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Abstract 8 

Cooperation through division of labor underpins biological complexity for organisms and communities. In 9 
microbes, stochastic differentiation coupled to programmed cell death drives diverse altruistic behaviors that 10 
promote cooperation. Utilizing cell death for developmental multicellular programs requires control over 11 
differentiation rate to balance cell proliferation against the utility of sacrifice. However, these behaviors are 12 
often controlled by complex regulatory networks and have yet to be demonstrated from first principles. Here 13 
we engineered a synthetic developmental gene network that couples stochastic differentiation with 14 
programmed cell death to implement a two-member division of labor. Progenitor consumer cells were 15 
engineered to grow on cellobiose and differentiate at a controlled rate into self-destructive altruists that 16 
release an otherwise sequestered cellulase payload through autolysis. This circuit produces a 17 
developmental Escherichia coli consortium that utilizes cellulose for growth. We used an experimentally 18 
parameterized model of task switching, payload delivery and nutrient release to set key parameters to 19 
achieve overall population growth, liberating 14-23% of the available carbon. An inevitable consequence of 20 
engineering self-destructive altruism is the emergence of cheaters that undermine cooperation. We observed 21 
cheater phenotypes for consumers and altruists, identified mutational hotspots and developed a predictive 22 
model of circuit longeivity. This work introduces the altruistic developmental program as a tool for synthetic 23 
biology, demonstrates the utility of population dynamics models to engineer multicellular behaviors and 24 
provides a testbed for probing the evolutionary biology of self-destructive altruism. 25 

Introduction 26 

Compartmentalization of function across differentiated cell types was essential to the emergence of 27 
complexity in biological systems. Organogenesis in plants and animals1, schizogamy in polychaete worms2 28 
and germ-soma differentiation in Volvox algae3 are clear examples of these divisions of labor. Many 29 
microbial developmental programs utilize stochastic differentiation and programmed cell death as vital 30 
components of population fitness4. Selection for programmed cell death has been proposed to drive complex 31 
behaviors that delay commitment to costly cell fate decisions5, enable adaptation to environmental 32 
fluctuations6, eliminate competitor species7, reinforce biofilm structure8 and promote colonization of hostile 33 
environments9. These behaviors represent divisions of labor between subpopulations of progenitor cells that 34 
propagate the species and sacrificial cells that provide a public good, analogous to germ and somatic cell 35 
lines in multicellular organisms. Many aspects of the emergence of multi-cellular cooperation and the genetic 36 
circuits that control its complexity remain unclear. Limited understanding of the network architectures and 37 
stimuli that control developmental gene networks constrains efforts to repurpose them for engineered cell 38 
behaviors. 39 

Current engineering paradigms of DNA-encoded cellular logic and feedback control circuits fail to 40 
encompass the full suite of behaviors necessary to advance the fields of bioprocessing, bioremediation and 41 
cell-based therapeutics. Synthetic microbial consortia have been demonstrated to improve bioprocessing 42 
efficiency10 or to explore other complex behaviors11. A major challenge to engineering microbial consortia is 43 
the control of community distributions for complex traits. While syntrophic interactions in defined 44 
communities may address some of these needs, they may not be sustainable in environments with 45 
fluctuating nutrient or microbial constituents. Further, efficient delivery of protein or small molecule payloads 46 
to the environment is constrained by the cell membrane, often requiring the expression of payload-specific 47 
pumps or secretion signals. Autolysis triggered by chemical12,13 or autoinducer14 signals allows release of 48 
protein payloads, but prevents applications that may require continuous delivery. Synthetic developmental 49 
programs could address these challenges, enabling approaches to create and regenerate microbial 50 
communities seeded by individual cells that cooperatively perform complex tasks. 51 

A synthetic altruistic developmental program 52 

Here we present a synthetic developmental program that implements a germ-soma division of labor to 53 
cooperatively digest cellulose. The program links a synthetic differentiation controller with autolysis-mediated 54 
enzymatic payload delivery, balancing the rates of stochastic differentiation and programmed cell death to 55 
drive overall population growth. We constructed a genetic circuit to create cellobiose consumer cells that 56 
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produce a sub-population of self-destructive altruists at a controlled rate to enable utilization of cellulose as a 57 
sole carbon source through extracellular release of cellulase payloads (Figure 1a). 58 

We refer to the system as SDAc, short for self-59 
destructive altruism with a cellulase payload. We 60 
implemented SDAc in Escherichia coli by 61 
engineering a native operon to efficiently utilize 62 
cellobiose, introducing a genetic toggle switch 63 
tuned to function as a differentiation controller, 64 
and constructing a cellulase-lysis payload module 65 
to execute the altruist behavior (Figure 1b). We 66 
used dynamical systems analysis modeling to 67 
identify parameter values critical to achieving 68 
overall growth and demonstrated control over the 69 
circuit behavior by fine-tuning each parameter. 70 

Using multiplexed mutagenesis and selection, we 71 
isolated a strain with a growth rate in cellobiose 72 
that is 63% its growth rate in glucose. Though E. 73 
coli does not natively digest cellobiose, we 74 
modified the chb operon in a recombinogenic 75 
MG1655 derivative15 by replacing the native 76 
chitobiose-regulated promoter with a strong 77 
constitutive promoter16. We further improved 78 
growth on cellobiose by subjecting the constitutive 79 
chb expression variant to multiple cycles of 80 
multiplexed recombineering targeting the chb 81 
genes and selected for cellobiose utilization in 82 
minimal cellobiose media (Supplementary Figure 83 
1). We identified the variant with the highest 84 
growth rate, DL069, as a chbR deletion mutant. 85 

To control differentiation rate, we constructed and 86 
sampled from a library of mutual inhibition toggle 87 
switch variants that exhibit regular stochastic state 88 
transitions. While genetic toggle switches are 89 
often designed to function as bistable memory 90 
devices17, a quasi-steady state can be achieved 91 
by properly balancing expression levels of the 92 
repressor proteins18. Simple sequence repeats 93 
embedded in the ribosome binding site (rbSSR) 94 
allow predictable modulation of translation 95 
initiation rate to tune the balance between 96 
transcriptional repressors19. 97 

We engineered altruist payload delivery by 98 
constructing a cellulase and lysis gene cassette. 99 
The operon was designed to maximize production 100 
of the cellulase payload with an efficient ribosome 101 
binding site and a poly-(AT) rbSSR to fine-tune 102 
expression of the lysis gene. In order to minimize 103 
the altruist subpopulation it is desirable for 104 
maximal post-differentiation accumulation of the 105 
payload to precede autolysis. Colicin gene 106 
networks share this trait, using stochastic gene 107 
expression of colicin and lysis genes within 108 
subpopulations to kill ecological competitors7,20. 109 
We found that coupling the lysis gene from colicin 110 
E3 to the differentiation controller enabled 111 
stochastic state transitions and delayed lysis at 112 
the microcolony level, evidenced by accumulation 113 
of a GFP payload followed by autolysis (Figure 1c 114 
and Supplementary Movie). 115 

 116 

Figure 1: A synthetic developmental program for 117 
cooperative cellulose digestion. (a) Cellobiose 118 
consumers stochastically transition to self-destructive 119 
altruists. Altruists, in turn, produce and release cellulase 120 
payloads via autolysis to support the consumer 121 
population. (b) The genetic implementation of the SDAc 122 
developmental program includes a differentiation 123 
control plasmid (above) and a payload delivery plasmid 124 
(below). Cell states are mediated by a mutual inhibition 125 
toggle switch using transcriptional repressors LacI and 126 
TetR. TetR-dominant cells express RFP as consumers; 127 
LacI-dominant cells co-express cellulase and colE3 128 
lysis (colE3L) proteins with GFP as altruists. 129 
Differentiation and lysis rates are fine-tuned with rbSSR 130 
sequences for tetR and lacI (differentiation) and colE3L 131 
(lysis). (c) Demonstration of differentiation and autolysis 132 
within a microcolony seeded by a single cell. A large 133 
altruist cell (arrow) accumulates its GFP payload (upper 134 
panel) until it undergoes autolysis (lower panel), 135 
enabling payload diffusion to surrounding cells (circle). 136 
See Supplementary Movie. 137 
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SDAc parameter estimates through modular system decomposition 139 

 Analysis of a population dynamics model of SDAc behavior suggested optimal parameter regimes for 140 
cellulose utilization and guided implementation of the developmental circuit. Though we observed the 141 
requisite behaviors of differentiation, payload accumulation and autolytic payload release at the microcolony 142 
level, it was not clear what combination of expression levels for circuit components would enable cooperative 143 
growth on cellulose. To reason about the functional parameter space for SDAc behavior we developed a 144 
population dynamics model using a system of ordinary differential equations that maps system parameters to 145 
experimentally tunable features of the genetic circuit. The model species are consumers, altruists, cellulose 146 
feedstock, and cellulose-derived nutrients. These species and the associated kinetic parameters are 147 
described in Box 1. 148 

Box 1. Systems of equations for modeling synthetic self-destructive altruism. 

I. 𝐶 =
𝑛

𝑘! + 𝑛
𝑣!𝐶 −

𝑛
𝑘! + 𝑛

𝜎𝐶  
 

III. 𝐶 = 𝑣! − 𝜎 𝐶 
 

   
𝐴 = (𝑣! − 𝜌)𝐴 + 𝜎𝐶 

 
 
𝐴 =

𝑛
𝑘! + 𝑛

𝑣!𝐴 +
𝑛

𝑘! + 𝑛
𝜎𝐶 − 𝜌𝐴  

    
  

IV. 𝐹 = −𝜔𝜌𝐴𝐹 
 

 
𝐹 = −𝜔𝜌𝐴𝐹  

  
𝑌(𝑛) = 𝛾𝑛 + 𝑏 

 

 

𝑛 = 𝜔𝜌𝐴𝐹 −
𝑛
𝛾

𝑣!
𝑘! + 𝑛

𝐶 +
𝑣!

𝑘! + 𝑛
𝐴       

 
V. 𝐶 = 𝑣! − 𝜎 − 𝜒! 𝐶 

 
     

𝑆 = 𝑣!𝑆 + 𝜒!𝐶 
 II. 𝐶 = 𝑣! − 𝜎 𝐶 

   
𝐴 = (𝑣! − 𝜌 − 𝜒!)𝐴 + 𝜎𝐶 

 
 
𝐴 = 𝑣!𝐴 + 𝜎𝐶 

   
𝑃 = 𝑣!𝑃 + 𝜒!𝐴 

 Module I. We constructed a population scale model composed of first order ordinary differential equations. The model 
contains four relevant species: consumers (𝐶), altruists (𝐴), cellulose (𝐹, feedstock), and digestible nutrients (𝑛) with 
corresponding units of colony forming units per mL for cells and grams per mL for molecules. Consumer and altruist cells 
grow in the presence of nutrients at rates 𝑣! and 𝑣!, respectively. Individual consumer cells differentiate to altruists at 
rate 𝜎, and altruists lyse at rate 𝜌. Altruist payloads degrade feedstock to nutrients at rate 𝜔, and nutrients yield biomass 
according to 𝛾. Nutrient-dependent dynamics are controlled by half maximal rate constants for growth (𝑘! , 𝑘!) and 
differentiation (𝑘!). Autolysis is considered nutrient-independent. Additional model details are included in Supplementary 
Table 1 and Supplementary Note 1. 

Experimental Parameter Measurements 
The modularity of the synthetic SDAc developmental gene network allows experimental measurement of each parameter 
by systematic deconstruction of the full system. We constructed simplified sub-models to identify the key circuit 
parameters and measured the behaviors of defined sub-circuits to estimate the parameters. Experimental details are 
described in the Materials and Methods and modeling approaches to the parameter estimates are described in detail in 
the Supplementary Notes. 
Module II. Differentiation rate (𝜎) 
A continuous growth model of consumer and pseudo-altruists was used to estimate differentiation rate for SDAc strains 
missing payload and lysis genes. The temporal population fraction of consumers (RFP producers) and altruists (GFP 
producers) was measured by flow cytometry for strains pre-induced to the consumer state, washed and grown in M9 
minimal cellobiose media (Figure 2a-c). For each strain 𝜎 estimates were fit to this system of equations using growth 
rates measured independently. Unbounded growth in the dynamics represents growth for each passage over a finite 
duration of the periodic dilution. 
Module III. Autolysis rate (𝜌) 
A continuous growth model of consumers and altruists was used to estimate autolysis rate for SDAc strains. Cultures 
were initialized and measured as in Module II. For each strain 𝜌 estimates were fit to this system of equations (Figure 2d-
f) using growth rates and differentiation rates measured independently. 
Module IV. Cellulose hydrolysis (𝜔) 
A model of feedstock degradation and nutrient release was used to estimate cellulose hydrolysis rates for lysis deficient 
SDAc strains expressing cellulase payloads. Crude cell lysates were generated from cellulase producing strains. Nutrient 
release from PASC media inoculated with lysates was measured via supernatant growth of a cellulase and lysis deficient 
strain. For each strain 𝜔 estimates were fit to the feedstock equation 𝐹 using nutrient estimates derived by applying the 
equation for 𝑌 to growth data. 
Module V. Cheater dynamics 
A continuous growth model of consumers, altruists, consumer cheaters that do not differentiate (𝑆) and altruist cheaters 
that do not lyse (𝑃) was used to estimate rates of escape from consumer (𝜒!) and altruist (𝜒!) states. Models that 
account for single or dual cheater subpopulations were used as fits to the population fraction data and growth rate data 
obtained for Module II (Figure 4d). 
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The core tunable parameters for SDAc cellulose utilization are the growth rate on cellobiose, differentiation 149 
rate, lysis rate and cellulase activity. Cells must utilize the hydrolysis products of the cellulase enzymes, 150 
including cellobiose. Insufficient differentiation would limit growth via low cellulase release, while excessive 151 
differentiation would incur unnecessary fitness defects for consumers or, at extreme rates, to population 152 
collapse. Low lysis rates would limit feedstock degradation through sequestration of intracellular cellulase 153 
and rapid lysis would reduce the per-altruist payload burst size. High cellulase activity improves growth titer 154 
by reducing the population fraction of altruists required to deconstruct the feedstock. Ultimately, SDAc 155 
performance is constrained by the tunability of the circuit components and many parameter sets predict no 156 
growth on cellulose (Supplementary Figure 2). 157 

The modularity of a synthetic gene circuit implementation allowed us to decompose the system model and its 158 
experimental components to estimate system parameters and predict cellulose utilization for the full circuit. 159 
We developed the modules described in Box 1 to measure growth rate, differentiation rate and lysis rate in 160 
cellobiose as well as cellulase activity, drawing from a small parts library for each module to sample a range 161 
of parameters. 162 

We experimentally tuned differentiation rate over an order of magnitude with a collection of SDAc strains 163 
lacking cellulase and autolysis genes. Specifically, we used multiple poly-(T) rbSSR variants controlling 164 
expression of the consumer-dominant regulator TetR to modulate the differentiation rate from consumer to 165 
LacI-dominant altruists (Figure 2a,b). We measured the population fraction of differentiated cells as a 166 
function of time using flow cytometry (Supplementary Figure 3) and fit a two-state, continuous growth model 167 
to the data for consumers transitioning to altruists at rate 𝜎 (Box1, Module II). We found the repeat length to 168 
be inversely proportional to differentiation rate, supporting previous results for a switch on a higher copy 169 
number plasmid19 and resulting in 𝜎 estimates ranging from 2.7×10!! ± 9.0×10!! ℎ!! for (T)12 to 2.11×170 
10!! ± 1.5×10!! ℎ!! for (T)18 (Figure 2c, Supplementary Table 4). 171 

Lysis rates were modulated over a four-fold range using expression variants of the colicin E3 lysis gene. 172 
Using the intermediate rate differentiator (T)16, we tested a set of poly-(AT) rbSSR variants to modulate 173 
lysis gene expression (Figure 2d,e). We used the same population fraction assay as for differentiation to fit a 174 
consumer growth and differentiation model that includes altruist lysis parameter 𝜌 (Box1, Module III). We 175 
measured lysis rates from 7.2×10!! ± 1.8×10!! ℎ!! for (AT)10 to 1.9×10!! ± 2.5×10!! ℎ!! for (AT)8 (Figure 176 
2f, Supplementary Table 5). As predicted by the differentiation with autolysis model, the differentiated 177 
population fraction for each switch variant with the lysis gene is lower than for the equivalent autolysis-178 
deficient strain (Supplementary Figure 5). We found, however, that the lysis rate did not correlate with rbSSR 179 
length (Supplementary Figure 6). 180 

To estimate cellulase activity we quantified cellulose degradation from cell lysates of autolysis-deficient 181 
SDAc strains producing one or two cellulases, observing hydrolysis rates over a three-fold range. We 182 
measured cellulose degradation and digestible nutrient release for three endoglucanases from two glycoside 183 
hydrolase (GH) families: CelD0421 and BsCel522 from GH5; and CpCel9 from GH923 (Figure 2g,h). We also 184 
measured the activity of multi-enzyme cocktails using each GH5 enzyme with CpCel9, combinations with 185 
reported synergistic activities24. We used Congo Red staining of M9 minimal phosphoric acid swollen 186 
cellulose (PASC) media spiked with cell lysate to observe cellulose degradation up to 23% (Supplementary 187 
Note 6) in and quantified cell growth on the resulting supernatant to estimate nutrient release of up to 14% of 188 
cellobiose equivalents (see Supplementary Figure 8, Supplementary Note 6). We used these cellulase 189 
activity measurements to fit a value for 𝜔 to the feedstock differential equation (Box 1, Module IV). Cellulase 190 
activity estimates range from 6.0×10!!" CFU-1 mL for CpCel9 to 1.9×10!!" CFU-1 mL for a BsCel5/CpCel9 191 
cocktail (Figure 2i, Supplementary Table 7). 192 
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 193 

Figure 2. Experimental parameter sweeps for differentiation, autolysis and cellulase activity. (a) For the differentiation 194 
assay, cultures were initialized to the consumer state using IPTG and grown continuously in cellobiose to differentiate 195 
into cellulase- and lysis-deficient altruists. Cartoon components in grey correspond to unutilized states for the assay. (b) 196 
Genetic variants tested for differentiation vary poly-(T) rbSSR length to modulate TetR expression. Cellulase and lysis 197 
genes were removed from the payload plasmid (Δ𝑐𝑒𝑙,Δ𝑙𝑦𝑠). (c) Differentiation data and model fits to estimate 𝜎 (see 198 
Supplementary Note 4). Plot colors correspond to constructs depicted in (b). (d) For the lysis assay, cultures were 199 
initialized as in (a) for consumers to differentiate into autolytic altruists. (e) Genetic variants tested for lysis used 200 
intermediate rate differentiator (T)16, varying (AT)-rbSSR repeats that control lysis gene expression or using a control 201 
plasmid with no cellulase or lysis genes (Δ𝑐𝑒𝑙,Δ𝑙𝑦𝑠). (f) Lysis data and model fits to estimate 𝜌 (see Supplementary Note 202 
5). Control from (c) shown in black for comparison. (g) For the cellulase activity assay, lysis-deficient strains were 203 
induced to the altruist state using aTc, grown to saturation and sonicated to generate crude cell extracts. (h) Genetic 204 
variants tests for cellulase activity by expressing different cellulases or maintaining a control plasmid (𝛥cel). (i) Cellulase 205 
activity data and model fits to estimate 𝜔 (see Supplementary Note 7). 206 

Cellulose utilization with full circuit model predictions 207 

To quantify the combined effects of differentiation and autolysis dynamics on feedstock degradation and cell 208 
growth we measured cellulase activity from SDAc strains with the full circuit. Cellulose hydrolysis by 209 
individual colonies was measured by Congo Red clearing assays from agar plates supplemented with 210 
carboxymethylcellulose (Figure 3). We found that the clearing diameter for switch variants increased as a 211 
function of differentiation rate (Figure 3a,b). We observed no clearings for a control lacking cellulase. We 212 
also tested the effect of rbSSR lysis variants combined with cellulase CelD04 (Figure 3c,d) as well as for 213 
individual cellulases (Figure 3g,h) using intermediate rate differentiator (T)16. We found the GH5 cellulases 214 
generated larger clearings than CpCel9, consistent with the in vitro cellulase activity results. 215 
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Fine-tuning the differentiation, lysis and cellulase activity parameters is critical to realizing robust SDAc 216 
growth on cellulose as a sole carbon source. To determine fitness on cellulose and validate the full dynamics 217 
model (Box 1, module I), we measured viable cell counts in PASC for SDAc variants that span a range of 218 
values for each core parameter. We observed the highest population fitness at intermediate differentiation 219 
rates (Figure 3c), with high lysis rates (Figure 3f) and with high cellulase activity (Figure 3i), trends that are 220 
consistent with the naive model predictions from Supplementary Figure 2. Model fits of growth dynamics 221 
using parameter estimates from individual modules match observations for most variants, though the model 222 
predicted higher growth for differentiation variant (T)18 and failed to capture growth lag dynamics for the 223 
BsCel5-CpCel9 cellulase cocktail (Supplementary figure 9). 224 

 225 

Figure 3. Characterization of cellulose hydrolysis and utilization for growth reveals SDAc model prediction accuracy. (a) 226 
Differentiation rate variants expressing cellulase CelD04 with lysis rbSSR (AT)8. (b) Clearing size distributions for 227 
individual colonies from differentiation variants in (a) (N = 31, 21, 17, 15, 6). (c) Growth titer in M9 minimal 0.4% PASC 228 
media after 72 hours for differentiation variants in (a). Error bars on the x-axis represent standard deviation of the 229 
parameter estimate and error bars on the y-axis represent standard error for CFU counts from at least four replicates. 230 
The shaded region represents one standard deviation of model uncertainty for cell growth. (d) Lysis rate variants for 231 
intermediate differentiator (T)16 expressing cellulase CelD04. (e) Clearing size distributions for individual colonies from 232 
lysis variants in (d) (N = 20, 14, 11, 15). (f) Growth titer as in (c) for some lysis variants in (d). (g) Cellulase variants for 233 
intermediate rate differentiator (T)16. (h) Clearing size distributions for individual colonies from cellulase variants in (g) 234 
(N = 20, 15, 16). (i) Growth titer as in (c) for cellulase variants in (g). Error bars for the x-axis here represent the 235 
interquartile range for each 𝜔 estimate. Whiskers shown for box plots in (b,e,h) extend one interquartile range. 236 
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Excessive differentiation leads to a tragedy of the commons 238 

The full model of SDAc growth dynamics on cellulose predicts system collapse at high differentiation rates 239 
(Figure 3a), but does not account for mutational dynamics that could generate non-cooperative cheaters. 240 
Indeed, we observed functional instability for hyperdifferentiator switch variant (T)18. The instability was 241 
manifest in continuous cellobiose culture as a temporally unstable altruist fraction (Supplementary Figure 5). 242 
Growth rate dynamics consistent with enrichment for mutants that overcome the population growth rate 243 
reductions imposed by differentiation or lysis (see Figure 4e) support this hypothesis. We also observed two 244 
mutant colony phenotypes for the same strain after extended growth in PASC media (Figure 4a), further 245 
suggesting functional instability at extreme differentiation rates. 246 

Analytical solutions to candidate dynamic models incorporating non-cooperative mutants suggests that two 247 
cheater subpopulations – one deficient in differentiation and the other deficient in lysis – are required to 248 
realize the observed dynamics. To estimate SDAc mutational rates we developed a model that introduces 249 
new species for switch-deficient cheaters (S) and for lysis-deficient pseudo-altruist cheaters (P) and their 250 
respective escape rates, 𝜒! and 𝜒! (Box 1, module V). Four candidate models were investigated to account 251 
for the cheater dynamics: 𝜒! =  𝜒! = 0 (no cheaters), 𝜒! = 0, 𝜒! > 0 (differentiation cheaters), 𝜒! = 0, 𝜒! >252 
0 (lysis cheaters) or 𝜒! > 0, 𝜒! > 0 (dual cheaters) (Figure 4b). We derived analytical solutions for each 253 
model, finding that the only model that supports the observed dynamics includes both cheater types 254 
(Supplementary Note 11). Cheaters may emerge from discrete mutational events during growth or be part of 255 
the inoculum, rising in population fraction once a large fraction of cells differentiate and lyse. Our analytical 256 
solutions do not distinguish between either initial condition. 257 

Fits of each mutagenesis model to measured differentiation and growth dynamics validate the dual cheater 258 
model and give mutation rate estimates for each cheater type. We fit each cheater model to the 259 
differentiation and lysis data in cellobiose for hyperdifferentiator (T)18. Fits for differentiation and growth 260 
dynamics are shown in Supplementary Figure 10 and rate estimates are shown in Supplementary Table 9. 261 
The lysis cheater model provided no improvement to the null case and is not shown. The dual cheater model 262 
fit estimates the emergence of differentiation cheaters at a rate of 1.8×10!! ± 6.3×10!! ℎ!! and the 263 
emergence of altruist cheaters at a rate of 1.9×10!! ± 8.2×10!! ℎ!!. Using the mutagenesis parameters fit 264 
from hyperdifferentiator (T)18, intermediate differentiator (T)16 is also predicted to accumulate cheaters 265 
within the measurement interval (Figure 4c), which is consistent with the trend of the cellobiose switching 266 
data. When applying escape rate estimates to a model of the overall population growth dynamics for 267 
differentiation rate variants, we found the model predicted the variable growth rate dynamics observed for 268 
variants with high differentiation rates (Figure 4d). 269 

DNA sequencing of cheater isolates confirms the genetic basis for both differentiation and lysis cheaters 270 
(Figure 4e). We observed large colonies that were bright red or bright green – putative differentiation and 271 
lysis cheaters, respectively – in addition to the wild-type small, mixed-color colony on solid media after 272 
extended growth in PASC media. Sequence analysis of the differentiation controller plasmid from red escape 273 
colonies isolated from six replicate cultures revealed mutations to two hypermutable loci with predictable 274 
effects (Supplementary Table 10): expansion or contraction of the tandem (CTGG)3 mutational hotspot 275 
observed in four of six replicates should prevent altruist emergence through inactive, truncated Lac 276 
repressor25; and deletions within the (T)18 rbSSR controlling TetR expression (one of six replicates) should 277 
abolish differentiation by reducing 𝜎. A transposition event of insertion sequence IS226 internal to lacI (one of 278 
six replicates) should also prevent differentiation. Sequence analysis of the payload delivery plasmid 279 
revealed a transposition event of IS127 between the cellulase and lysis genes in one of six sequenced 280 
replicates, likely disrupting operon expression (Supplementary Table 11). The majority of the altruist cheater 281 
colonies we sequenced revealed no mutations in the payload delivery transcription unit, suggesting lysis 282 
evasion via mutations on the genome or elsewhere on the plasmids. Given that the lysis gene is sourced 283 
from a colicin plasmid found in natural E. coli populations, it is possible the genome encodes high-rate 284 
evolutionary paths to lysis immunity. 285 
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 286 

Figure 4. Mechanisms and rates of escape for SDAc cheaters. (a) Fluorescence image of wild-type and cheater colonies 287 
isolated from PASC cultures of hyperdifferentiator (T)18 that no longer differentiate (S) or no longer lyse (P). (b) 288 
Representation of alternate SDAc model that incorporates mutational dynamics by including sink states for switch 289 
cheaters (S) and pseudo-altruist cheaters (P) with associated mutagenesis rates (see Box 1, module V). (c) Dual cheater 290 
model fit to altruist fraction measurements for differentiation (compare to Supplementary Figure 5a). Escape rate 291 
estimates for hyperdifferentiator (T)18 are used to fit altruist fractions for the other differentiation rates.  (d) Continuous 292 
growth model fit for overall population growth rate measurements of differentiation variants (𝑣!"!), using dual cheater 293 
rate estimates as in (c). (e) Summary of observed mutations that produce differentiation or lysis cheaters. Differentiation 294 
mutants included an expansion or contraction of a native simple sequence repeat element in the lacI coding sequence, 295 
repeat unit truncations of rbSSR (T)18 that controls differentiation rate and insertion sequence disruption of LacI 296 
expression. Insertion sequence disruption of the CelD04 gene (green arrows) was observed for altruist cheaters. See 297 
Supplementary Tables 10 and 11 for additional details on observed mutations. 298 

Discussion 299 

We have demonstrated a first-principles approach to construct a developmental gene circuit and have 300 
implemented a two-member developmental system to cooperatively utilize the complex feedstock cellulose. 301 
In-depth system deconstruction and characterization enables model-guided optimization of growth on 302 
cellulose. At extreme differentiation rates, genetic instability drives the emergence of cheaters that fail to 303 
differentiate or fail to lyse. This foundation will enable development of more robust and complex 304 
developmental divisions of labor to advance sustainable bioprocessing and cell-based therapeutics. Similar 305 
systems may also prove to be effective tools to advance the study of the evolution of cooperation. 306 

Due to the observed functional instability for some variants, the SDAc program likely suffers from a tragedy 307 
of the commons28. In well-mixed cellulose media, emergent cheaters fully benefit from the public good 308 
provided by the altruists. Further, due to the costs of switching and lysis, the cheaters can out-compete 309 
cooperators and sweep the population. In the absence of altruists, cellulase release ceases, driving 310 
population collapse. Previous work has shown that when the environment is spatially organized a communal 311 
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benefit applies only to nearby, closely related cells who are likely fellow cooperators29. Indeed, research 312 
suggests the cellulosome evolved to localize the benefits of cellulase expression, as in sucrose utilization in 313 
yeast30. Thus cheaters are stranded with limited or no access to the shared resource. This phenomenon, 314 
attributed to kin selection, could preserve cooperative behavior for many more generations, potentially 315 
avoiding the functional instability we observed. Future work could elucidate the role of structured 316 
environments in this synthetic system to reduce the impact of cheaters or to evolve more stable cooperator 317 
phenotypes. 318 

While we only observed a high fraction of SDAc cheaters from hyperdifferentiation variant (T)18, engineering 319 
developmental circuits for deployment in bioreactors or other complex environments would require long-term 320 
evolutionary stability to minimize cheaters and maintain engineered function. Interestingly, previous studies 321 
have shown that lacI tandem repeat mutations occur at a rate > 10!! events per generation25 and 322 
transposon insertion elements jump at rates of 10!!-10!! insertions per generation31. These rates are 323 
consistent with our experimental estimates for mutagenesis, suggesting relatively simple modifications may 324 
considerably boost SDAc circuit longeivity. Analysis of the cheater model suggests that a reduction of 325 
cheater rates by 100-fold and 1000-fold for intermediate differentiator (T)16 would increase circuit stability by 326 
56% and 85%, respectively, boosting the functional period in continuous culture from 2.8 days to 5.1 days. 327 
Genetic strategies to boost evolutionary stability include recoding the repeat region of lacI, introducing 328 
stabilizing degeneracy into rbSSR sequences and porting the system to a low mutation rate strain deficient 329 
for insertion elements32. Further gains in system performance could be achieved by chromosomal integration 330 
of the SDAc network to prevent the fixation of mutant plasmids in the population33 or plasmid loss. Finally, 331 
incorporating more efficient cellulase cocktails will reduce evolutionary pressure for cheating by decreasing 332 
the optimal altruist load. 333 

The division of labor system outlined here is a template for the construction of other developmental programs 334 
to perform complex tasks in engineered microbial communities. This work can be extended in many ways. 335 
For SDAc, the developmental program could be triggered in response to nutrient depletion when the supply 336 
of simple sugars is depleted. Alternative protein and small molecule payloads from a general autolytic 337 
delivery system could be designed to mediate microbial interactions, aid in bioprocessing or bioremediation 338 
or as a cellular therapeutic. Further, stochastic strategies could be employed with or without self-destructive 339 
altruism to seed multicellular developmental programs for distributed metabolic engineering34, evolutionary 340 
engineering35 or to control distributions of multiple cell types in microbial communities36,37. Tunable 341 
developmental programs could also be applied to better understand the emergence and persistence of well-342 
studied developmental programs, substituting complex regulatory networks with tunable differentiation 343 
dynamics. 344 
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