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1 Introduction

Stochastic gene expression poses an important challenge for engineering robust be-
haviors in a heterogeneous cell population [1]. Cells address this challenge using the
distribution of cellular responses during some gene regulation and differentiation
processes [2]. Similarly, the temporal logic gate design in Hsiao et al. [3] considers
the distribution of responses across a cell population. The design employs integrases
Bxb1 and TP901-1 [4] to engineer an E. coli strain with four DNA states that record
the temporal order of two chemical signals. Hsiao et al. [3] also use the heteroge-
neous cell population response to infer the timing and duration of the two chemical
signals for a small set of events. Our work uses the temporal logic gate circuit to
address the problem of extracting information about events that were recorded in
the distributional response of a cell population. We use the heterogeneous cell pop-
ulation response to infer whether any event has occurred or not and also to infer its
properties such as timing and amplitude.

Bayesian inference provides a natural framework to answer questions about
chemical signal occurrence, timing, and amplitude [5]. We develop a probabilistic
model based on the temporal logic gate model in [3] that integrates both predic-
tive modeling uncertainty and sampling error statistics. In this way, we incorporate
uncertainty in how well our temporal logic gate model captures the cell population
and in how well a sample of measured cells represents the entire population. Using
our probabilistic model and cell population measurements taken every five minutes
on simulated data, we ask how likely it was to observe the data for parameter values
that describe square-shaped inducer pulses. The likelihood function associated with
the probabilistic model answers the question of how likely the data is by compar-
ing the likelihood values for the model where chemical signal pulses are turned off
against the model where the pulses are on. Hence, we determine whether an event
of chemical induction of integrase expression has occurred or not.

Using Markov Chain Monte Carlo [6], we sample the posterior distribution of
pulse parameters and then estimate the posterior probability of the two chemical
signal events. We implement this method and obtain accurate results for detecting
chemical inducer pulse timing, length, and amplitude. We can detect and identify
chemical inducer pulses as short as half an hour, as well as all pulse amplitudes that
fall under biologically relevant conditions.

Using the Bayesian framework to solve our problem enables us to obtain distri-
butions over chemical signal occurrence, timing, and amplitude, as well as to test
the limits of chemical input identifiability. There are alternative methods for the
problems posed in this work. The first problem of detecting an event falls under the
broad field of anomaly and change point detection. Many approaches within this
field deal with the problem of using models or approximations to quantify the typical
behavior of a system and then setting a threshold to determine whether the signal
is within this typical set of behaviors. There are data driven methods like clustering
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methods or spectral methods that do not need a physical model of the system, but
use data to determine a typical set of behaviors [7]. Alternatively, when a physical
model is known and computationally tractable, a hypothesis testing framework can
be employed. If a set of possible models of the event is also known, a likelihood
ratio test is often used to determine whether to accept or reject the hypothesis [8].
However, the methodology of Bayesian model selection enables us to better handle
uncertainty within the models, to avoid setting detection thresholds that are not
based on probabilities, and to avoid overfitting [5, 9, 10].

The second problem of identifying the parameters of the chemical inducer pulse
is often approximated by solving a maximum likelihood or maximum posterior es-
timation problem to find the best set of parameters that describe the data [11, 12].
While the optimization problem can be nonconvex, several methods have been de-
veloped to find solutions for these problems such as Expectation-Maximization [12].
Maximum likelihood methods can also be integrated into the change point detection
framework [8]. However, using MCMC to sample the posterior distribution of likely
parameters enables us to make a more robust estimate about the set of possible
pulse parameters. This also enables us to detect when the pulse is weak since this
corresponds to the posterior being very broad and close to unidentifiable.

Our paper is organized as follows. In Section 2, we introduce the temporal logic
gate circuit and we simulate its behavior over a heterogeneous cell population. In
Section 3, we set up the Bayesian inference framework and the Markov Chain Monte
Carlo methods. We illustrate the results of applying the Bayesian framework to the
problem of inferring chemical inducer properties in Section 4. We discuss our results
and future work in the conclusion section.

2 The temporal logic gate circuit

2.1 The temporal logic gate function

Cellular processes are subject to stochastic fluctuations, particularly at low molecule
numbers [1]. This poses an important challenge for engineering robust behaviors in
a heterogeneous cell population since we often are not able to design for a homoge-
neous response. Cells address this challenge by operating on distributions of cellular
responses during noisy processes such as probabilistic differentiation [2]. Similarly,
the temporal logic gate design in [3] operates on the distribution of cellular responses
across a population. The two-input temporal logic gate uses integrases Bxb1 and
TP901-1 to engineer an E. coli strain with four possible DNA states that record the
temporal order of chemical inputs. Using the heterogeneous response of the E. coli
population, Hsiao et al. [3] infer and record the order of chemical inputs. They also
use the heterogeneous population response to infer the timing and duration of the
two chemical inputs for a discrete set of events.

The design of the integrase temporal logic circuit uses serine integrases TP901-1

3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2016. ; https://doi.org/10.1101/087379doi: bioRxiv preprint 

https://doi.org/10.1101/087379
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Implementation of the temporal logic gate using a set of two integrases
with overlapping attachment sites. Chemical inputs a and b activate production
of integrases intA and intB, which act on a chromosomal DNA cassette. Figure
reproduced from reference [3].

(int A) and Bxb1 (int B) to flip the DNA between their recognition sites, as in
Figure 1. Each cell in the population can be in one of 4 identifiable DNA states:
no input (state S0), only input a detected (state Sa), only input b detected (state
Sb) or input a then b detected (state Sab) as illustrated in Table 1. When inducer
b is detected before inducer a, the DNA between the attachment sites is excised, so
the cells are in state Sb. Fluorescent proteins mKate2-RFP (RFP) and superfolder-
GFP (GFP) are used to read the DNA state of each cell. RFP is produced when the
cell is in state Sa and GFP is produced in state Sab. Once a DNA recombination
step has occurred, due to the detection of either input a or b, it is irreversible
and thus recorded in DNA memory. The temporal logic gate circuit is integrated
chromosomally into the genome of E. coli cells [13]. Hence, we can assume that
each cell contains only one copy of the circuit and thus its DNA is in one of the four
identifiable states S0, Sa, Sb or Sab. For more details on the temporal logic gate
circuit, see reference [3].

Event DNA state Fluorescent Output

None S0 None

a only Sa RFP

b only Sb None

a then b Sab GFP

Table 1: The table describes the inputs, DNA states, and outputs to the temporal
logic gate. Table adapted from [3].
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Description From To Transition Rate

From S0 to Sb (S0, nA, nB) (Sb, nA, nB) α1 = kBnB

From S0 to Sa (S0, nA, nB) (Sa, nA, nB) α2 = kAnA

From Sa to Sab (Sa, nA, nB) (Sab, nA, nB) α3 = kBnB

Production of int A (Si, nA, nB) (Si, nA + 1, nB) γA(t)
Production of int B (Si, nA, nB) (Si, nA, nB + 1) γB(t)
Degradation of int A (Si, nA, nB) (Si, nA − 1, nB) δA = kdnA

Degradation of int B (Si, nA, nB) (Si, nA, nB − 1) δB = kdnB

Table 2: The Markov transition rates between states. kA and kB are the DNA
flipping rates of integrases A and B. kd is the degradation rate, while γA and γB are
the production rates of integrases A and B. Table adapted from the supplementary
information in [3].

2.2 Stochastic modeling of the temporal logic gate using the chem-
ical master equation

To capture the stochastic behavior of the temporal logic gate, we model DNA and
integrase interactions in each cell using the chemical master equation [14]. Since
the target DNA is chromosomally integrated in the E. coli genome, we can assume
that each E. coli cell in the population can be uniquely characterized by the triplet
of DNA state and copy numbers of integrases A and B [13].

To build the state space of our Markov chain [15], we follow the supplementary
information in [3] and denote the state of a cell as (Si, nA, nB), where DNA state
Si ∈ S = {S0, Sa, Sb, Sab} and integrase copy numbers nA, nB ∈ N≥0. The details of
the Markov transitions between states are found in Table 2. The Markov transition
rates between states emerge from Figure 2. The chemical master equation (CME)
model is described in detail in the supplementary information of [3].

Figure 2: Transitions between DNA states and between protein states. The transi-
tion rates are listed above the arrows. Figure reproduced from [3].

The chemical inputs enter the Markov transition rates through the terms γA(t)
and γB(t) that represent the production of the two integrases. The chemical inputs
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Figure 3: We restrict the chemical inducer inputs a and b to be square waves. They
turn on at times taON and tbON and turn off at times taOFF and tbOFF.

that we consider are square waves as illustrated in Figure 3. We assume that chem-
ical inputs a and b are turned off, they turn on, and then they turn back off. This
defines our production rates γA(t) and γB(t) as

γA(t) =

{
kprodA + kleakA, if chemical inducer a is on

kleakA, if a is off;
(1)

γB(t) =

{
kprodB + kleakB, if chemical inducer b is on

kleakB, if b is off.
(2)

Here kprodA and kprodB are the production rates of the two integrases, while kleakA
and kleakB represent leakiness.

It is possible to consider chemical input functions that are not square waves, but
rather arbitrary continuous functions. In this case, the CME will have a numerical
solution, but possibly not an analytic one. Hence, we restrict our chemical inputs
to square wave functions.

2.3 Solving the chemical master equation model

We simulate the CME model of the temporal logic gate circuit using the finite
state projection algorithm (FSP) in [16] as follows. We first transform our three
dimensional state space into a one dimensional state vector by iterating over the
four DNA states and the pairs of integrase copy numbers. The resulting infinite
state space vector is given by:

p(t) = (Pt(S0, 0, 0), Pt(Sa, 0, 0), Pt(Sb, 0, 0), Pt(Sab, 0, 0), Pt(S0, 0, 1), . . . ). (3)

The transition matrix A is square and extends to infinity since the state vector
has an infinite number of entries. We separate our transition matrix into a sum of

6

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2016. ; https://doi.org/10.1101/087379doi: bioRxiv preprint 

https://doi.org/10.1101/087379
http://creativecommons.org/licenses/by-nc-nd/4.0/


a constant matrix and two matrices multiplied by production rates:

A = Aconst + γA(t)Aa + γB(t)Ab. (4)

This separation speeds up simulation as there is no need to recompute the ma-
trices Aa and Ab as the chemical input functions γA and γB vary in time. Moreover,
if the promoters are non-leaky and one or both chemical inputs are turned off, then
equation (4) further simplifies, thus speeding up computation.

Matrices Aconst, Aa, and Ab are still infinite in both of their dimensions. We
truncate them according to the FSP algorithm to a maximum of 20 copies of in-
tegrases A and B in each dimension. The truncation is informed by experimental
data in [3]. The total amount of probability lost in the exponential of the transition
matrix by this truncation is less than 0.01.

Following the truncation of the transition matrix using FSP, the CME formula-
tion of the temporal logic gate model is

∂p(t)

∂t
= (Aconst + γA(t)Aa + γB(t)Ab)p(t). (5)

We solve for the probability distribution over the heterogeneous cell population
by computing the standard matrix exponential solution

p(t) = E(t, a, b)p(0). (6)

The matrix E(t, a, b) is the product of exponential matrices according to the
ordering and time at which inducers a and b turn on and off. For example, if
inducer a turns on instantaneously and inducer b turns on at time tbON and they
both subsequently remain on, then the expression for E(t, a, b) at time t follows
from:

E(t, a, b) =


exp[(Aconst + (kprodA + kleakA)Aa)t], if t < tbON

exp[(Aconst + (kprodA + kleakA)Aa)tbON] · exp[(Aconst+

+ (kprodA + kleakA)Aa + kleakBAb)(t− tbON)], if t ≥ tbON.

(7)

Similar expressions for the matrix E(t, a, b) can be derived for any combination
of chemical inducers a and b. The result can be then used in equation (6) to derive
how the heterogeneous cell population evolves as a function of time by patching
together the different solutions at each time interval.

2.4 Simulation results for the temporal logic gate circuit model

We simulate the chemical equation model of the temporal logic gate circuit in MAT-
LAB [17]. In Table 3, we record the times when the chemical inducers turn on and
off. In Figures 4 and 5, inducer b has been on for only 3 hours, so cells in states
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taON taOFF tbON tbOFF

3 hrs 5 hrs 20 hrs 20 hrs

Table 3: The chemical inducer a and b turn on and off times for the simulation
results in Figures 4 - 7.

Figure 4: The four panels represent the two-dimensional probability distributions
of cells in states S0, Sa, Sb, and Sab as functions of integrase copy numbers after 8
hours. Inducer a has been turned on at 3 hours and inducer b at 5 hours. Most
cells have only seen inducer a and are in state Sa, although some cells are starting
to detect inducer b.

S0 and Sa make up most of the population. They have either mostly responded to
inducer a or they have not seen any of the two chemical inducers. Cells in state S0

will shift to state Sb and cells in state Sa will shift to state Sab as they continue to
be exposed to chemical inducer b.

In Figures 6 and 7, both inducers have been on for several hours, so cells have
shifted to states Sb, if they have only seen inducer b, and Sab, if they have recorded
the “a then b” event. This population behavior matches the experimental evidence
in [3]. The rate reaction parameters have the same values as in the supplemental
information of [3]. We use the simulation data in this section for the Bayesian
approach to inferring parameter properties that we introduce in Section 3.
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Figure 5: The plot illustrates the fraction of cells in each of the four states. The
timer at the bottom indicates that the circuit has been running for 8 hours. The
Boolean variables next to input a and input b show that a has been turned on at 3
hours and b at 5 hours. Not all cells have responded to chemical inducer b yet, as
indicated by the fraction of cells in state Sa.

Figure 6: The temporal logic gate circuit has been running for 20 hours and it has
reached stationary state. Input a has been turned on at 3 hours and input b has
been turned on at 5 hours; subsequently, they were both on. Most cells are either
in state Sb or state Sab.
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Figure 7: The temporal logic gate circuit has been running for 20 hours and it has
reached stationary state. Input a has been turned on at 3 hours and input b has
been turned on at 5 hours; subsequently, they were both on. The final population
of cells is largely split between the cells that have recorded the “a then b” event
and the cells that have only recorded the inducer b event.

3 Bayesian event detection and inference

3.1 The Bayesian framework

The Bayesian framework is a rigorous probabilistic method for representing uncer-
tainty using probability distributions. This philosophy is rooted in probability as
a logic [9, 18, 19, 20]. Within this framework, probability distributions are used to
quantify uncertainty due to insufficient information, regardless of whether that in-
formation is believed to exist but is currently not available (epistemic uncertainty),
or it is believed to not exist because of postulated inherent randomness (aleatory
uncertainty). This makes the Bayesian framework appropriate for posing system
identification problems, where postulated system models have parameters whose
values are uncertain rather than random. Therefore, we view system identification
as updating a probability distribution that represents our beliefs about models of a
system based on new information from system response data.

One formulation of Bayesian system identification is given in [9], where p () de-
scribes a probably density function: Given observation data D and a system model
class M consisting of (a) a likelihood function p (D | θ,M), describing the plausibil-
ity of the data given a set of parameters, θ, and (b) a prior distribution, p (θ | M),
representing our initial beliefs about the relative plausibility of the possible values
of the model parameter vector θ, find the posterior distribution p (θ | D,M) that
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represents our updated beliefs. For this, we employ Bayes’ Theorem:

p (θ | D,M) =
p (D | θ,M) p (θ | M)

p (D | M)
. (8)

The likelihood function, p (D | θ,M), is the likelihood of observing the data D given
that our forward model of the dynamical system has parameter values θ. The
forward model in the Bayesian framework maps θ to a probability distribution on
the outputs y (t). The normalizing factor in equation (8), p (D | M), is the evidence
for the model class M. The evidence can be computed as

p (D | M) =

∫
p (D | θ,M) p (θ | M) dθ. (9)

3.2 Constructing model classes from the forward models

In order to formulate the Bayesian inference problem for detecting events and de-
termining the properties of these events, we create the following model classes. The
first model class M0 describes the dynamics of the cell population when there is no
event, while M1 describes the dynamics of the population when there is an event
described as the addition of chemical inducers a and b. The events in M1 are
parameterized by a vector θ defined in Table 4.

Var Model Parameter Prior Description

θ1 taON Unif [0, tmax] Start time of input a

θ2 tbON Unif [0, tmax] Start time of input b

θ3 log (taOFF − taON) N (µ1, σ1) Log length of input a

θ4 log (tbOFF − tbON) N (µ1, σ1) Log length of input b

θ5 log(kprodA·
(min [taOFF, tmax]− taON))

N (µ2, σ2) Log of the pulse area i.e.
the product of the ob-
served length and mag-
nitude of input a

θ6 log(kprodB·
(min [tbOFF, tmax]− tbON))

N (µ2, σ2) Log of the pulse area i.e.
the product of the ob-
served length and mag-
nitude of input b

Table 4: The variables, θ, parameterize the event that chemical inducers a and b
are added based upon the start time, end time, and magnitude. We choose this
parametrization to reduce the correlation between states and to avoid having prior
distributions with bounded support, which can accelerate our sampling methods.

The forward models for M0 and M1 have the same structure, therefore we can
construct the likelihood function for the model class in the same way. The forward
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model describes the evolution of a probability vector over DNA states, according
to the CME. The data we are considering is the observed fraction of cells in a
given DNA state at an instance in time. In order to find the likelihood of the data
given our model, we consider two sources of uncertainty. First, in order to account
for predictive modeling errors, we assume that the probability vector p (t), which
we model as generating our observation x (t) at time t is not the same as the one
generated by the forward model p̄ (t), but comes from a distribution centered around
the vector predicted by the forward model. Thus, in our model class, the forward
model describes not the evolution of a probability vector, but the evolution of a
distribution of probability vectors.

This distribution of probability vectors is modeled by a Dirichlet distribution
with parametrization α (t), which we take to be α (t) = αp̄ (t). Here α is a constant
that controls the variance of the “distribution of distributions”, i.e. the believed
accuracy of our prediction. Secondly, we model the sampled number of cells in a
given state, x (t) at time t using the multinomial distribution defined by the prob-
ability vector p (t) ∼ Dir (α (t)). The Dirichlet distribution is a common choice for
quantifying uncertainty about a multinomial distribution since it is the conjugate
prior of this distribution. By simultaneously considering these two sources of un-
certainty, we are best able to replicate the uncertainty found in experimental data.
When the number of measured cells is small, the sampling uncertainty will domi-
nate, while when the number of measured cells is large, the prediction uncertainty
will dominate. This formulation of the predictive model is summarized in Figure 8.

Figure 8: The probabilistic model used to construct the likelihood of the observed
data is based on two sources of uncertainty: model prediction uncertainty and ran-
dom sampling errors. We model the prediction uncertainty by having the CME
evolve a Dirichlet “distribution of distributions” in time. Its mean is the probability
vector for the standard CME evolution. Secondly, we model the random sampling
error as drawing cells from a multinomial distribution chosen from our Dirichlet
distribution.

Using our formulation of the model class, we can now define a likelihood function
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based on the forward model, Dirichlet distribution, and multinomial distribution as
follows:

p (D | M0) ∝
∏N

i=1 P (x (ti) | α (ti) = E (ti, ∅, ∅) p (0)) ;
p (D | θ,M1) ∝

∏N
i=1 P (x (ti) | α (ti) = αE (ti, a (θ) , b (θ)) p (0)) .

(10)

Here x (ti) are the cell counts at time ti, α (ti) is the parametrization of the
Dirichlet distribution, and N the number of observations in time. This also models
our prediction of cell population measurements as independent in time. We are
only interested in likelihood functions up to a constant of proportionality for the
computational methods we consider. Hence, equation (10) reduces to the following
log likelihood function:

log p (D | M0) =
∑N

i=1

∑S
j=1 log Γ(xj (ti) + αj (ti))− log Γ(αj (ti));

log p (D | θ,M1) =
∑N

i=1

∑S
j=1 log Γ(xj (ti) + αj (ti))− log Γ(αj (ti)).

(11)

Here, xj (ti) is the number of cells in state j at time ti, αj (ti) is the parametrization
of state j of the Dirichlet distribution at time ti, Γ is the Gamma function, and S
is the total number of states in the state vector of the CME.

3.3 Detection and inference

Assuming that an event occurs, we can use Bayesian inference to infer the posterior
distribution of the event parameters conditional on the measured data. We use the
priors and likelihood functions in Section 3.2 to define the posterior distribution:

p (θ | D,M1) ∝
p (D | θ,M1) p (θ | M1)

p (D | M1)
. (12)

Using this function and Markov Chain Monte Carlo, we can then sample the pos-
terior distribution as discussed in Section 3.4. We can also consider the probability
of any event from M1 occuring given the cell population measurements, p (M1 | D).
We assume that the prior probability of any event happening is known and defined
as p (M1) = 1− p (M0). Therefore, we can perform event detection by computing

p (M1 | D) =
p (D | M1) p (M1)

p (D)
. (13)

Using the law of total probability, p (D) = p (D | M0) p (M0) + p (D | M1) p (M1),
we find that

p (M1 | D) =
p (D | M1) p (M1)

p (D | M0) p (M0) + p (D | M1) p (M1)
, (14)
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where p (D | M0) is defined in equation (10). Hence, it remains to estimate the
evidence, p (D | M1), as:

p (D | M1) =

∫
p (D | θ,M1) p (θ | M1) dθ. (15)

Estimating this quantity is difficult, but several computational methods have been
introduced to provide good estimates for model class selection, as we discuss in
Section 3.4.2.

3.4 Computational methods: MCMC

Sampling methods are typically used to solve Bayesian inference problems. We can
estimate quantities with respect to the posterior distribution using a population of
samples as follows:

E [g (θ) | D,M] =

∫
g (θ) p (θ | D,M) dθ ≈ 1

N

N∑
i=1

g (θi) . (16)

The most common family of sampling methods for Bayesian inference is Markov
Chain Monte Carlo (MCMC) [6]. In MCMC, we create a Markov chain defined by a
transition rule or kernel and whose stationary distribution is the desired posterior. In
order to have accurate estimates, the samples must discretely capture the posterior
distribution in a probabilistically appropriate way. By the Markov chain central
limit theorem, we can estimate the quality for the mean estimate of a finite-variance
stochastic variable based on the number of samples and the correlation function of
the Markov chain. When selecting and implementing a MCMC method, we seek to
minimize the correlation between the states of the chain. In this way, we decrease
our estimate variance and we also minimize the time it takes for chain to reach its
stationary distribution.

3.4.1 MCMC implementations

We consider two basic MCMC implementations for sampling the posterior of θ for
M1: Metropolis-Hastings and Adaptive Metropolis-Hastings. Metropolis-Hastings
produces a Markov chain with a desired stationary distribution π (θ) by design-
ing a transition kernel K (θ′ | θ) such that the Markov chain is ergodic and re-
versible [21, 22]. Reversibility is a sufficient condition for the existence of a station-
ary distribution. Reversibility holds under the detailed-balance condition

π (θ)K
(
θ′ | θ

)
= π

(
θ′
)
K

(
θ | θ′

)
. (17)

This means that we can choose any transition kernel K (θ′ | θ) and maintain the
stationary distribution π (θ), as long as the condition in equation (17) holds. For any
proposal distribution Q (θ′ | θ) such that Q (θ′ | θ) ̸= 0 if and only if Q (θ | θ′) ̸= 0,
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we can construct such a K (θ′ | θ) by proposing a candidate sample θ′ according to
Q (θ′ | θ). Then we accept the candidate θ′ with probability α from equation (18).
If the candidate is rejected, the current sample θ is repeated:

α
(
θ′ | θ

)
= min

(
1,

π (θ′)Q (θ | θ′)
π (θ)Q (θ′ | θ)

)
. (18)

This leads to the Metropolis-Hastings algorithm:

1. Initialize the state θ1 randomly, usually according to the prior; set n = 1.

2. Pick a candidate state θ′n+1 according to the proposal Q
(
θ′n+1 | θn

)
.

3. Accept or reject the candidate according to a sampled uniform variable ζ on
[0, 1]:

θn+1 =

{
θ′n+1 ζ ≤ α

(
θ′n+1 | θn

)
,

θn ζ > α
(
θ′n+1 | θn

)
.

(19)

4. Increment n and go to step 2.

We choose the proposal distribution to be a Gaussian distribution. Typically,
several runs are used to tune this distribution such that good performance is achieved.
When the posterior distribution is a Gaussian, the optimal proposal distribution is a
Gaussian with covariance 2.382Σ/d where d is the dimension and Σ is the covariance
of the posterior [6].

Adaptive Metropolis-Hastings has the same structure as the Metropolis-Hastings;
however, the proposal distribution is adapted over time in a way that still maintains
the stationary distribution of the Markov Chain.

3.4.2 Estimating the evidence

Estimating the evidence for the model class defined in equation (15) can be quite
challenging since it requires solving a difficult high-dimensional integral. Many ap-
proximation methods have been developed to estimate this high-dimensional integral
such as the Laplace Approximation, importance sampling, and multilevel methods
like TMCMC [9, 23]. When the prior and posterior distributions can be well ap-
proximated using a Gaussian, we can use the following approximation to estimate
the evidence:

p (θ | D,M1) ≈ N (θ | µpost,Σpost) ,
p (θ | M1) ≈ N (θ | µprior,Σprior) .

(20)

By replacing the posterior and prior in Bayes’ Theorem by these approximations
and rearranging terms, we find that

p (D | θ,M1)

p (D | M1)
≈ N (θ | µpost,Σpost)

N (θ | µprior,Σprior)
. (21)
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Thus, by taking the log and then taking the mean over our samples, we can approx-
imate the log evidence as

log p (D | M1) ≈
1

N

N∑
i=1

log p (D | θi,M1)+

+ logN (θi | µprior,Σprior)− logN (θi | µpost,Σpost) .

(22)

4 Applying the Bayesian approach to temporal logic
gate data

In order to judge the efficacy of our Bayesian framework, we test it over a set of
chemical inducer pulse properties. For these tests, we use the same setup, but vary
the length of the inducer pulses. In all cases, inducer a is added at 3.0 hours and
inducer b is added at 5.0 hours. Each inducer has a production rate of 0.5 (µ3hr)−1.
For the Bayesian inference problem, the log pulse duration prior is N (2.0, 0.7) and
the log pulse area prior is N (2.5, 1.0259). The forward computations of the matrix
exponential vector products uses Expokit [24]. In both cases, the estimated posterior
probability of any event using the Gaussian approximation was 1.0.

Figure 9: Evolution of the Markov Chain using Adaptive MCMC for Case 1. We
can see that the Markov Chain successfully finds and samples the posterior.
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Figure 10: Histograms of the posterior sample and scatter plot showing the corre-
lation in the posterior for Case 1.

Model Variable True Value Posterior Mean Posterior std

taON 3.0 3.000 0.010

tbON 5.0 4.997 0.007

(taOFF − taON) 7.0 7.003 0.030

(tbOFF − tbON) 5.0 5.016 0.023

areaa 3.5 3.487 0.007

areab 2.5 2.490 0.005

Table 5: Posterior estimates for Case 1

4.1 Case 1: Nominal pulse duration

First, we consider the parameters for a typical event that has inducer a on for 7.0
hours and inducer b on for 5.0 hours. We use an adaptive MCMCmethod to generate
posterior samples. The evolution of the Markov chain is illustrated in Figure 9.
The adaptation is separated into several periods to effectively trade off between
parameter values that minimize both the burn-in period and the correlation. The
chain starts by using a wide fixed proposal distribution for the first 400 iterations.
Then it switches to a fixed narrower proposal for the next 600 iterations. It then
uses an adaptive method for the next 500 iterations and then restarts the adaptive
method for the remainder of the 5000 iterations. By breaking up the iterations, we
can avoid having too much memory in the process and ensure that the adaptive
MCMC is just learning from samples after burn-in. We consider samples after
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the 2000th iteration to belong to the posterior. Since MCMC produces correlated
samples and our acceptance rate is near the optimal of 0.25, our efficiency is about
0.025 independent samples per iteration after burn-in.

In Figure 10, we plot the histogram for the posterior samples and the correlation
diagrams for each of the parameters. While there is still some correlation between
the pulse length and area, our choice of using pulse area instead of pulse amplitude
does eliminate much of the dependence. However, there is significant correlation
between the start time of the pulse and the length of the pulse. From these plots, we
find that all the posterior samples histograms are globally identifiable since they are
unimodal. The mean and standard deviation estimates of the posterior distribution
are found in Table 5, where there is very good agreement between the mean estimates
and true values.

Figure 11: Histograms of the posterior sample and scatter plot showing the corre-
lation in the posterior for Case 2.

Model Variable True Value Posterior Mean Posterior std

taON 3.0 2.991 0.011

tbON 5.0 4.997 0.013

(taOFF − taON) 7.0 7.048 0.029

(tbOFF − tbON) 0.5 0.500 0.033

areaa 3.5 3.510 0.007

areab 0.25 0.250 0.002

Table 6: Posterior estimates for Case 2
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4.2 Case 2: Short pulse of inducer b

Similarly, we can consider a more challenging case when the pulse of inducer b is
much shorter, only 0.5 hours long, but everything else is the same. We can see
the posterior histograms and correlation diagrams in Figure 11 for 2000 posterior
samples. We see a similar correlation structure as that observed in Case 1. The
posterior is still globally identifiable, making it a good candidate for the approximate
solution to the event detection problem. The posterior values in Table 6 are also
in good agreement with the true values. We can see that compared to Case 1,
the posterior for this example has a larger coefficient of variation for the inducer b
parameters, indicating that it is less identifiable.

4.3 Case 3: Undetectable inducer pulses

Undetectable events occur when the length of the chemical inducer pulse is smaller
than 5 minutes, the pulse amplitude is very low, or the modeling error is very high.
Clearly, a pulse shorter than the time interval at which we take measurements will
not be detected. A low amplitude pulse is also undetected when kleakA ≈ kprodA
or kleakB ≈ kprodB, which are not biologically relevant scenarios. The last case of
undetectable events is the most realistic for biological systems. It could be the
case that our model was a very poor representation of the true biological system
that produced the pulses. Then the variance of the noise in our “distribution of
distributions” could be 100 times larger than the current acceptable noise level and
then the pulses would be undetectable. However, we know from [3] that the model
that has been validated against experimental results to prevent this scenario.

5 Conclusion

Using the framework of Bayesian inference, we have answered questions about events
recorded in the heterogeneous distributional response of a cell population. We were
able to identify the occurrence, timing, and amplitude of chemical inducer pulses
in a temporal logic gate circuit. We used the cell population response to determine
whether an event of chemical induction of integrase expression had occurred. We also
obtained accurate results for chemical inducer pulse timing, length, and amplitude
using Markov Chain Monte Carlo methods. We detected and identified chemical
inducer pulses as short as half an hour, as well as all pulse amplitudes that fell
under biologically relevant conditions.

In future work, we plan to implement the Bayesian inference of chemical inducer
properties using Transitional Markov chain Monte Carlo (TMCMC) [23]. TMCMC
will more accurately find and sample complicated distributions that arise when
the model is close to unidentifiable. This can occur when there are short chemical
inducer pulses and when the model poorly captures the experimental cell population
behavior. TMCMC will enable us to not rely on Gaussian assumptions for evaluating
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the evidence in equation (9) to distinguish between chemical inducer pulses being on
or off. Due to better computational performance than MCMC or Adaptive MCMC,
we aim to increase the complexity and the number of parameters that describe our
chemical inputs. In the future, we aim to solve the inference problem for a chemical
inducer class of functions that correspond to square wave trains, which represent
inducers repeatedly turning on and off.
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