered a 

comprehension test  

 
n = 8 

 
(i) 
(ii) 
(iii) 
(iv) 

 

 
 

For each participant: 
other participants in 
the same experiment 

Interaction: χ2
(3)=2.01 

  
0.57 

Dataset: χ2
(1)=1.44 

 
0.23 

Participants with MD 
fROIs defined as 

nonwords > sentences 

 
n = 6 

Interaction: χ2
(3)=0.26  

 
0.97 

Dataset: χ2
(3)=0.23 0.63 

(b) Visual presentation of the stories4,5 (word-by-word, timing matched to the auditory version) 

 DV ~ fROI + (1 | ID) + (1 | Story) 
 DV: Inter-subject correlations  DV: Within-subject correlations 
 ISC Z p WSC Z p 
Language LH 0.24 7.57 <10-12 0.20 5.58 <10-6 
Language RH 0.20 6.16 <10-8 0.17 4.77 <10-5 
MDfp 0.15 4.77 <10-5 0.10 3.01 0.006 
MDco 0.08 2.58 0.015 0.03 0.85 0.58 
Language LH > RH  2.59 0.016  1.13 0.42 
Language LH > MDfp  5.87 <10-7  4.12 0.0001 
Language LH > MDco  8.39 ≈0  6.05 <10-7 
Language RH > MDfp  3.04 0.004  2.88 0.008 
Language RH > MDco  5.99 <10-8  5.01 <10-5 
MDfp  > MDco  3.70 0.0005  2.78 0.01 

(c) ISCs computed without regressing out time-series from the auditory cortex6 

              Critical data5 Critical data vs. original data7 
 ISC ~ fROI +  

(1 | ID) + (1 | Story) 
  ISC ~ fROI + fROI×Dataset + 

Dataset + (1 | ID) + (1 | Story) 
 ISC Z p ISCoriginal Zdatasets p 
Language LH 0.33 10.96 ≈0 0.28 4.90 <10-4 
Language RH 0.24 7.91 <10-14 0.21 2.83 0.017 
MDfp 0.14 4.85 <10-5 0.13 1.18 0.44 
MDco 0.09 3.84 0.0002 0.12 0.16 1 
Language LH > RH  8.31 ≈0  1.46 0.35 
Language LH > MDfp  18.41 ≈0  3.05 0.011 
Language LH > MDco  17.85 ≈0  3.08 0.015 
Language RH > MDfp  9.31 ≈0  1.45 0.31 
Language RH > MDco  10.16 ≈0  1.73 0.24 
MDfp  > MDco  2.47 0.02  0.55 0.95 
1Within each sub-table and column, p-values are FDR-corrected for multiple comparisons. 
2All results are from linear, mixed-effect regressions with models as specified (ID = participant). 
3 For each participant in the critical dataset, ISCs were computed relative to average data across participants 
in the respective comparison dataset. ISCs were then averaged across fROIs within each network. 

4 Based on stories (ii) and (iv). Sample size: n=11 for ISCs, n=7 for WSCs.  
5 Unlike the main experiment, here we test ISCs and WSCs against zero (using a Z statistic) and not against 
an empirical null distribution. These two tests provide similar results. 

6 Data from the main experiment, based on stories (i), (ii), (iii), (iv). Sample size: n=19 participants. 
7 Here, ISCs are reported for the original data; the Z statistic compares them to ISCs in the critical dataset. 
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Table 3. Functional profiles of “alternative” fROIs defined as the top 10% of voxels in each mask showing 
the highest ISCs (computed based on anatomical alignment across individual brains)1 

 Within dataset (new / original): DV ~ fROI + (1 | ID) 
Across datasets: DV ~ fROI + Dataset + fROI×Dataset + (1  + Dataset | ID) 

  Language LH 
 

Language RH  MDfp  MDco 
DV new original 

 

new original  new original  new original 
 
 

ISC2 
0.22 0.28 

 

0.18 0.21  0.11 0.15  0.09 0.11 
Z=16.2 Z=13.4 

 

Z=13.5 Z=10.1  Z=8.2 Z=7.6  Z=6.3 Z=5.0 
p≈0 p≈0 

 

p≈0 p≈0  p<10-15 p<10-13  p<10-9 <10-5 
Z=4.78, p<10-5 

 

Z=2.38, p=0.03  Z=4.05, p<10-4  Z=1.5, p=0.21 

Language 
localizer3: 

sentences  > 
nonwords 

0.17 0.63 
 

-0.01 0.21  -0.24 -0.38  -0.03 -0.13 
Z=4.4 Z=12.0 

 

Z=-0.4 Z=4.0  Z=-7.0 Z=-7.7  Z=-0.7 Z=-2.4 
p<10-4 p≈0 

 

p=1 p=10-4  p<10-11 p<10-12  p=0.77 p=0.03 
Z=11.9, p≈0 

 

Z=5.9, p<10-7  Z=-3.9, p<10-3  Z=-2.3, p=0.04 

 
MD localizer3: 

hard > easy 

-0.03 -0.12 
 

0.06 0.01  0.37 0.95  0.04 0.52 
Z=-0.4 Z=-1.4 

 

Z=0.8 Z=0.09  Z=5.22 Z=10.5  Z=0.5 Z=5.3 
p=1 p=0.48 

 

p=0.97 p=1  p<10-6 p≈0  p=1 p<10-6 
Z=1.4, p=0.42 

 

Z=0.7, p=0.94  Z=8.4, p≈0  Z=5.9, p<10-7 

1 We compare the data of the first replication reported in the manuscript (“original” dataset) to data derived 
from the “alternative” fROIs (“new” dataset). The first replication was chosen because it had a sufficient 
number of participants (n=13) who listened to the same two stories, namely, (i) and (iii).  

2 For the new dataset, one story was used for defining “alternative” fROIs, and the held out story was used 
to estimate their ISCs independently of the criteria used to define them. The process was then repeated 
with the two stories in reversed roles, and the resulting two estimates for each fROI were averaged.  

3 For language (MD) fROIs in the original dataset, one run of the language (MD) localizer was used to 
define fROIs and the second run was then used to estimate their responses independently of the criteria 
used to define them. The process was then repeated with the two runs in reversed roles, and the resulting 
two estimates for each fROI were averaged. 

Discussion 
During story comprehension, a robust and reliable difference in neural activity 
distinguished between the language network and the MD network. The language 
network, particularly in the LH, showed relatively little individual variation in activity 
(high ISCs) due to close tracking of the story (high WSCs). In contrast, MD network 
activity was more idiosyncratic across individuals (low ISCs), showing weaker tracking 
of the story (low WSCs). These findings suggest a novel typology of mental processes 
contributing to language comprehension: it is not only a question of which linguistic 
features are tracked by different mechanisms, but of whether (and to what extent) these 
mechanisms track linguistic input. Thus, some processes implemented in the language 
network are stimulus-related and consistent across individuals; other processes, 
implemented in the MD network, are less tightly coupled to the input and appear more 
idiosyncratic. 
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This distinction importantly constrains cognitive models of language processing: 
it narrows the space of domain-general processes that can be implemented in the MD 
network to those processes that do not require continuous access to the input. This 
conclusion is inconsistent with the assumption of close input tracking, which implicitly 
underlies existing interpretations of MD network activity in task-based neuroimaging 
studies of comprehension. It might also be inconsistent with current psycholinguistic 
models describing how domain-general working-memory resources contribute to 
incremental, moment-to-moment language processing along with language-specific 
knowledge (for a review, see: Levy, 2013). 
 Characterizing the respective contributions of the language and MD networks to 
comprehension was methodologically possible due to the localization of these networks 
using functional contrasts, individually for each participant. This method accounts for 
inter-individual variability in the mapping of function onto cortical anatomy (Jones and 
Powell, 1970; Gloor, 1997; Amunts et al., 1999; Tomaiuolo et al., 1999; Wise et al., 
2001; Chein et al., 2002), conferring high functional resolution (Nieto-Castañón and 
Fedorenko, 2012) that is unobtainable if regions of interest are instead defined based on 
anatomical criteria or group analyses of functional data (Juch et al., 2005; Poldrack, 
2006; Saxe et al., 2006; Fischl et al., 2008; Tahmasebi et al., 2011; Frost and Goebel, 
2012). Consequently, single-participant functional localization provides a principled way 
of relating our ISC data to known functional divisions in the cortex. This method thus 
augments the ISC approach, allowing us to provide a novel key characterization of the 
functional topology of ISCs based on the distinction between the language and MD 
networks. 
 Within this topology, the role of MD regions in language comprehension is 
particularly interesting. Whereas task-based studies have demonstrated that MD regions 
scale their activity with increasing comprehension difficulty in numerous contexts 
(Stromswold et al., 1996; Stowe et al., 1998; Caplan et al., 1999; Fiez et al., 1999; 
Fiebach et al., 2002; Chee et al., 2003; Constable et al., 2004; Rodd et al., 2005; Chen et 
al., 2006; Nakic et al., 2006; Nieuwland et al., 2007; Novais-Santos et al., 2007; Hauk et 
al., 2008; Yarkoni et al., 2008; Carreiras et al., 2009; January et al., 2009; Peelle et al., 
2009; Ye and Zhou, 2009; Barde et al., 2012; McMillan et al., 2012; McMillan et al., 
2013), we demonstrate that they track natural language relatively weakly. One might 
suggest that the domain-general operations of the MD network are only recruited when 
linguistic labor is sufficiently high and burdens the language network beyond its 
capacities; as long as this threshold is not crossed, the working-memory resources that aid 
in comprehension might be domain-specific and implemented in the language network. 
However, we find such an interpretation unlikely given that our story stimuli contain 
frequent occurrences of challenging linguistic phenomena that correlate with behavioral 
measures of online comprehension difficulty (Shain et al., 2016). 
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Our finding that the MD network tracks linguistic stimuli relatively weakly also 
appears to disagree with prior evidence that this network tracks other naturalistic stimuli 
that are not purely linguistic. Specifically, in audiovisual movies, experiential features 
like “suspense” modulate MD activity similarly across individuals (Naci et al., 2014), 
possibly by influencing the frequency of attentional disengagement (Nakano et al., 2013). 
Does the domain-general MD network play a different role in language comprehension 
compared to its role in processing other naturalistic stimuli? 

Perhaps MD regions are biased towards visual information (or audio-visual 
integration) in movies compared to the auditory information of stories (Michalka et al., 
2015; Braga et al., 2016). Alternatively, MD regions may track both movies and stories, 
but fluctuations in MD activity during movie viewing could simply be slower, and thus 
more reliably measured, compared to the fast fluctuations during story comprehension. 
Therefore, evidence of stimulus tracking by MD regions during story comprehension 
might only be evident at high frequencies that cannot be measured with the temporally 
slow BOLD signal of fMRI. Still, we note that the temporal resolution of fMRI was 
sufficient to capture story tracking in language regions, so the argument above only holds 
if the MD network tracks stories on a faster time-scale than the language network.  
Finally, activity in MD regions may reflect internal fluctuations in domain-general 
attention or “focus” (Norman and Shallice, 1986; Chun et al., 2011) that may co-vary 
with the emotional manipulations in movies (Williams et al., 2016) but be relatively 
independent of input processing difficulty during natural language comprehension. This 
account is also consistent with previous findings of greater MD activity with increased 
linguistic demands in experimentally designed tasks, insofar as such tasks control the 
focus of participants more explicitly than naturalistic stories. 

To conclude, our study synergistically combines task-based functional 
localization in individual participants and a naturalistic cognition paradigm for comparing 
brain activity across participants to characterize the distinct contributions of the language 
network and MD network to story comprehension. Whereas activity in the language 
network is similar across individuals and closely tracks stories, activity in the MD 
network is more idiosyncratic and does not track linguistic input as closely. These 
findings suggest a novel distinction between different mechanisms that underlie language 
processing based on individual differences in their processing patterns and their coupling 
to the linguistic input. 
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