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Abstract 31 

The outcome of many diseases is commonly correlated with the immune response at the site 32 

of pathology. The ability to monitor the status of the immune system in situ provides a 33 

mechanistic understanding of disease progression, a prognostic assessment and a guide for 34 

therapeutic intervention. Global transcriptomic data can be deconvoluted to provide an 35 

indication of the cell types present and their activation state, but the gene signatures proposed 36 

to date are either disease-specific or have been derived from data generated from isolated cell 37 

populations. Here we describe an improved set of immune gene signatures, ImSig, derived 38 

based on their co-expression in blood and tissue datasets. ImSig includes validated lists of 39 

marker genes for the main immune cell types and a number of core pathways. When used in 40 

combination with network analysis, ImSig is an accurate and easy to use approach for 41 

monitoring immune phenotypes in transcriptomic data derived from clinical samples. 42 
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Introduction 51 

The differentiation and activation of immune cells is associated with changes in the 52 

expression of hundreds to thousands of genes (1, 2). Genes specifically expressed by a cell 53 

type or cells in a particular state of activation can be used as markers (3) to monitor immune 54 

cells in a disease environment, facilitate tailored therapies (4) and clinical stratification of 55 

diseases (4, 5). Several studies have identified immune cell markers to ‘deconvolute’ gene 56 

expression data. Some of the widely used methods (Table 1) include LLSR (6, 7), qprog (8), 57 

DSA (9), PERT (10), MMAD (11) and CIBERSORT (12). For a more detailed review of 58 

deconvolution methods read (13). Whilst the derivations differ, all these methods define their 59 

marker gene lists based on the comparison of gene expression data from isolated immune 60 

cells. Here we employ the principle of co-expression as the basis to derive cell-type specific 61 

immune signatures directly from large clinical transcriptomic datasets. This method exploits 62 

the fact that the mRNA abundance of genes expressed by a specific cell type will correlate 63 

with the number of those cells in a given sample. Between similar samples in a given dataset 64 

there are always subtle differences in their cellular composition due to innate variation (e.g. 65 

normal variation between individuals, disease severity or subtype etc.), as well as 66 

inconsistencies in sampling. Genes expressed by a particular cell type may therefore be 67 

identified based on their distinct co-expression profile without the need to physically isolate 68 

the cells. We have used this approach to identify robust immune cell type-specific gene 69 

expression signatures, known collectively as ImSig, derived from and validated on multiple 70 

independent datasets to ensure their wide applicability. We have benchmarked ImSig against 71 

other methods and shown it to out-perform them. We also provide an easy to use algorithm to 72 

identify the presence of different immune cell populations in any transcriptomics dataset. 73 

 74 
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Materials and Methods 76 

Selection of datasets 77 

The primary datasets used for deriving ImSig were identified from the Gene Expression 78 

Omnibus (National Centre for Biotechnology Information) or ArrayExpress (European 79 

Bioinformatics Institute) databases. Datasets from isolated immune cells were identified, and 80 

restricted to only those based on the Affymetrix Human Genome U133 Plus 2.0 Array with 81 

availability of raw data (.CEL) files. These included: B cells (germinal centre B cells, naïve B 82 

cells, memory B cells, IgM+IgD+CD27+ B cells, class switched B cells, IgM+IgD-CD27+ B 83 

cells); plasma B cells; monocytes; T cells (central memory T cells, effector memory T cells, 84 

naïve T cells, gamma-delta T cells, CD4- T cells, CD4+ T cells, CD8- T cells, CD8+ T cells); 85 

macrophages (resting and activated), neutrophils, NK cells and platelets (see Table S5 for 86 

details).  87 

A second group of datasets were identified for the purpose of refining and validating the final 88 

ImSig gene lists. They consisted of blood and tissue datasets, derived from a broad spectrum 89 

of diseases and were restricted to data generated on the Affymetrix U133 Plus 2.0 Array with 90 

available raw data (see Table S6 for a list of these data).  91 

Processing of microarray datasets 92 

Quality control (QC) of data from each dataset was performed using the ArrayQualityMetrics 93 

package in Bioconductor and scored on the basis of six quality metrics (31). Any array failing 94 

more than one metric was removed. Following QC, signal intensity were summarised and 95 

normalised using robust multi-array average (RMA) in R using the ‘oligo package’ (32).  96 

Data from isolated immune cell populations were merged and normalised as described above. 97 

In order to check that samples clustered according to cell type specific rather than study or 98 
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any other factor, the RMA normalised data was loaded into the network analysis tool Miru 99 

(Kajeka Ltd., Edinburgh, UK). Miru calculates a matrix of pairwise Pearson correlation 100 

coefficients (r) expression values between every pair of genes/samples in a dataset. Graph 101 

layout in-tool is performed using a modified Fast Multipole Multilevel Method (FMMM) 102 

(33) and the resulting network is rendered in a 3-D environment. Networks are composed of 103 

nodes (representing transcripts/samples) connected by weighted edges (representing 104 

correlation values). After loading the immune cell data a sample similarity network was then 105 

plotted at a correlation threshold of r > 0.83. All sample outliers i.e. samples that did not 106 

group with other samples of the sample type, were removed. The remaining 329 samples 107 

clustered based on cell type rather than study (Figure S4). For blood and tissue datasets, the 108 

data was collapsed to one probe-set per gene by choosing the probe-set with the highest 109 

variance across samples.  110 

Refinement of signatures (Cluster model algorithm) 111 

The quality-controlled datasets were loaded into the network analysis tool Miru. Within the 112 

tool, a correlation network was generated and clustered using the MCL algorithm (inflation 113 

value: 2.2). A proportion of the genes in each MCL cluster were replaced with random genes 114 

in increments of 2% from 0-100% of total genes. The percentage of genes from the original 115 

MCL cluster in this modified cluster was defined as Percentsimilar (percentage of genes with 116 

high similarity). The similarity of each gene to other members of the cluster or annotation is 117 

defined by the median value of its Pearson correlation coefficients to every other member 118 

within a cluster or annotation, and the median of this value from all genes within a cluster or 119 

annotation is referred to as Pearsongroup. The decrease in Pearsongroup with increasing 120 

replacements of MCL cluster by random genes was modelled as a sigmoid function of 121 

Percentsimilar using nonlinear least squares in R.  122 
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In the situation where the groups of genes were of the same signature (different cell type 123 

signatures derived from both blood and tissue) instead of modified MCL clusters, the 124 

Percentsimilar is unknown whilst Pearsongroup can be calculated. Therefore, inverse estimates of 125 

Percentsimilar using Pearsongroup were made using the R package “investr”. The upper and 126 

lower threshold of Pearsongroup, beyond which investr function cannot estimate the 127 

Percentsimilar, were noted and used as cut off for determining if genes will be discarded from 128 

the refined signature. 129 

In the second stage of the filtering process, signatures with a Pearsongroup 1) higher than upper 130 

threshold were left unchanged; 2) between upper and lower thresholds were reduced in size, 131 

using the model above to determine the number of genes to discard; 3) less than the lower 132 

threshold were considered to be absent from the dataset. This method of filtering would allow 133 

greater stability cross datasets, whilst retaining more flexibility with a more comprehensive 134 

list of genes with informative signature. We used the cluster model algorithm on eight blood 135 

and eight tissue datasets to refine the ImSig signature lists (Figure 2A) 136 

Derivation of ImSigblood 137 

The most differentially expressed genes (DEGs) for each isolated immune cell type was 138 

determined by calculating the average fold change for a particular cell type relative to the 139 

rest. The top 100 DEGs for each cell type were refined across eight blood datasets (Table S6) 140 

using the cluster model algorithm. The resultant sets of genes derived from each dataset were 141 

then compared, and the most overlapping set of genes were defined as the blood signature set, 142 

ImSigblood. 143 

Derivation of ImSigtissue 144 
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The same approach as of ImSigblood was not successful in defining a tissue specific ImSig, 145 

since the top 100 DEGs for each cell type were poorly co-expressed in complex tissue 146 

datasets. This is likely due to the fact that these 100 DEGs were derived from isolated cells, 147 

some of which were cultured in vitro, where their phenotype more closely resembled that 148 

their counterparts in blood. We therefore decided that the best approach was to use a 149 

correlation based approach. The expression data of isolated immune cells was loaded into the 150 

network analysis tool Miru. A large and highly structured network graph was constructed 151 

using a correlation threshold of r > 0.8. The network was then clustered into groups of genes 152 

sharing similar profiles using the Markov Clustering (MCL) algorithm with an MCL inflation 153 

value set to 2.2 (34). These clusters were then extensively explored to find genes that were 154 

distinctively expressed in only one cell type in contrast to the rest. These genes were then 155 

explored in the context of four tissue datasets as a class set and network graphs constructed 156 

and clustered as described earlier. For each dataset, clusters identified as being specific 157 

(based on the added class set) to a particular cell type were isolated. The resultant set of genes 158 

were compared to each other and the most common set of genes were refined in another 8 159 

tissue datasets (Table S6) using the cluster model algorithm to define the ImSigtissue.  160 

Derivation of pathway signatures 161 

Whilst analysing the clusters and refining them to be cell type-specific, we also identified a 162 

number of other clusters that were consistently co-expressed across different datasets. With 163 

the help of GO Annotation and known marker genes, we were also able to define these 164 

clusters as cell cycle-associated, interferon stimulated and protein translational activity. These 165 

clusters were further refined in blood and tissue datasets as describe above using the cluster 166 

model algorithm. 167 

Validation of ImSig in mixed cell population datasets 168 
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ImSig was validated using additional independent datasets, including two blood (heart attack 169 

blood samples: GSE48060 and type I diabetes mellitus blood samples: GSE55098), two 170 

tissue (breast tumour tissue samples: GSE58812 and primary CNS tumour tissue samples) 171 

and an infection dataset (Chlamydia trachomatis infection tissue sample: GSE20436). All 172 

datasets were pre-processed as described above. A number of transcriptomic profiles derived 173 

from RNA-seq technology were also analysed by ImSig to ensure its wide applicability and 174 

lack of platform dependency, in particular RNA-seq data were downloaded from TCGA 175 

database.  176 

ImSig cluster scoring algorithm 177 

In order to facilitate the use of ImSig a scoring system was devised that supports the 178 

identification of any given signature without the need to perform network analysis. For any 179 

given transcriptomic dataset, the calculation of the ImSig scores is a two-step process where 180 

an initial score is first computed based on the following formula: 181 

 182 

Where r is the correlation cut-off and i is the cell type/pathway signature. 183 

Median correlation is calculated by computing the correlation values across samples for all 184 

possible pairs of genes within any given signature and then taking the median value. The 185 

standard deviation is calculated by computing the mean expression value of all genes within a 186 

signature and then calculating its standard deviation across samples. The maximum possible 187 

edges is calculated with [n*(n-1)]/2, where n is the number of genes in any given signature. 188 

The maximum possible nodes is the number of genes defining a particular ImSig signature. 189 
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The initial score is computed for all eight cell type clusters (B cells, T cells, monocytes, 190 

macrophages, NK cells, neutrophils, plasma cells, platelets) and three pathway clusters (cell 191 

division, protein translational and interferon response) using a range of Pearson correlation 192 

coefficient thresholds, from 0.50 to 0.99 at 0.01 intervals. The resulting matrix contains 50 193 

scores for each of the signature. At this point we set an ‘initial score threshold’ of 20 and 10 194 

for microarray and RNA-seq datasets, respectively (these were determined empirically, 195 

Figure 2B&C). Any value below this threshold is not regarded to be a genuine cluster due to 196 

a poor correlation between genes within the signature at the set r-value. We recommend these 197 

thresholds as they are based on observations from numerous datasets. Following this the final 198 

ImSig score is calculated for each cluster using the following formula. 199 

 200 

All data should be in log scale for calculating ImSig score. An R script is available for 201 

running ImSig scoring algorithm. The script can be downloaded here: 202 

www.github.com/systems-immunology-roslin-institute/ImSig. The final score (ImSig score) 203 

is a value between 0 and 1. After extensive evaluation, any value above 0.3 is regarded as 204 

evidence that the cell type/pathway signature is present in the dataset. 205 

Comparison with CIBERSORT: 206 

A blood and a tissue dataset were used for this purpose where there was some prior 207 

knowledge about the cell populations present and their relative abundance in sample sub-208 

groups. 209 

A blood dataset (SLE patients: GSE49454) was downloaded from GEO. The authors of this 210 

study had provided the cell counts along with the transcriptomics data in this file. Initially, 211 

the patients were ordered based on the cell count for each of the different cell types 212 
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independently (B cells, T cells, NK cells and neutrophils). They were then equally divided 213 

into three groups and the top and bottom groups were used for analysis. Two-tailed unequal 214 

variance T-test showed a significant alteration in cell counts between these two group of 215 

patients for all four cell types (p<0.05). Using CIBERSORT and ImSig the relative proportion 216 

of immune cells were then computed. For CIBERSORT the data was loaded into 217 

(https://cibersort.stanford.edu/) as per the authors instructions and the computed relative 218 

proportions were downloaded. The relative proportions of immune subtypes were all summed 219 

to make up the parent cell type (T cells, B cells, neutrophils, NK cells). Then, each cell type 220 

was normalised independently to be represented as a fraction of 1 across samples (i.e., the 221 

sum of normalised cell proportion for any cell type is equal to 1). Similarly, for ImSig the 222 

relative abundance of immune cells were calculated by averaging the expression of signature 223 

genes for each sample and then normalised to represent them as a fraction of 1. Two-tailed 224 

unequal variance T-test was then used to test for significant change in cell proportions 225 

between the two groups of patients in all four cell types. 226 

Similarly, a tissue dataset (trachoma: GSE20436) was downloaded. The patients were divided 227 

into three groups as per the level of infectivity according to its authors (controls, symptom 228 

+ve/C. trachomatis -ve patients, and symptom +ve/C. trachomatis +ve patients). As 229 

described earlier, the relative proportion of immune cells (T cells, B cells, neutrophils, 230 

monocytes, macrophages, NK cells and plasma cells) were computed and normalised using 231 

CIBERSORT and ImSig. This was followed by a one-way analysis of variance (ANOVA) to 232 

test for significant changes in cell numbers between the three groups of patients. 233 

 234 

 235 
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Results 236 

Blood and tissue immune signatures (ImSigblood/tissue) 237 

ImSig was derived as described in the experimental procedures, and as shown in (Figure 1). 238 

Briefly, an initial meta-analysis was carried out on 330 samples of isolated human immune 239 

cell populations and the top 100 differentially expressed genes were determined for each 240 

immune cell type. Using a network-based approach to identify sets of robustly co-expressed 241 

(correlated) genes in a variety of blood datasets, the lists were further refined (Figure 2A). 242 

The resulting cell-specific marker gene lists were collectively named ImSigblood. However, the 243 

limitations of this approach become evident from network analysis of clinical tissue 244 

transcriptomic datasets, where the cell-based marker genes showed independent expression. 245 

To overcome this issue we identified the most conserved cell type-specific groups of genes 246 

based on their co-expression across four tissue datasets, and further refined them by 247 

examining a eight other tissue datasets (Figure 2A). This resulted in our ImSigtissue gene 248 

signatures. ImSigblood contains 491 marker genes and ImSigtissue contains 569 marker genes for 249 

B cells, monocytes, macrophages (tissue only), neutrophils, NK cells, T cells, plasma cells, 250 

platelets (blood only), cell cycle, protein translation and interferon signalling. For a full list of 251 

the genes comprising these signatures and numbers for each cell type or pathway see Table 252 

S1. GO term analysis confirmed that the cell marker lists for both ImSig signatures were 253 

highly enriched in genes related to immune function (Table S2, S3). The overlap between 254 

blood and tissue signature varied depending on cell type/pathway (Figure S3).  255 

Genes that make up the signatures 256 

Table S1 highlights the sets of genes that distinguish ImSigblood and ImSigtissue. The process 257 

signatures; cell cycle, interferon response and protein synthesis (translational activity) are 258 

relatively robust in both blood and tissue. The T cell clusters in both cases are anchored and 259 
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validated by the subunits of CD3, but otherwise, there is very little overlap. The implication 260 

is that the T cells that enter tissues in a pathological situation are radically different in their 261 

gene expression profiles from the bulk of naïve T cells in peripheral blood. Note that there is 262 

no evidence of a cluster of genes associated with specific T cell polarisation states. The key 263 

transcription factors FOXP3 (Treg), RORC (Th17) and GATA3 (Th2) do not form part of 264 

clusters, since they are expressed by other cell types. However T-BET (TBX21), considered 265 

to be a Th1 specific transcription factor is in the NK cell cluster a cell type in which it is also 266 

strongly expressed. The NK cell cluster also shows considerable divergence between blood 267 

and tissue, in particular the NK cell receptor family being much more robustly co-expressed 268 

in tissue RNA. In blood, many of these receptors are also detectable in gamma-delta T cells 269 

(14). The various myeloid clusters are rather more difficult to be associated with specific cell 270 

types. The macrophage cluster, specific to the tissue data set, contains the CSF1R, which is 271 

known to be macrophage-specific and essential for differentiation and survival (15), and also 272 

contains many of the genes that are up-regulated in monocyte-derived macrophages derived 273 

by cultivation in CSF1 (16). An unexpected member of this cluster is CD4. In blood, CD4 is 274 

expressed at similar levels in CD4+ T cells and monocytes, and so does not form part of a T 275 

cell cluster. In tissue, CD4 is highly-expressed by macrophages, and correlates more highly 276 

with their presence than with the presence of T cells. The clusters annotated provisionally as 277 

monocyte and neutrophil have very little overlap between the blood and tissue profiles. 278 

Archetypal markers, CD14 for monocytes and the G-CSF receptor and chemokine receptor 279 

CXCR2 (the receptor for IL8) are co-expressed with very different gene sets in blood and 280 

tissues. Hence, it may be more appropriate to consider distinct separate myelomonocytic 281 

regulons, reflecting the rapid differentiation of these cells following extravasation. For 282 

example, S100A8/A9, which encode the most abundant neutrophil proteins (17), are also 283 

expressed by monocytes, but rapidly down-regulated as they differentiate to macrophages. 284 
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The mRNAs encoding many neutrophil-specific granule proteins (MPO, lactoferrin etc) are 285 

expressed most highly in progenitor cells (16), and do not contribute to a signature in either 286 

blood or tissue.  287 

ImSig scoring algorithm 288 

The ImSig scoring algorithm was developed to reflect the correlation and expression level of 289 

the marker genes in any given dataset. The algorithm generates a numerical likelihood score 290 

that a given signature is present in a dataset. Based upon empirical evaluation of a wide range 291 

of data, an ImSig score >0.3 indicates positive identification of the signature in a given 292 

dataset (Figure 2B&C). ImSig scores for all the validation datasets along with six other RNA-293 

seq datasets are provided in Table S4. Consistent with its derivation, the ImSig macrophage 294 

signature is absent from any blood datasets, irrespective of platform. Conversely, the platelet 295 

signature was not scored positive in any tissue dataset examined. As with other deconvolution 296 

methods, ImSig works best when the majority of signature genes are present in the dataset to 297 

be analysed. Based upon a permutation analysis of the effect of random removal of genes on 298 

the ImSig score (Figure 2D) a minimum of 75% of the genes from each individual signatures 299 

is required for an accurate representation analysis. Being correlation-based, a dataset 300 

generally needs to comprise of at least 20 distinct samples is needed to provide sufficient 301 

diversity before the ImSig algorithm can be applied.  302 

Validation of blood and tissue marker genes 303 

To test its universality, we applied ImSigblood to deconvolution of a range transcriptomics data 304 

derived from whole blood or peripheral blood mononuclear cells (PBMC). Examples of these 305 

analyses are given here. Data from the blood of 21 control and 31 heart attack patients 306 

(GSE48060) identified the presence of B cells, T cells, NK cells, plasma cells, platelets, 307 

monocytes and neutrophils (Figure S1A). In terms of the average expression of marker genes, 308 
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no consistent difference was observed between the control and heart attack samples 309 

suggesting that relative blood cell numbers were not altered. The macrophage and cell cycle 310 

signatures were not detected. In contrast, ImSig analysis of PBMC’s from control and patients 311 

with type 1 diabetes mellitus (GSE55098) identified increased proliferation in a number of 312 

samples (Figure 3A) and the analysis also clearly identified the presence of T cells, B cells, 313 

along with plasma cells, monocytes, neutrophils, NK cells and platelets (Table S4). Notably 314 

there was also significantly lower expression (p=1E-10) of the NK cells markers genes in 315 

samples derived type 1 diabetes (Figure 3A) where these cells are known to be dysregulated 316 

(18, 19). 317 

To validate ImSigtissue, we first examined a dataset of triple-negative breast cancers derived 318 

from 107 patients (GSE58812). As expected, and in keeping with our previous network 319 

analysis of multiple tumour datasets (20), the cell cycle cluster was readily detected, 320 

reflecting the heterogeneity in proliferative index between tumours. The analysis revealed 321 

macrophages, T cells, B cells, plasma cells, interferon but there was no evidence of platelets, 322 

neutrophils and NK cells present in these samples (Figure 3B). The levels of all immune cells 323 

(as judged by the average expression of the marker genes) varied greatly between samples. 324 

By contrast, a relatively small brain tumour dataset comprising 23 samples of primitive 325 

neuroectodermal tumors and medulloblastomas lacked evidence of immune cell infiltration, 326 

other than an NK signature (Figure S1B). Being behind the blood-brain barrier, lymphocyte 327 

populations in these tumours are likely absent or at very low levels (21) but infiltration of T 328 

cells was evident in other brain tumour datasets that we have analysed (Table S4). Neutrophil 329 

signatures were absent from tumour datasets. However, as expected, a dataset of eye swabs 330 

taken from eyes of controls or children with the symptoms of trachoma (GSE20436) (22) was 331 

positive for all signatures of immune cells (Figure S2). Previous studies have shown that in 332 

certain chlamydial infections, neutrophils recruit T cells to the site of infection (23), other 333 
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studies report the involvement of NK cells, monocytes and macrophages (24-26). Finally, we 334 

demonstrate the explorative power of ImSig when coupled with network analysis. The genes 335 

comprising the signatures were selected as being core ‘invariant’ markers of a particular cell 336 

type. When used in the context of a correlation analysis of a complete dataset, if the relevant 337 

cells are present within the samples, surrounding the signature genes will be other genes 338 

expressed in these populations. In this manner one can better evaluate the activation state of 339 

immune cells in situ. Using the trachoma dataset as an example we highlight known immune 340 

related genes that were co-expressed with ImSig core signature genes (Figure 4). The 341 

associated ImSig scores for all the validation datasets can be found in Table S4.  342 

Comparison with CIBERSORT 343 

The ability of ImSig and CIBERSORT to identify changes in relative proportions of cells 344 

between sample groups was compared using a blood (GSE49454: Systemic lupus 345 

erythematosus patients) and a tissue dataset (GSE20436: trachoma). For the blood dataset, 346 

cell counts were available for B cells, neutrophils, T cells and NK cells. Both methods 347 

generally performed well, ImSigblood demonstrated a significant difference (p<0.05) in all four 348 

cell types, although CIBERSORT failed to show a significant difference in B cells (p=0.389) 349 

(Figure 5A, Table S7). Samples from the trachoma dataset were divided into three groups of 350 

20, based on the level of infection as originally described (for more detail see Methods). 351 

Although actual cell counts are not available for these data, it is known that the immune 352 

infiltrate increases with the level of infection (27). ImSigtissue showed there to be a significant 353 

increase (p<0.05) in all seven cell immune types (B cells, neutrophils, T cells, NK cells, 354 

plasma cells, monocytes and macrophages) during an active infection, while significant 355 

differences were only reported for T cells and macrophages using CIBERSORT (Figure 5B, 356 

Table S7). Moreover, the pattern observed using CIBERSORT did not seem to correlate with 357 
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the infection status of C. trachomatis (Figure 5B). CIBERSORT was also used in its native 358 

form, i.e. the subtypes were not summed to represent the parent population. A significant 359 

change in cell number was observed only for M2 macrophages (p=0.001), activated mast 360 

cells (p=0.022) and resting dendritic cells (p=0.0007). The 19 other immune cell groups 361 

defined by CIBERSORT showed no significant difference in cell proportion across patient 362 

groups (Table S8).  363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 
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Discussion 376 

In the last few years a number of immune marker gene signatures have been proposed (6-12). 377 

The current work is based on the observation that when correlation (co-expression) network 378 

analysis is employed to explore large transcriptomics datasets derived from normal or 379 

diseased tissues, clusters of genes associated with specific immune cell populations, or 380 

specific transcriptional regulons such as protein synthesis, interferon response or cell cycle, 381 

are frequently observed clustered together (20, 22, 28, 29). This is because the abundance of 382 

mRNAs derived from cell-specific, or process-specific genes is correlated with relative 383 

number of those cells expressing those genes within a sample, resulting in their observed co-384 

expression across a sample set. The most important conclusion from our analysis is that 385 

signatures based upon cells isolated from blood cannot be applied with any confidence to 386 

tissue data. 387 

The utility of the blood and tissue ImSig gene lists has been demonstrated through 388 

applications to a number of datasets. Other approaches to deconvolution include LLSR (7), 389 

qprog (8), DSA (9), PERT (10), MMAD (11) and CIBERSORT (12). Each is based on a 390 

signature derived by a different data mining approach ranging from simple matrix 391 

decomposition to complex iterative procedure. Of these methods CIBERSORT was shown to 392 

out-perform others (12) in terms of analysis of tissue data with noise or unknown content and 393 

was reported to be able to differentiate closely related cell types. CIBERSORT includes 394 

profiles for 22 distinct cell types, including various states of T cell activation and macrophage 395 

differentiation. The network analysis of disease datasets herein does not support robust 396 

clusters that distinguish macrophage activation states, in keeping with previous analysis (20). 397 

In essence, the best one can do is define three myeloid states (neutrophil, monocyte, 398 

macrophage), and the inducible genes are disease/lesion specific. Expression QTL analysis of 399 
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inducible gene expression in monocytes suggests that inducible gene expression profiles may 400 

also be individual-specific (30).  401 

An ideal workflow for employing ImSig would involve running the ImSig algorithm to 402 

identify the different immune cell populations in a dataset and then using the average 403 

expression of signature genes to understand the relative proportion of cells between samples 404 

and clinical subsets. This can be followed by network analysis which can be used to better 405 

understand the wider context of the immune environment. Through observing the genes that 406 

closely correlate with the core signature genes, one can better under the type of activation or 407 

indeed the level of involvement which these cells play in a given microenvironment of a 408 

disease state. As an example we have highlighted a few immune related genes that are co-409 

expressed with our core signature genes in the trachoma dataset (Figure 4). The expression 410 

profiles of known immune modulatory genes such as IFNG, LAG3, CD44, FOX03, FOXP3, 411 

CD80, IL20, STAT4, IL17A etc are correlated with the core macrophage and T cell signature 412 

genes, suggesting that the macrophages are undergoing classical activation, and the T cells 413 

include Th17, TReg and Th1 states. Thus such explorative analysis can be employed using 414 

ImSig to understand the differentiation state of immune cells between patient groups.  415 

The ImSig algorithm has been tested on data derived microarray and RNA-seq platforms. We 416 

have also tested its applicability across a wide range of datasets derived from blood, tissue, 417 

sputum and faecal samples (data not shown). As long as immune cells are present, ImSig 418 

efficiently identifies the cell types present. We therefore anticipate that ImSig and the 419 

methodological approaches described here will prove valuable for studying immune cell 420 

variation in human transcriptomics data derived from a wide variety of conditions clinical 421 

samples.  422 

 423 
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Table 1 572 

Summary of the most widely used immune signatures and deconvolution methods 573 

Authors Year Signature 

derived 

from 

Deconvolution 

method 

No. of 

Cell 

types 

Total no of 

markers 

Cell types (unique 

genes) 

Abbas et al. 2005 Isolated 

immune 

cells 

No 

deconvolution 

algorithm 

6 959 unique 

genes 

B Cell (91), Dendritic 

Cell (70), Lymphoid 

(234), Monocyte (82), 

Myeloid (344), 

Neutrophil (45), NK 

Cell (17), T Cell (76) 

Palmer et al. 2006 Isolated 

immune 

cells 

No 

deconvolution 

algorithm 

4 1146 

unique 

genes 

B cells (427), T cells 

(241), Granulocytes 

(411), Lymphocytes 

(67) 

Abbas et al. 2009 Isolated 

immune 

cells 

Linear least-

squares fits  

17 359 Affy 

u133a 

probes 

Resting helper T cells, 

Activated helper T 

cells, Resting 

cytotoxic T cells, 

Activated cytotoxic T 

cells, Resting B cells, 

Activated B cells, 

BCR-ligated B cells, 

IgA/IgG memory B 

cells, IgM memory B 

cells, Plasma cells, 

Resting NK cells, 

Activated NK cells, 

Monocytes, Resting 

dendritic cells, 

Activated Monocytes, 

Activated dendritic 

cells, Neutrophils 

Nicholas et 

al. 

2009 Isolated 

immune 

cells 

No 

deconvolution 

algorithm 

8 1842 

unique 

genes 

T cells (48), 

Monocytes (186), B 

cells (218), NK cells 

(75), Granulocytes 

(757), Erythroblast 

(299), Megakaryocyte 

(262) 
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Gong et al. 2011 Isolated 

immune 

cells 

Quadratic 

Programming 

Uses signature from other studies 

Zhong et al. 2013 Isolated 

immune 

cells 

Linear model & 

Quadratic 

Programming 

Uses signature from other studies 

Newman et 

al. 

2015 Isolated 

immune 

cells 

Support vector 

machine 

22 547 unique 

genes 

B cells naïve, B cells 

memory, Plasma 

cells, T cells CD8, T 

cells CD4 naïve, T 

cells CD4 memory 

resting, T cells CD4 

memory activated, T 

cells follicular helper, 

T cells regulatory 

(Tregs), T cells 

gamma delta, NK 

cells resting, NK cells 

activated, 

Monocytes, 

Macrophages M0, 

Macrophages M1, 

Macrophages M2, 

Dendritic cells 

resting, Dendritic 

cells activated, Mast 

cells resting, Mast 

cells activated, 

Neutrophils, 

Eosinophils 

 574 

 575 

 576 

 577 

 578 
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Figure Legends 580 

Figure 1: Derivation and application of blood and tissue ImSig. A) Flow chart depicts the 581 

systematic derivation of ImSig. The transcriptome of isolated immune cells was subjected to 582 

differential gene expression analysis or correlation analysis to derive a preliminary list. This 583 

was further refined using the cluster model algorithm to define the blood and tissue-specific 584 

immune signatures (ImSig). B) Application of signatures involves running ImSig scoring 585 

algorithm on any transcriptomic data to identify the different immune cells present within the 586 

samples followed by network analysis to study the genes that are correlated best with the core 587 

signature genes. 588 

Figure 2: Cluster model algorithm refinement and ImSig algorithm. A) The plots 589 

represents the outcome of running the cluster model algorithm over a blood and a tissue 590 

dataset. Each node represents a unique gene and plotted as a function of its median 591 

correlation value within the signature. Blue colour represents the genes that were kept and red 592 

represents the genes that were discarded after running the algorithm. The algorithm was 593 

applied to eight blood and eight tissue datasets (only 2 shown above). All the blue nodes were 594 

then pooled to identify the most commonly occurring genes across datasets, which then 595 

formed the basis of defining ImSig. B and C, Line plots showing ‘initial score’ calculated for 596 

every correlation cut-off between 0.50 and 0.99 while calculating the ImSig score. For B) 597 

microarray dataset (heart attack, GSE48060), the threshold line is drawn at 20 and for C) 598 

RNA-seq dataset (Brucellosis; E-GEOD-69597), the threshold line is drawn at 10. D) Plots 599 

showing the effect of loss of signature genes on ImSig score. These were calculated by 600 

performing a permutation analysis of removing signature genes randomly. 601 

Figure 3: Deconvolution of blood and tissue datasets. A) Correlation network of gene 602 

expression data from blood samples of patients with type I diabetes mellitus represented and 603 
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B) samples from breast cancer patients. Each cluster represents a unique cell type. Nodes 604 

derived from other signatures which were included in the graph but did not cluster are 605 

reduced in size. Histogram plots represent the average expression profile of the ImSig 606 

signatures across samples.  607 

Figure 4: Network graph to highlight a few closely correlated immune related genes 608 

with ImSig. A) Correlation network of gene expression data from trachomatis infection 609 

(GSE20436). The nodes represent unique genes and the ImSig genes are coloured to highlight 610 

the immune cluster. B) A close up of the immune cluster. The ImSig related genes are 611 

coloured to represent different immune cell types, while the remaining genes are reduced in 612 

node size. We highlight a few well known immune modulatory genes with a greater node size 613 

and marking their gene symbols alongside. C) Bar plots represents the average expression 614 

intensity of individual genes across samples. The top panel (Green) plots represents a few 615 

marker genes to understand macrophage biology and the bottom panel (dark grey) to 616 

understand the T cell biology. 617 

Figure 5: Comparison of ImSig with CIBERSORT. A) Comparison performed using a 618 

blood dataset. The boxplots show the relative abundance of immune in cells in the two patient 619 

groups computed by CIBERSORT and ImSig. The actual median cell count for the four 620 

immune cell types were (high, low) Neutrophils (2655, 6160), T cells (617.5, 1988), B cells 621 

(35, 293) & NK cells (22.5, 176.5). Significant difference was observed for T cells, 622 

Neutrophils and NK cells using CIBERSORT while all differences seen in ImSig including B 623 

cells are significant (P value <0.05). B) Comparison performed using a tissue dataset. The 624 

boxplots show the relative abundance of immune in cells in the three different patient groups 625 

computed by CIBERSORT and ImSig. Significant difference was observed only for 626 

macrophages and T cells using CIBERSORT while all differences seen in ImSig are 627 

significant (P value <0.05).  628 
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