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Abstract 
 
Hematopoiesis is one of the best characterized biological systems but the connection between 
chromatin changes and lineage differentiation is not yet well understood. We have developed a 
bioinformatic workflow to generate a chromatin space that allows to classify forty-two human 
healthy blood epigenomes from the BLUEPRINT, NIH ROADMAP and ENCODE consortia by 
their cell type. This approach let us to distinguish different cells types based on their epigenomic 
profiles, thus recapitulating important aspects of human hematopoiesis. The analysis of the 
orthogonal dimension of the chromatin space identify 32,662 chromatin determinant regions 
(CDRs), genomic regions with different epigenetic characteristics between the cell types. 
Functional analysis revealed that these regions are linked with cell identities. The inclusion of 
leukemia epigenomes in the healthy hematological chromatin sample space gives us insights on 
the healthy cell types that are more epigenetically similar to the disease samples. Further 
analysis of tumoral epigenetic alterations in hematopoietic CDRs points to sets of genes that are 
tightly regulated in leukemic transformations and commonly mutated in other tumors. Our 
method provides an analytical approach to study the relationship between epigenomic changes 
and cell lineage differentiation. Method availability: https://github.com/david-juan/ChromDet 
 
 

Introduction 

 
Hematopoiesis is one of the most studied biological differentiation processes, in which different 
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cell lineages arise from a common hematopoietic stem cell (HSC). This system can be seen as 
a hierarchical tree, where the more internal ‘nodes’ are the different lineage progenitors and the 
‘leaves’ are the final mature cell types (1, 2). This hierarchical tree with many ‘nodes’ and 
‘leaves’ provides the best model to study chromatin remodeling during cell lineage differentiation 
(3–5). 
 
Chromatin remodeling is a dynamic process that modulates the chromatin architecture and is 
vital to ensure proper functioning of the cell and maintenance of its identity (6). The de-
regulation of chromatin remodeling factors often leads to diseases such as cancers (7) and 
neurodevelopmental disorders (8, 9). A main role in this re-organization of chromatin is played 
by post-translational modifications of histone tails, which can affect many biological processes 
such as gene transcription, DNA repair, replication and recombination (10), (11). Moreover, the 
cross-talk between different modifications affects the binding and function of other epigenetic 
elements, increasing the complexity of the chromatin remodeling process (12). 
 
Despite great progress in our understanding of hematopoiesis during the last decades (13, 14), 
we are still far from fully uncovering the details of the epigenetic mechanisms controlling this 
process. It is now widely accepted that the cell phenotype is directly related to its epigenetic 
makeup and that chromatin changes during differentiation contribute to the determination of cell 
fate. However, a major challenge in the field is to identify exactly where the epigenetic changes 
causing phenotypic changes occur. Similarly to the problem of distinguishing driver and 
passenger mutations in cancer, we can think of driver and passenger chromatin changes during 
cellular differentiation. Chromatin drivers of cellular differentiation would correspond to the 
subset of regions whose change is required to perform the different differentiation steps. As 
consequence, these regions must reflect one or more changes among cell types, while being 
fixed in any specific cell type. We therefore advocate the need to develop strategies identifying 
these key chromatin regions and their epigenetic changes that drive differentiation and 
determine cell fate. For this purpose, we take advantage of the large and comprehensive 
epigenomics datasets produced by the partners of the International Human Epigenome 
Consortium (IHEC; http://ihec-epigenomes.org/). 
 
Here, we propose an approach to identify the key chromatin regions that undergo chromatin 
changes associated to cell differentiation during multiple differentiation steps in hematopoiesis. 
We define chromatin states based on the combinatorial patterns of 6 histone modifications in 42 
human samples covering the myeloid and lymphoid differentiation lineages from hematopoietic 
stem cells (HSCs). This framework establishes highly informative low-dimensional spaces 
based on a Multiple Correspondence Analysis (MCA; (15)) of the profiles of histone modification 
combinations (chromatin states). Our integrative analysis of chromatin states in these samples 
recapitulates the human hematopoietic lineage differentiation tree from an epigenetic 
perspective. Moreover, our approach identifies 32,662 chromatin determinant regions (CDRs) in 
which chromatin changes are associated with the various differentiation steps the cells go 
through, possibly influencing their final lineage identities. The combination of chromatin states in 
these CDRs constitutes an epigenomic fingerprint that characterizes the different hematopoietic 
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cell types. The method is available at https://github.com/david-juan/ChromDet 
 

Material and Methods 

ChIP-Seq Data Processing 

We retrieved data for 430 chromatin immunoprecipitation sequencing (ChIP-Seq) experiments 
from BLUEPRINT, ENCODE and NIH ROADMAP. We downloaded the hg19/GRCh37 
alignments for  2 CD4+ and 1 CD8+ lymphocytes, 5 mature neutrophils, 3 CD14+ monocytes, 4 
macrophages and 7 CD38- B cell samples from BLUEPRINT; 11 CD4+ and 3 CD8+ 
lymphocytes, 1 CD14+ monocyte and 3 CD34+ hematopoietic stem cells samples from NIH 
ROADMAP and 2 CD14+ monocytes samples from ENCODE described in S1 Table and Fig 
2A. In addition, the analysis including diseases was based on data from 3 Acute Myeloid 
Leukemias (AML), 6 Chronic Lymphocytic Leukemias (CLL) and 3 Mantle Cell Lymphomas 
(MCL) from BLUEPRINT (see S1 Table). The BAM files were converted to BED format and 
duplicate reads were removed for all the experiments. We computed different quality control 
measures with phantompeakqualtools (v1.10.1; see (16)) including total number of reads, 
normalized strand cross-correlation coefficient (NSC) and quality tag based on thresholded 
relative strand cross-correlation coefficient (RSC; see S1 Table). We flagged  those histone 
experiments with less than 107 reads and no replicates;  NSC <1.05 and quality tag based on 
RSC <0. Then, following a similar strategy used previously by the NIH Epigenomics Roadmap 
(see (17)), we computed an overall quality rating per sample based on the six core histone 
modification quality experiments. We labelled samples as “very high quality” if none or only 1 
histone mark experiment failed in 1 out of the 3 quality criteria; “high quality” if 2 or 3 histone 
experiments failed in 1 out of the 3 quality criteria; “medium quality” if more than 3 histone 
marks failed in 1 out of the 3 criteria or up to two broad histone modifications (H3K36me3; 
H3K9me9; H3K27me3) failed in 2 out of the 3 quality criteria; “low quality” if 3 or more histone 
experiments failed in 2 out of the 3 quality criteria or at least 1 histone experiment failed in the 3 
quality criteria used. All the samples labelled as “low quality” were discarded and not included in 
our study. The overall quality criteria for those histone experiments included in the analysis is 
shown in S1 Table. 

Genome Segmentation 

The input information used to segment the genome into different chromatin states was derived 
from 6 histone modifications (H3K4me3; H3K4me1; H3K27me3; H3K9me3; H3K27ac and 
H3K36me3). We used the ChromHmm software (v1.10;(18)) to define a 11 chromatin-states 
model (see S1 Fig) following the strategy proposed by the ChromHMM developers to set up the 
different parameters like number of states for training or posterior collapse (17, 19, 20). We 
evaluated the consistency and interpretability of chromatin states in models learnt with different 
numbers of chromatin states (5, 7, 9, 11, 13 and 20 states), quantified as the correlation of 
chromatin mark frequencies obtained for corresponding states across different models, as 
previously done by Ernst M., and Kellis M. (19). The results show that the 20 states model is 
recovered with correlations higher than 0.75 by the states trained in the model with 11 states, 
with little improvement in the 13 states model (S2-S3 Tables). The 11 states model captures all  
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the biological-interpretable states that were consistently found in larger models. 
 
Importantly, a manual curation of the chromatin states based on available additional information 
(gene structures, CpG islands, Lamin B1, etc) showed that the 11 states model retrieves all the 
main regulatory states (active promoter, bivalent promoter, enhancer, elongation, 
heterochromatin/low signal), without including any functionally unclassifiable chromatin state. 
Therefore, our approach of selecting 11 states to train the HMM is aimed at striking an 
equilibrium between a low enough number of combinations and the biological interpretability of 
the states included in the analysis, based on the ChromHMM emission probabilities correlation, 
prior knowledge regarding the function of these marks, and our previous experience (12). In 
summary, the 11 states model selected captures the biologically-interpretable states that were 
consistently found in larger models providing a suitable framework for our analysis. 
 
We generated the model with the “healthy” samples excluding B cells (see S1 Table for details). 
The samples from B cells (naive and tonsil) and diseases (AML, CLL, MCL) were segmented 
with the model generated previously, as they were produced at the final stages of the 
BLUEPRINT project. Further, segmentations for each sample from the 11 states model were 
collapsed into 5 chromatin states summarizing similar states based on the emission 
probabilities, literature, biological knowledge, and genomic feature enrichments: 
heterochromatin/low signal (H), enhancer (E), transcription (T), active promoter (A) and 
repressed promoter (R; S1A Fig). Our a posteriori collapse into 5 chromatin states let us group 
dynamic states for a more robust representation of the epigenomic variability in cell types. In 
fact, differences in strength of enhancers, promoters or elongating regions can reflect more or 
less dynamic regions resulting in subtle differences between ChIP-seq experiments. 
 
Therefore, for each sample, we have a vector of regions with their corresponding labels 
(chromatin states). In addition, we partitioned the genome into 200bp, preserving the associated 
chromatin state labels in order to have the same number of regions in all samples and make 
them comparable. For further analysis, consecutive 200bp intervals with the same labels pattern 
in all samples were merged, any change in one sample marking an interval transition.    
  
 

Sample clustering in the Chromatin Sample Space obtained by Multiple 
Correspondence Analysis (MCA) 
 
In this work we propose to use a methodological protocol based on Multiple Correspondence 
Analysis (MCA; (15)), previously applied to multiple sequence alignments of proteins, for the 
automatic extraction of relevant signatures (21) and to gene expression profiles for sample 
classification (22). MCA can be considered as an equivalent to Principal Component Analysis 
(PCA) when working with qualitative data instead of continuous variables. MCA disentangles the 
sources of epigenomic variability among our samples into a set of principal components that 
form an orthogonal space which dimensions can be prioritized according to their corresponding 
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eigenvalues. This MCA space can be reduced to a low dimensional one preserving most of the 
original information but filtering the main sources of noise. In brief, our protocol performs a MCA 
on a vectorial representation of multiple chromatin states sample vectors. It establishes the 
informative low dimensional space incorporating only those components with the highest 
eigenvalues, those explaining most of the total variance, where samples coordinates distribution 
is statistically different (P-value < 0.01, Wilcoxon test) between the tested component and the 
previously selected one, the one with the closer higher eigenvalue. In this work, we define the 
Chromatin Sample Space as the space formed by this set of highly informative components 
coming from the MCA on the vectors of the chromatin states for the genomic regions analysed 
samples. Robust unsupervised k-means clustering (23) is performed iteratively on this 
Chromatin Sample Space for a range of pre-specified number of groups (from 2 to 50). Finally, 
optimal clustering solutions are detected as those maximizing the Calinsky’s and Harabsz’s 
(CH) index (24). In an analysis involving samples from different healthy cell types, as the one 
presented in this work, this protocol is intended to recover those cell types, or groups of cell 
types, whose epigenomic differences are able to discriminate them. These epigenetically robust 
groups of samples allow us to confidently address the detection of those regions that are 
important for establishing segregation of these samples. 
 
A challenge of this approach was to deal with millions of regions within the same analysis. 
However, many of these regions will not be informative for discriminating the sample groups in 
our dataset. Highly variable regions and completely conserved regions are non-informative 
regions that increase the computational time cost, while sample-specific divergent regions can 
bias the results, being strongly influenced by the presence of sample outliers or sample-specific 
experimental noise. In order to reduce the influence of sample-specific patterns contributing to 
outlier effects, we focused on the set of regions presenting at least two different chromatin 
states in at least two samples each of them. Additionally, we filter out all the regions with 
change patterns (vectors of chromatin states for each genomic region across samples) that 
were poorly represented in our dataset. In particular, we filtered out those regions whose 
patterns were not shared by 10 regions (we obtain similar results for patterns shared by 5, 10 
and 15 regions; data not shown). This step dramatically reduces the computational burden by 
removing regions with low influence in sample clustering. As a result of this filtering we run our 
MCA framework with 275,825 regions from the 22 autosomal chromosomes of all the healthy 
samples. 
 

Selection of Chromatin Determinant Regions in the Chromatin Region 
Space 

 
Concomitantly to the detection of sample clusters, ideally equivalent to cell types, our framework 
allows the detection of the subset of regions better reflecting this inter-sample clustering. We 
called these regions Chromatin Determinant Regions and they are methodologically equivalent 
to the Specificity Determining Positions detected (SDPs; (21)) in protein families. First, we 
project the vectors reflecting every genomic region/state combination into the MCA space, 
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generating the Chromatin Region Space. Vectors representing chromatin patterns perfectly 
associated to every combination of sample clusters were used as fingerprints of the 
corresponding grouping. Every epigenomic region was associated to the closest fingerprint in 
the Chromatin Region Space. Finally, CDRs were defined as those positions for which all their 
chromatin states were among the top 10 shortest distances to its fingerprints and the 
combination of these fingerprints form a perfect partitioning of the sample clusters (for a more 
detailed description see (21)). In this situation, CDRs correspond to those regions with patterns 
of chromatin states along samples with very few intra-cluster epigenomic changes but with at 
least two clusters with different states. This definition of CDRs highlights the two key properties 
of these regions: the stability of their state is important for every single epigenomic cluster of 
samples and they define inter-cluster epigenomic changes. These properties point to the 
putative role of these regions in cell identity and cell fate respectively. 
 

Chromatin Determinant Regions annotation, expression and enrichment 
analyses 

 
Genomic annotation was carried out with Hypergeometric Optimization of Motif EnRichment (HOMER 

software v4.7.2;(25)). The tool annotatePeaks.pl was used with default parameters to annotate 

CDRs to genes with the following priority assigned: TSS (from −1 kb to +100 bp), transcription 

termination site (from −100 bp to +1 kb), protein coding exon, 5′-UTR exon, 3′-UTR exon, intron 

and intergenic. More detailed information is available in 

http://homer.salk.edu/homer/ngs/annotation.html. Gene Ontology (Biological Process;(26)) and 
Reactome (27) enrichment analysis were done adding the -go flag to the annotatePeaks.pl tool. 
Then, we calculated a p-adjusted value based on Benjamini-Hochberg correction using R. All 
terms with an adjusted p-value < 0.05 were considered significant. We summarized the Gene 
Ontology (Biological Process) significant terms with REVIGO (28).   
 
The expression associated analyses were carried out retrieving the RNAseq data for 60,483 
protein-coding, ncRNA, pseudo, snoRNA and snRNA genes from The BLUEPRINT Data 
Analysis Portal (29). We took information from 12 macrophages, 8 monocytes, 6 neutrophils, 4 
naive B cells, 3 germinal center B cells and 21 T cells, no data  was found for HSCs from 
mature samples. We applied an ANOVA test to 7764 genes with CDRs associated and adjusted 
the p-value with Benjamini-Hochberg correction, p-value<=0.05 was considered significant. 
Statistical analyses were carried out with aov and p.adjust functions from R (v3.2.2).  
 
The transcription factor motif enrichments were performed with the findMotifsGenome.pl tool 
included in HOMER software (v4.7.2; (25)). To determine the relative enrichment of known 
TFMs we excluded the CDRs referred to transcription, as they are related to polymerase 
elongation and not to transcription factors binding. The searches were done against a selected 
random background of windows adjusted to have equal GC content distribution in each of the 
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input sequences. The region size was set up to “given”, other parameters were used by default. 
More detailed information is available in http://homer.salk.edu/homer/ngs/peakMotifs.html. The 
transcription factor motifs with a q-value<0.01 at least in one cell type were considered 
significant and selected to generate Fig 3C. We did not find enriched TFMs for T-cells and 
neutrophils. The expression analyses for 28 of the transcription factor binding proteins of Fig 3C 
were performed with the same approach described above, the transcription factors in HSCs 
were not included in the expression analysis since BDAP doesn’t provide data for HSCs. 
 
Chromatin state transitions among cell types were represented with a Sankey diagram in Fig 3A 
using the “makeRiver” and “riverplot” functions included in the “riverplot” R package. (v0.5; 
https://cran.r-project.org/web/packages/riverplot/index.html) 
 
 

Chromatin Determinant Regions in the context of disease  
 
The “healthy” hematopoietic chromatin sample space provides us a reference sample space, 
reflecting the informative epigenomic distances between normal hematopoietic cell types. As it 
is based on the major sources of information involved in hematopoiesis, it also serves us to 
study to what extend leukemic epigenomes retain features important to define the cell identity of 
the normal cell types. 
 
In order to get a clearer view of these residual signals of “normality”, we focused on those CDRs 
for which the tumoral sample shows a chromatin state present in any cell type. For this, we 
projected the leukemic samples on the “healthy” hematopoietic chromatin sample space, but 
considering only the influence of these CDRs. In practice, it means that every leukemic sample 
is projected based on a different number of regions and its position reflects the extent to which 
these regions correspond to patterns more related to one or other healthy cell type. This 
approach allows us to reduce the effect of tumor-related epigenetic changes and to weigh the 
contribution of patterns of chromatin states associated to more than one cell type according to 
their influence in the “normal” chromatin sample space. We also projected the prototypic 
“normal” cell types represented by the vectors presenting the chromatin states characteristic of 
the corresponding cell type for each CDR. Distances of leukemic samples to these prototypic 
“normal” cell types reflect the similarity of the chromatin states in CDRs balancing the effect of 
chromatin states shared with other “normal” cell types. 
 
Despite the effect of focusing on “conserved” states in CDRs, highly transformed leukemic 
samples could include a relevant number of changes to chromatin states characteristic of a 
different cell type. These effects will contribute to leukemic samples with less “cell type-specific” 
CDRs. This situation can lead to less well-defined clusters of leukemic samples. Therefore, we 
decided to perform a hierarchical clustering (using Ward’s method with euclidean distances as 
implemented in pheatmap v1.0.8 R package, http://CRAN.R-project.org/package=pheatmap) in 
this CDRs-based chromatin sample space, to illustrate the association of different leukemias to 
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different cell types.  As HSCs, Macrophages and gc B cells “prototypic” cell types were clearly 
very distant to the projections of all leukemic samples in this space, they were not considered in 
the hierarchical clustering, in order to improve the resolution of the relationship of tumoral and 
healthy samples. 
 
We also define the ratio of CDRs with a chromatin state different to any healthy cell type as the 
tumoral epigenomic divergence. It represents how divergent a tumoral sample is from the space 
of healthy states calculated with the normal samples. Therefore, higher divergences imply 
higher probabilities that the cell type of origin of the tumoral sample is not represented in the 
healthy chromatin space or that the tumoral sample diverged so much than its projection on this 
space should be taken with care. The analyzed tumoral samples show epigenomic tumoral 
divergences ranging from 0.02 to 0.08 with higher values for AML samples, suggesting that they 
can be confidently analysed in this space. 
 
We defined CDRs altered in leukemias as those CDRs in which more than 50% of the tumoral 
samples show a chromatin state not observed in any normal sample. One of the advantages of 
this definition is that it is agnostic about the cell of origin of the tumor. Obviously, this definition, 
as any other, is limited to the cell types included in the study and some of these regions could 
be reclassified when more cell types (especially progenitor cell types) are available. In absence 
of more information, this criterium provides a simple definition of regions that are potentially 
important for tumoral progression.  
 
Specifically altered regions in AML (or CLL or MCL) were defined as those CDRs with more 
than 50% of the AML (or CLL or MCL) samples presenting an unobserved state in normal cell 
types, but lower than 50% in the other two leukemia types. In both cases, CDRs altered in 
leukemia were analysed using HOMER, as explained above. For exploring tumor-specific GO 
and Reactome enrichments, those terms enriched also in the whole set of  CDRs were filtered 
out from altered CDR enrichments. 
 

Resources 

 
Method availability: https://github.com/david-juan/ChromDet 
 
UCSC track hub to browse the CDRs and the chromatin states for all samples: 
http://genome.ucsc.edu/cgi-
bin/hgTracks?db=hg19&hubUrl=http://mcahematopoiesis.bioinfo.cnio.es/carrillo_et_al_NAR/hub
.txt 
 

Results 

The chromatin space of human hematopoietic differentiation 
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We carried out a multi-group comparative analysis of chromatin states for representative cell 
types of the myeloid and lymphoid lineages to understand how epigenetic changes in chromatin 
are related to hematopoietic differentiation in humans. We focused our analysis on a set of 42 
blood IHEC epigenomes from eight different cell types, with at least three independent biological 
replicates available: hematopoietic stem cells (HSC; n=3), neutrophils (n=5), monocytes (n=6), 
macrophages (n=4), naive and germinal center (GC) B-cells (n=4 and n=3) and CD4 and CD8 
T-cells (n=13 and n=4), see Fig 2A and S1 Table for details. 
 
These epigenomes were assembled from ChIP-seq data generated by three IHEC consortia: 
BLUEPRINT (n=22), NIH ROADMAP (n=18) and ENCODE (n=2). We integrated ChIP-Seq data 
experiments for the six core histone modification marks that are required to be included in IHEC 
epigenomes: H3K27ac marking active regulatory regions, H3K4me3 marking promoters (30, 
31); H3K4me1, related to  enhancers (30); H3K36me3, marking transcription (30); H3K27me3 
and H3K9me3, associated with polycomb and heterochromatin repression, respectively (30). 
Importantly, we only used histone mark sets where all six marks were profiled in the same 
individual (i.e. each epigenome corresponds to a unique individual). 
 
A multivariate Hidden Markov Model (HMM) was employed to learn combinatorial chromatin 
states based on the six histone marks using ChromHmm (18). However, others methods to 
segment the genome based on histone marks (or other features) could be used at this step, like 
Segway (32), EpicSeq (33), hiHMM (34), chromstaR (35), IDEAS (36) and others. In fact, the 
input for our method are the genome segmentations for the included samples. This means that 
users could use our method with the genome segmentations obtained by the software of his/her 
choice. 
 
Further, the genome of each sample was segmented using the 11 combinatorial chromatin 
states model generated (see S1 Fig). To facilitate biological interpretation, the 11 chromatin 
states were further collapsed into 5 functional chromatin states encompassing five main 
categories: transcription (T), heterochromatin/low signal (H), repressed promoter (R), enhancer 
(E) and active promoter (A; see Methods for details; S1A Fig). Thus, for each sample, we can 
create a vector representing the chromatin state of consecutive 200 bp windows along the 
whole genome, using this reduced 5-state alphabet. In order to reduce biases associated to the 
different size of each regulatory region, we collapse contiguous 200 bp windows having the 
same chromatin states pattern along all the samples (see Methods for details).  
 
 
Our initial aim was to generate a low-dimensional chromatin space, a graphical representation 
of the structure and dimensionality of a complex and large data set, reflecting the major sources 
of epigenetic differences among hematopoietic samples (eg. changes in chromatin states). To 
this end, we applied a protocol based on Multiple Correspondence Analysis (MCA), which we 
have previously applied to protein sequence (21) and gene expression (22) analysis. MCA is an 
analysis similar to Principal Component Analysis (PCA) but appropriate for categorical data. We 
created an MCA-based multi-dimensional space in which the different samples are placed 
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based on their vectors of chromatin states across the genome. The first stage of our protocol 
selects the minimal number of the most informative components that are relevant in this space, 
which already allows us to detect clusters of samples (see Fig 1). 
 
Application of this approach to the matrix of collapsed chromatin states along the autosomal 
chromosomes in the 42 different samples results in a hematological chromatin sample space 
with the first two components as significantly informative according with a Wilcoxon test (Fig 2B; 
see Methods for details). Samples from the same cell type cluster together and the major blood 
cell types are clearly separated from each other, showing that the origin and technical biases of 
the samples are not affecting the results (3 different consortia and therefore different 
laboratories). The relative samples distribution and the clustering are robust, as shown by 
analysing each of the autosomal chromosomes independently (see S2 Fig). 
 
As in PCA approaches, the interpretation of the two components selected by our method to 
separate the different cell types can lead to biological insight. Interestingly, the first component, 
represented on the horizontal axis, clearly separates myeloid (left side) from lymphoid cell types 
(right side) with HSCs situated in a central position. On the other hand, the second component 
on the vertical axis seems to reflect the lineage-independent epigenomic changes needed for 
the differentiation of the cell types from the HSCs, combined with the sample environment. We 
can draw a path from the pluripotent HSCs in bone marrow (at the bottom of the plot) all the way 
to the more mature cell types or subpopulations, such as in vitro cultured macrophages and 
germinal center B cells from tonsil (at the top of the plot). The central location of neutrophils, 
monocytes, T cells and naïve B cells from venous blood in this space suggests less epigenomic 
changes between these cell types and the HSCs (see Fig 2B). Interestingly, neutrophils and T 
cells are the cell types with least epigenomic changes from the HSCs. However, as in previous 
works based on single chromatin marks (37), we fail to discriminate CD4 and CD8 T-cells, 
which form a tight cluster. In conclusion, our approach is able to capture the main biological 
differences between cell types, and is fully consistent with the known underlying biological 
process, showing that epigenomic states are an excellent source of information for 
discriminating these cell types.  
 
Obviously, the value of the results obtained by our approach depends on the input information. 
Therefore, we strongly encourage introducing proper quality criteria to decide the inclusion of a 
sample in the analysis (see Material and Methods). Interestingly, a detailed evaluation about 
the effect of using different input data from the segmentations (see supporting information 
and S3-S5 Figs) supports the use of collapsed chromatin states to discriminate samples by cell 
type. These analyses identify elongation and enhancer states as the most informative sources 
of information, and illustrates the potential of our MCA-based approach for dealing with 
epigenomic data. Consequently, for studying CDRs associated to differentiation, we strongly 
recommend collapsing chromatin states into a small number of robustly defined states reflecting 
major functional shifts in transcription and enhancer activities, instead of more dynamic 
variations in the strength of the signal associated to these functions.  
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Chromatin determinant regions (CDRs) 
 
So far we have shown how the MCA approach permits the generation of a space in which to 
robustly locate the different hematopoietic samples. Next, we aimed to identify the specific 
genomic regions that contribute most in defining specific cell types. We call these regions 
Chromatin Determinant Regions (CDRs; Fig 1). 
 
In order to retrieve these CDRs we applied the second stage of our MCA-based protocol (21). 
This involves building a hematological chromatin regions space, in which each genomic region 
can be located based on its patterns of chromatin states across cell types (see Fig 1). For this 
we projected the chromatin states of every region of the genome on the same principal 
components of the Hematological Chromatin Samples Space. In this space we identify which 
regions have chromatin states that can discriminate the different cell types classified in the 
samples space (that is the different sample clusters). In practical terms, using this approach we 
find the CDRs that give rise to differences between cell types. For instance, a given region can 
show an enhancer state in lymphoid cell samples and a heterochromatin/low signal state in the 
rest of the samples. In other cases, our protocol allows us to recover more complex patterns, 
such as those in regions able to discriminate more than two cell type groups. Starting from a 
total of 2,687,482 genomic regions for the 22 autosomal chromosomes included in the analysis, 
we recovered a total of 32,662 CDRs comprising 20,421,600 bp (a 0.71% of the canonical 
autosomal chromosome size) (see S4 Table).  
 
As mentioned above, each CDR can be associated to a pattern of states across the different 
cell types, pointing to chromatin changes that might be drivers of cell differentiation. The most 
abundant CDR patterns we identified correspond to regions that have a transcription or 
enhancer state in one or two cell types, while having a heterochromatin/low signal state in the 
others (see S6 Fig and S5 Table). The six most frequent patterns, that together comprise 61% 
of the CDRs, present transcription or enhancer states in GC B cells, HSC and macrophages, 
while having heterochromatin/low signal states in all other cell types (see S6 Fig and S5 Table). 
In general, CDRs related to Transcription states are larger than the ones showing patterns with 
other states (see S7 Fig). In addition, we can distinguish patterns that are cell type-specific 
(69,3%), lineage-specific (16,9%), which are shared by two or more close cell types, and others 
with more complex patterns between more distant cell types (13,8%; see S8 Fig). We have 
included UCCS browser’s screenshots of two interesting genes that show nearby CDRs, 
ABHD16B that shows transcription in the lymphoid lineage and LINC00494 active only in B cells 
(S9 Fig). As far as we know, these genes have not been previously related with hematopoiesis.  
 
Recently, Corces et al (38) generated ATAC-seq profiles to analyse the chromatin accessibility 
in a comprehensive collection of hematopoietic cell types, of which HSCs, B-cells, T-cells and 
monocytes are also included in our analysis. Around 10% of their defined set of 774 cell-type-
specific regions based on differential accessibility (38) overlapped with our defined CDRs. For 
these regions, we analysed the ATAC-seq signal distributions for different CDR patterns (see 
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S10 Fig). Importantly, we found that CDRs that show cell type-specific active state patterns in 
HSCs, B-cells, T-cells and monocytes respectively also show increased chromatin accessibility 
specifically for those cell types in the ATAC-seq data.  
 
 
CDR chromatin state transitions across hematopoiesis 
A more detailed analysis of the CDR transitions between cell types following the differentiation 
process can provide insights about chromatin remodeling across lineages. From the first 
pluripotent stage (HSCs), 4 possible second stages can be obtained (Monocytes, Neutrophils or 
Naive B cells, T cells, according to the branch). After a further round of differentiation the third 
stage comprises Macrophages (originating from Monocytes) and GC B cells (originating from 
Naive B cells). Fig 3A shows transitions in CDR states across the various branches of the 
differentiation process. We observe the transitions from the HSCs to the second stage to be 
characterized by a turning off of active and enhancer CDRs. In contrast, in the second round of 
differentiation (from Monocytes and Naive B cells to Macrophages and GC B cells, respectively) 
there is an increase in the activation of promoter and enhancer CDRs. 
 
 
CDR association to genes and transcription factors binding sites 
Chromatin state changes at CDRs might be pointing to drivers of cell differentiation and could 
be involved in regulating the expression of nearby genes that are important for these cell type 
transitions. We found most of the CDRs (94,5%) in intergenic and intronic regulatory regions, 
with an enrichment in the promoter and 5-UTR regions over the genomic background  (see S11 
Fig). A detailed annotation of each CDR is available in S6 Table. We associated each cell type-
specific CDR to its most proximal gene and carried out a multi-group gene expression analysis 
of all the mature cell types, taking advantage of The BLUEPRINT Data Analysis Portal 
(BDAP;(29)). The analysis was carried out on 7764 genes with gene expression data available 
and associated CDRs, out of 60,483 included in BDAP, including protein-coding, ncRNA, 
pseudo, snoRNA and snRNA genes. The analysis showed that 81% had significant gene 
expression differences (P-value adjusted) across the mature cell types (see S7 Table).  
 
Further, functional enrichment analyses were performed for the genes associated to each cell 
type-specific CDR having specifically active promoter, enhancer or transcription states (see Fig 
3B; S12-18 Figs; S8 Table; see Methods for details). As expected, genes proximal to the CDRs 
defining HSCs were mainly enriched in processes related to development and cell 
differentiation.  
 
CDRs defining the myeloid lineage were close to genes related to tissue development and 
antimicrobial response among others. On the other hand, for CDRs defining the lymphoid 
lineage we found genes related to T cell activation, cytokine production or response to 
interleukin-4, a cytokine produced by T cells involved in humoral and adaptive immunity (39). 
CDRs defining the two different B cell types were associated to genes with functions in 
proliferation and differentiation.  
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In addition, different neuron terms for differentiation and development were enriched for different 
cell types. These enrichments could be explained by the overlap in the molecular programs for 
hematopoiesis and neuropoiesis (40–42). The hematopoietic system is involved in many 
processes and genes related with neuronal development and function have been observed as 
expressed in different hematopoietic cell types (43). For example, we find a CDR overlapping 
with the gene encoding for Basp1 (Brain Abundant Membrane Attached Signal Protein) that 
belongs to many differentiation/morphogenesis-related GO terms, including “central nervous 
system development”. This and other related neuronal genes were shown to be up-regulated in 
germinal centre B-cells, where its pattern of gene expression is associated to the development 
of neurite-like projections of the membrane (44). Furthermore, interactions between the nervous 
and immune systems are required for organ function and homeostasis (45). A report has shown 
that primary CD34+ hHSCs express mRNA for a number of proteins that are used by neurons 
(among other cell types), including receptors for trophic factors and other mediators that are 
known to influence neuronal development (42). Finally, the similarity between these two 
differentiation programs could explain the fact that HSCs can differentiate to neural cells, albeit 
at relatively low efficiency (46–48). 
 
We next asked whether CDRs involving cell type-specific active promoter or enhancer states 
were enriched in transcription factor motifs (TFMs, see Methods for details). Hierarchical 
clustering based on the TFM enrichment patterns clearly separates the HSC TFMs profiles from 
those of the myeloid and the lymphoid cell types (Fig 3C). A detailed annotation for motifs in 
each CDR is available in S6 Table. 
 
We observed in HSCs a specific motif enrichment for GATA factors, which have been related to 
regulation of the self-renewal of long-term hematopoietic stem cells and differentiation of bone 
marrow-derived mesenchymal stem cells (49–52). Enrichment in binding motifs for factors like 
RUNX, implied in stem cell fate maintenance and normal function, was also observed in HSCs-
specific CDRs (53, 54). GATA and RUNX factors were described by Corces et al. (38) as 
dominant regulators of chromatin accessibility in hematopoiesis. Interestingly, motifs for the so 
far uncharacterized factor X gene family, known to regulate the major histocompatibility complex 
(MHC) class II (55), were also exclusively enriched in CDRs specific for HSCs.  
 
In myeloid cell types, CDRs specific to monocytes are enriched in binding motifs for the C/EBP 
homologous protein (CEBP/CHOP) and its interactor ATF4 (56), (57), which plays a key role 
during the differentiation of the monocyte lineage (58, 59). In contrast, EGR1 and EGR2 binding 
motifs, which are essential for macrophage but not for granulocyte differentiation (60, 61), are 
enriched in macrophages. Higher expression at RNA level is observed in macrophages 
compared with monocytes and mature neutrophils (see S19 Fig). In addition, enrichment for 
transcription factor binding sites related to macrophage differentiation like STAT3, JUND, MITF, 
NUR77 or ATF2 is observed in CDRs specific to macrophages (62–66). 
 
Binding motifs for members of the NF-KB complex (NF-KB, RELA, IRF2), implicated in stimulus 
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response, were enriched in CDRs characterizing GC B cells. It is known that defects of this 
complex in germinal centers affect their maintenance and B cell differentiation (67, 68). In 
addition, we observed enriched motifs for Early B-cell factor 1 (EBF1), a central transcription 
factor in B cells implicated in germinal center formation and class switch recombination (69, 70), 
Oct2 and Fli1, transcription factors expressed in B cells and related to normal B cells 
proliferation (71, 72). 
 
TFMs from the ETS transcription factor family genes (GABPA, ETS1, SpiB, PU.1 and ELF5) 
were enriched in all cell type-specific CDRs. These gene families are ubiquitously expressed in 
the different blood cell types, although they are known to play specific roles in different cell 
types. For example, in monocytes, PU.1 regulates the transcription of a large proportion of 
myeloid-specific genes, while in B cells it is involved in regulating the transcription of the heavy 
and light immunoglobulin chain genes (73). 
 
Finally, we took advantage of BDAP expression data for 28 transcription factors whose DNA 
binding motifs were enriched in CDRs (Figure 3C) and for which expression data was available. 
We excluded transcription factors whose binding motifs were specifically enriched in HSCs as 
this immature cell type is not included in BDAP. A subset of 96,5% (27/28) of them showed 
differential expression between cell types (see S7 Table). In addition, we observed that 60% 
(16/27) of the transcription factors with changes in expression also have a CDR associated to 
them by proximity, suggesting a central role for chromatin regulatory regions in the 
hematopoietic regulatory network. 
 
Taken together, the gene expression, gene ontology and TFM enrichment analyses suggest 
that the identified CDRs are indeed important functional regions, where chromatin remodeling is 
linked to cell fate. Overall, we have shown that our approach is useful to identify key and 
potentially driver local changes in the epigenomes of healthy cells across different 
hematopoietic lineages. 
 

Clustering of healthy and leukemic samples based on CDRs 

 
The framework explained above allowed us to identify specific genomic regions that are under 
epigenetic control and might contribute to define blood cell types. This framework can be further 
exploited to analyze the relationships between leukemia and healthy cell types.  
 
Extensive epigenetic changes are common in most leukemias and solid tumors (74) and 
epigenetic features such as DNA methylation or open chromatin have been shown to be useful 
to identify the cell of origin of tumours (75, 76). However, given the extensive genome-wide 
epigenetic alterations of tumour cells, matching tumoral cells with their healthy counterparts is a 
great challenge and an essential step to identify the chromatin changes leading to malignancy.  
 
The CDRs constitute an epigenetic signature of hematopoiesis. Therefore, we reasoned that 
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they should be useful to classify blood cancer samples according to their similarity to normal cell 
types. We used the data generated by The BLUEPRINT consortium for three hematopoietic 
neoplasms, including 6 chronic lymphocytic leukemias (CLLs), 3 acute myeloid leukemias 
(AMLs) and 3 mantle cell lymphomas (MCLs) to explore the epigenetic similarity among healthy 
and cancerous samples.  
 
We projected the leukemic samples on the healthy hematopoietic chromatin space, based on 
their chromatin states at CDRs (see S20 Fig and Methods). Next, we used the distance of each 
leukemic sample to a reference healthy cell type (S20 Fig) to quantify the similarities and 
differences observed at the CDRs level between healthy and disease epigenomes. 
 
The distribution of the leukemia samples in the CDRs healthy hematopoietic chromatin sample 
space separates them into two main groups. The AML samples localized into the myeloid region 
of the space, while the CLL and MCL samples were in the lymphoid region (see S20 Fig). A 
hierarchical clustering based on the distances of each leukemia sample to each reference 
healthy cell type shows that CLL and MCL samples both cluster with the reference Naïve B cell 
(see Fig 4; cluster I). In contrast, AML samples are distributed in more than one cluster, with 
two samples clustering within the reference neutrophil cluster IV, and the other one within the 
reference monocyte cluster II, suggesting a different origin for these tumours.  
 
Each tumoral sample was projected onto the healthy hematopoietic chromatin sample space 
using the CDRs whose chromatin states are represented in any of the healthy cell types (see 
Methods). However, there is a variable number of CDRs per tumoral sample whose chromatin 
state is not represented in the normal cell types. We can view these chromatin states either as 
features related to maturation stages of cells not included in our analyses, or as changes that 
have occurred specifically in the malignant transformation. Interestingly, we can observe 
characteristic divergence patterns for the different neoplasms (Fig 4). AML samples appear to 
be epigenetically more divergent from the healthy states than those closer to the B cell derived 
cancer samples.  
 
We analysed these divergent CDRs as a potential source of information about epigenomic 
alterations that might be important for tumoral transformation. To this end, we focused on those 
297 CDRs where most of the leukemic samples have a potentially unhealthy chromatin state (a 
chromatin state that is never observed in the healthy samples, see Methods and S9 Table). 
We proceeded by associating these CDRs to genes by proximity and investigated whether 
these genes were commonly regulated or mutated in tumours. 
 
Functional enrichment analysis of the 177 genes associated to these CDRs by proximity 
showed that they are mutated in a large number of tumors, including AML and CLL ( COSMIC 
tumoral signatures (77), p-value<0.05, see S10 Table). An analysis of those CDRs specifically 
altered in each of the leukemias (282 CDRs in AML, 591 in CLL and 727 in MCL) shows similar 
results. However, we observed that mutational signatures associated specifically to AML, CLL 
and MCL were enriched only in tumors different from the leukemia where we detected the 
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epigenomic alteration  (see S10 Table).  
 
On the contrary, when comparing with gene signatures regulated in tumours, we found that 
genes associated to altered CDRs in AML and CLL respectively are enriched in the expression 
signatures of the corresponding leukemias (MSigDB gene expression signatures (78), p-
value<0.05, see S10 Table). This result supports that these alterations in CDRs are linked to 
the detected gene expression changes in the associated genes (see S10 Table).  
 
We also found that the three sets of genes specifically altered in the different leukemias are all 
enriched in the same general processes: differentiation and development, cell-cell adhesion, 
endocytosis and phagocytosis or metabolic processes (GO biological process, p value < 0.05, 
see S11 Table and S21-24 Figs). Although these sets of genes are related to similar 
processes, they contain different genes (only three genes in common among the three 
leukemias) and they are related to different detailed functions. In fact, genes associated to 
CDRs altered in most AML samples are mainly enriched in membrane transporters and 
metabolic pathways, those altered in CLL are enriched in many signal transduction pathways 
(VEGF, WNT, FGFR, ERBB or MAPK signalling) and those in MCL in  morphogenetic and 
developmental processes (p value<0.05, see S11 Table). These observations draw a scenario 
where leukemic mutations and epigenomic alterations point to the same processes that are key 
for tumor progression, but involve different genes in a leukemia-specific way. Taken together, 
these results show the potential of our proposed CDR approach to characterise hematopoietic 
cell types in normal differentiation and disease.  
 

Discussion  
 
Chromatin remodeling is an essential process for determining the set of phenotypes deployed 
by eukaryotic cells. Chromatin regulation is based on combinatorial associations among 
proteins and complex communication networks, which define the functional states of the 
different genomic/chromatin regions (12). These functional states play a determinant role to 
define cell identity during the differentiation process. Despite the great efforts made in the last 
few years to generate functional chromatin maps for many cell types (19, 37), we are still far 
from identifying the genomic regions where driver chromatin changes occur, their association 
with functional changes that give the cell its identity during development, or their implications in 
disease. 
 
Hematopoiesis is possibly the best characterized differentiation process, usually represented by 
a hierarchical tree based on morphological criteria and refined with surface markers (1). 
Hematopoiesis provides a well-defined model to study cell differentiation from an epigenetic 
perspective. We face the challenge of studying this process by integrating epigenomic 
information from multiple human blood cell types and different data sources. The blood IHEC 
epigenomes provide a unique opportunity to investigate the epigenetic basis of lineage 
determination. 
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We have developed a new protocol, based on a useful and powerful multivariate framework 
based on a rigorous statistical approach, to define in an unsupervised manner which cell types 
are epigenetically distinguishable. Importantly, we simultaneously identify the key genomic 
regions driving these differences. These regions, named Chromatin Determinant Regions 
(CDRs), can be considered as the epigenetic signatures of human hematopoiesis, a set of 
reference regions that through their epigenetic changes might be able to drive hematopoiesis. 
 
The results are robust to the possible noise introduced by consortia-specific protocols and the 
clusters obtained provide perfect classification of samples in the different cell types. We 
observed clear clusters for seven cell types plus an additional cluster for CD4+ and CD8+ T 
cells. Interestingly, a recent work using H3K4me1 and H3K27me3 histone modifications 
independently was also unable to discriminate CD4+ from CD8+ T cell types (37), supporting 
the hypothesis that the epigenomes of these cell types are very similar.  
 
The sample space, in addition to clearly separating the myeloid from the lymphoid lineages, 
reflects the epigenetic distance of each cluster from the HSC. Although both the classical and 
the more recent alternative hematopoietic hierarchical differentiation models propose a similar 
differentiation distance for neutrophils and monocytes or T and B cells(1, 2), our space shows 
clearly very different epigenetic differentiation distances for neutrophils and monocytes, as well 
as for T and B cells. These differences suggest that cell types with shorter epigenetic distances 
from HSCs may reach the mature state earlier. In the case of murine fetal liver T and B cells, it 
is known that the T cell progenitors appear earlier than the B cells ones (79).  
 
The classical hematopoietic model establishes that the HSCs differentiate into the common 
myeloid progenitor (CMP) or the common lymphoid progenitor (CLP), divided in the myeloid and 
the lymphoid lineages (1). However, this model is under discussion, as it has been shown by 
Kawamoto et al. (79) and other authors (80–83) that the T and B cell progenitors retain the 
potential to differentiate into myeloid cells. These results have led to the proposal of an 
alternative “myeloid-based” model for hematopoiesis (79), which would suggest that the two 
main branches are not as well separated as initially thought. Interestingly, we found that the 
epigenetic distance between neutrophils and T cells is very short in our model, both cell types 
being very close to the HSC group.  
 
Unfortunately, although our CDRs refer to chromatin changes during all the lineage 
differentiation steps, data for progenitors (GMP, CMP, CLP, MPP, ...) do not meet the IHEC 
standards and could not be used in our analysis. Therefore, we can not assign each CDR to the 
precise intermediate cell type in which it was originated. The future availability of complete 
epigenomes for more cell lineages, including intermediate progenitors, will provide additional 
information to assess whether the myeloid-based differentiation model proposed by Kawamoto 
et al. (79) is consistent with the chromatin landscape. 
 
The strength of our protocol, beyond providing a classification of cell types, is to identify the 
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CDRs that drive human hematopoiesis. We detected 32,662 CDRs that represent the epigenetic 
signature of hematopoiesis for the cell types included in the analysis. Interestingly, we observed 
that all the transitions starting from HSCs to other cell types were enriched in epigenetic 
inactivation, while the Monocytes-to-Macrophages and naive-to-GC B cells transitions are 
enriched in epigenetic activation. These results suggest that the differentiation process involves 
a first phase characterized by loss of stemness through epigenetic repression of the HSC 
processes, followed by activation of more specific regulatory programs that define specific 
differentiated cell types (84–87). 
 
A further characterization of these CDRs showed that they are enriched in DNA binding motifs 
of transcription factors with a key role in hematopoiesis. These results support the idea of CDRs 
as driver regions whose chromatin reconfiguration is associated to cell type-specific regulatory 
programs. Moreover, we also observed that these regions are proximal to genes with functions 
in cell differentiation and cell type- or lineage- specific processes, coherent with the transitions 
reflected by the epigenetic pattern of the regions. 
 
As only a subset of blood cell types was used in this analysis, these CDRs have to be seen as 
only a first approximation to understand human hematopoiesis from an epigenetic perspective. 
It is important to note that other previous models were proposed based on surface markers (88) 
or mice models with DNA methylation (4) and transcriptomics (2). Although the human 
hematopoietic differentiation model closely resembles the murine one, accumulated evidence 
has shown that they differ in important aspects. For example, the HSC immunophenotypes (1) 
or hematopoietic gene regulation programs are not fully conserved between species (89).  
 
In addition to providing a useful epigenetic signature of hematopoiesis, we have also shown that 
the CDRs could provide useful information about disease related epigenetic features. We 
applied our method to study the epigenetic similarities between leukemias and healthy cell types 
by projecting the leukemia samples in the space generated with the CDRs. We hypothesized 
that leukemia derived from certain healthy cell types would maintain the epigenetic CDR 
signature of its cell of origin. Indeed, our approach recovers a coherent distribution of 
hematological cancers, with B-cell neoplasms clustering close to B naïve cells, and a more 
heterogeneous classification of the AML samples. AML is known to be a very heterogeneous 
disease with many different subtypes and a difficult clinical classification (90, 91), which would 
explain why two of the AML samples cluster close to neutrophils, and the other one with 
monocytes. In addition, we also performed a functional analysis of the CDRs more recurrently 
epigenetically changed in different leukemias, showing that they tend to target general 
processes (such as differentiation and development, cell-cell adhesion, endocytosis and 
phagocytosis). Interestingly, different genes within these pathways are either epigenetically 
altered or mutated in the specific leukemias, suggesting mutual exclusivity of the two types of 
alterations in the same genes. In summary, our proof of concept application of the epigenetic 
signature of hematopoiesis in the study of leukemia shows the power of our methodology.  Only 
when more leukemia and complete progenitor epigenomes will become available will we be able 
to exploit the full potential of this approach. 
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In conclusion, our results have shown the value of our multivariate framework in investigating 
the differentiation processes. We propose a catalog of epigenetic signatures of human 
hematopoiesis, based on the CDRs that best describe the different cell types. This catalog, with 
further refinements by the inclusion of additional cell types and hematopoietic progenitors, could 
become the reference IHEC resource for human hematopoiesis studies.  
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Figure Legends 

 

Fig 1. - Framework to identify CDRs that determine cell or lineage identity 
based on chromatin state changes. 
1A) A chromatin samples space is generated with MCA from the chromatin segmentations by 
each sample. 
1B) Samples are classified depending on clusters derived from the MCA analysis. 
2A) A second space is generated with MCA from the chromatin segmentations by each sample. 
2B) The CDRs are obtained selecting those genomic regions that overlap with the cluster 
sample fingerprints, a reference sample representing each cell type cluster. These regions 
discriminate the different cell types classified in the samples space. (*Regions with chromatin 
changes among cell types -> CDRs) 
See  also S1 Fig and supporting information 
 

Fig 2. Hematopoietic cell types cluster based on chromatin states 

A. Schematic differentiation tree of the cell types considered, highlighting the tissue of origin and 
environment of each sample type.  
B. Clustering of the samples in the MCA space recovers ontological relationships among cell 
types. (*Cell types with samples from different consortia) 
See  also S2 Fig, S1 Table and supporting information 

Fig 3. Functional and Transcription Factor binding motifs characterization 
of Chromatin Determinant Regions 

A) Sankey Plot representation of chromatin state transitions at CDRs during hematopoietic cell 
differentiation. Nodes for each cell type represent the five “collapsed” chromatin states (see 
Methods). For each pair of cell types in the hematopoietic differentiation pathway, flows, 
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represented by line thickness, are proportional to the number of regions that show a transition 
between a particular pair of states. Changes in chromatin states between two stages of 
differentiation are shown with lines that change colour. The thickness of the lines is proportional 
to the number of regions that show a transition between a particular pair of states. 
B) Enriched ontology terms from the genes related to the CDRs that characterize each cell type. 
C) Heatmap and Hierarchical clustering based on transcription binding proteins enriched in the 
CDRs that characterize each cell type (see Methods). 
See  also S3-S15 Figs, S2-S6 Tables and S1 File 

Fig 4. Hierarchical Clustering of leukemias based on CDRs of healthy cell 
types suggests potential lineage origin of tumors.  
The healthy cell type clusters are summarized by each fingerprint, a reference sample 
representing each cell type cluster. The euclidian distances between samples and fingerprints 
are calculated with the Ward’s method. The barplot in the right shows the epigenomic 
divergence (ratio of chromatin changes in CDRs) of each cancer sample to the healthy states. 
See  also S16-20 Figs and S7-S9 Tables 
 

Table 1. COSMIC and MSigDB enrichments for leukemia-altered CDRs. In 
orange background those statistically significant. See  also S10 Table 

 
            

Terms COSMIC GLOBAL_0.5 AML_0.5 CLL_0.5 MCL_0.5 

diffuse_large_B_cell_lymphoma 0.00 0.03 0.00 0.00 

acute_myeloid_leukaemia_therapy_related 0.01 1.00 0.00 0.00 

haematopoietic_and_lymphoid_tissue-haematopoietic_neoplasm-
acute_myeloid_leukaemia_therapy_related 

0.01 1.00 0.00 0.00 

haematopoietic_and_lymphoid_tissue-lymphoid_neoplasm-
diffuse_large_B_cell_lymphoma 

0.01 0.03 0.00 0.00 

acute_myeloid_leukaemia 0.01 1.00 0.00 0.02 

haematopoietic_and_lymphoid_tissue-haematopoietic_neoplasm-
acute_myeloid_leukaemia 

0.01 1.00 0.00 0.02 

haematopoietic_and_lymphoid_tissue-haematopoietic_neoplasm 0.02 1.00 0.00 0.00 
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haematopoietic_neoplasm 0.06 1.00 0.00 0.00 

haematopoietic_and_lymphoid_tissue-lymph_node-
lymphoid_neoplasm-acute_lymphoblastic_leukaemia 

0.12 1.00 0.00 0.00 

haematopoietic_and_lymphoid_tissue-lymphoid_neoplasm 0.19 0.00 0.01 0.00 

Terms MsigDB GLOBAL_0.5 AML_0.5 CLL_0.5 MCL_0.5 

GUTIERREZ_CHRONIC_LYMPHOCYTIC_LEUKEMIA_DN 0.02 1.00 0.00 1.00 

HUTTMANN_B_CLL_POOR_SURVIVAL_DN 1.00 1.00 0.00 1.00 

VALK_AML_WITH_CEBPA 1.00 1.00 1.00 0.02 
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