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A new law of human perception

Xue-Xin Wei and Alan A. Stocker∗

Department of Psychology, University of Pennsylvania

Perception is a subjective experience that depends on the expectations and be-
liefs of an observer1. Psychophysical measures provide an objective yet indirect
characterization of this experience by describing the dependency between the
physical properties of a stimulus and the corresponding perceptually guided be-
havior2. Two fundamental psychophysical measures characterize an observer’s
perception of a stimulus: how well the observer can discriminate the stimulus
from similar ones (discrimination threshold) and how strongly the observer’s per-
ceived stimulus value deviates from the true stimulus value (perceptual bias). It
has long been thought that these two perceptual characteristics are independent3.
Here we demonstrate that discrimination threshold and perceptual bias show a
surprisingly simple mathematical relation. The relation, which we derived from
assumptions of optimal sensory encoding and decoding4, is well supported by
a wide range of reported psychophysical data5–16 including perceptual changes
induced by spatial17,18 and temporal19–23 context, and attention24. The large
empirical support suggests that the proposed relation represents a new law of hu-
man perception. Our results imply that universal rules govern the computational
processes underlying human perception.

Discrimination threshold is a psychophysical measure that reflects the sensitivity of the ob-

server to small changes in the stimulus variable (Fig. 1A). The threshold depends on the quality

with which the stimulus variable is represented in the brain2 (i.e. encoded - Fig. 1B); a more ac-

curate representation results in a lower discrimination threshold. In contrast, perceptual bias is a

measure that reflects the degree to which an observer’s perception deviates on average from the

true stimulus value (Fig. 1A). Perceptual bias is typically assumed to result from prior beliefs and

reward expectations with which the observer interprets the sensory evidence1, and thus is deter-

mined by factors that are not directly related to the sensory representation of the stimulus. As
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Figure 1: Psychophysical characterization and modeling of perception. (A) Perception of a stimu-

lus variable (e.g. the perceived local orientation of a visual stimulus) is characterized by discrim-

inability and perceptual bias. Discrimination threshold specifies how well an observer can dis-

criminate small deviations around a particular stimulus orientation θ0 (green arrows). Perceptual

bias specifies how much on average over repeated presentations the perceived orientations (thin

blue lines) deviate from the true stimulus orientation (blue arrow). (B) Modeling perception as

an encoding-decoding processing cascade. Discriminability is limited by the characteristics of the

encoding process. Perceptual bias, however, also depends on the decoding process that typically

involves cognitive factors such as prior beliefs and reward expectations.
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Figure 1 (previous page): (C) A new theory of perception proposes that encoding and decod-

ing are optimized for a given stimulus distribution4. Within this theory, the encoding accuracy

(characterized by Fisher Information J (θ)) and the bias b(θ) of the Bayesian decoder are both

dependent on the stimulus distribution p(θ). With Fisher information providing a lower bound

on discriminability D(θ)25 we can mathematically formulate the relation between perceptual bias

and discrimination threshold as b(θ) ∝ (D(θ)2)′. (D) An arbitrarily chosen, numerical example

highlighting the characteristics of the relation: Bias is zero at the extrema of the discrimination

threshold (red arrows) and largest for stimulus values where the threshold changes most rapidly.

a result, it has long been believed that there is no reason to expect any lawful relation between

perceptual bias and discrimination threshold3.

However, here we derive a simple mathematical relation between discrimination threshold D(θ)

and perceptual bias b(θ) based on a recent observer theory of perception4. The key idea is that

both the encoding as well as the decoding process of the observer are optimally adapted to the

statistical structure of the perceptual task (Fig. 1C). Specifically, we assume encoding to be ef-

ficient26 such that it maximizes the information in the sensory representation about the stimulus

given a limit on the overall available coding resources. The assumption implies a sensory repre-

sentation whose coding resources are allocated according to the stimulus distribution p(θ). This is

expressed as the encoding constraint p(θ) ∝p
J (θ) where the Fisher Information J (θ) represents

the coding accuracy of the sensory representation4,27–29. Fisher Information provides a lower

bound for the discrimination threshold expressed as D(θ) ≥ c/
p

J (θ) where c is a constant25,30.

Assuming the bound is tight, we can express discrimination threshold in terms of the stimulus dis-

tribution as D(θ) ∝ 1/p(θ)28,29. Furthermore, we have previously shown that the perceptual bias

of the Bayesian decoder in the observer model (Fig. 1C) follows b(θ) ∝ (1/p(θ)2)′, and thus can

also be expressed in terms of the stimulus distribution4,31. Note that this expression is independent

of the details of the loss-function for a large class of symmetric loss-functions (see Supplemen-

tary Material). Putting all together, we can express a direct relation between perceptual bias and

discrimination threshold in the form of

b(θ) ∝ (D(θ)2)′ , (1)

i.e. perceptual bias (as a function of the stimulus variable) is proportional to the slope of the dis-

crimination threshold squared. The surprisingly simple mathematical relation predicts that stimu-

lus values with zero bias should correspond to the extrema of the discrimination threshold curve

(Fig. 1D, dashed lines). It also predicts that the magnitude of perceptual bias does not necessarily

coincide with the magnitude of the discrimination threshold; although intuitively one might have
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thought that the larger the threshold the larger the noise, and thus the larger the perceptual bias.

We tested the relation against a wide range of existing psychophysical data. Figure 2 shows

data for those perceptual variables for which both discrimination threshold and perceptual bias

have been reported over a sufficiently large stimulus range. We grouped the examples according

to their characteristic bias/threshold patterns. The first group consists of a set of circular vari-

ables (Fig. 2A-C). It includes local visual orientation, probably the most well-studied perceptual

variable. Orientation perception exhibits the so-called oblique effect32, which describes the obser-

vation that the discrimination threshold peaks at the oblique orientations yet is lowest for cardinal

orientations5. Based on the oblique effect, our relation Eq. (1) predicts that perceptual bias at both

cardinal and oblique orientations is zero, and that these are the only stimulus values for which the

bias is zero. Measured bias functions confirm this prediction6. Other circular perceptual variables

that exhibit similar patterns are heading direction using visual or vestibular information7, 2D mo-

tion direction measured with a 2AFC procedure8,9 or by smooth pursuit eye-movements10, and

motion direction in depth11,12. The relation also holds for the more high-level perceptual variable

of perceived heading direction of approaching biological motion (human pedestrian)13 as shown

in Fig. 2C. The second group contains non-circular magnitude variables for which discrimination

threshold (approximately) follows Weber’s law33 and linearly increases with magnitude (Fig. 2D).

We predict that these variables should exhibit a perceptual bias that is also (positively or negatively)

linear in stimulus magnitude. Indeed, we found this to be true for spatial frequency (threshold5,34,

bias14) as well as temporal frequency (threshold35, bias16 - not shown) in vision. Another example

is perceived visual speed for which discrimination threshold also follows approximately Weber’s

law15 and bias is approximately linear with stimulus speed16.

The last group contains bias/threshold patterns that are not intrinsic to individual specific vari-

ables but are induced by contextual modulation (Fig. 2E). Spatial context as in the tilt-illusion

is known to induce a characteristic repulsive bias pattern in the perceived stimulus orientation

away from the orientation of the spatial surround18. The corresponding change in discrimina-

tion threshold17 well matches the predicted pattern based on our theoretically derived relation.

Similar bias/threshold patterns have been reported for temporal context, i.e., as adaptation after-

effects. Adaptation induced biases and changes in discrimination threshold for perceived visual

orientation19,20 and spatial frequency21,22 nicely match the predicted patterns. At a slightly longer

time-scale, perceptual learning is also known to reduce discrimination thresholds. We predict that

perceptual learning also induces repulsive biases away from the learned stimulus value. This pre-

diction is indeed confirmed by data for learning orientation23 and motion direction36 (not shown)

although the existing data are sparse. Finally, attention has been known as a mechanism that can

decrease discrimination threshold37. We predict that this decrease should coincide with a repulsive
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Figure 2 (previous page): Data are organized into different groups. Green/blue curves represent

the threshold/bias pattern as predicted by Eq. (1). (A) Measured discrimination threshold5 and

bias6 functions for perception of local orientation and heading direction7 (solid lines for visual

stimulation, dash lines for vestibular stimulation). (B) We found similar patterns for perceived mo-

tion direction when measured both with a 2AFC procedure8,9 or with smooth pursuit behavior10.

(C) The predicted relation also holds for perceived motion direction in depth11,12, as well as for

the perception of higher-level stimuli such as the approaching heading direction of a person13,

although the quality of the available data is limited. (D) The threshold/bias relation is different for

non-circular magnitude variables: discrimination threshold is typically proportional to the stimu-

lus value (Weber’s law), and thus we predict that perceptual bias is also linear in stimulus value.

Reported patterns for perceived spatial frequency 5,14 as well as perceived speed15,16 of a visual

stimulus match this prediction. (E) Bias/threshold patterns resulting from various forms of contex-

tual modulation. Spatial context as in the tilt-illusion17,18 and temporal context during adaptation

experiments (orientation19,20 and spatial frequency21,22) lead to similar bias/threshold patterns that

are qualitatively well predicted by our theory (red arrows indicate the value of the adaptor stim-

ulus). The predicted relation seems to also hold for perceptual changes induced by perceptual

learning23 and spatial attention. Spatial attention has been tied to repulsive biases24 at the locus

of attention and is also known for improvements in discriminability, although little is known how

discriminability changes with stimulus value. All data curves are replotted from the corresponding

publications except for perceptual bias in orientation6 and threshold of visual speed15, which both

were derived by analyzing the original data.
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bias in the perceived stimulus variable. Although limited in extend, data from a Vernier-gap size

estimation experiment support this prediction24.

In sum, the derived relation can readily explain a wide array of empirical observations across

different perceptual variables, modalities, and contextual modulations. Based on the strong empir-

ical support, we argue that we have identified a new law of human perception. It provides a unified

and parsimonious characterization of the relation between discrimination threshold and perceptual

bias, which are the two main psychophysical measures that characterize the percept of a stimulus

variable.

Only very few quantitative laws are known in the perceptual sciences, which include Weber-

Fechner’s2,33 and Stevens’ law38. These laws express simple empirical regularities which provide

a compact yet generally valid description of the data. The law we proposed here shares the same

virtue. However, unlike these previous laws, the new law is not the result of empirical observations

but rather was derived based on theoretical considerations of optimal encoding and decoding4.

Thus, the law does not merely describe perceptual behavior but rather reflects our understanding

of why perception exhibits such characteristics in the first place. The new law allows us to predict

either perceptual bias based on measured data for discrimination threshold, or vice versa. This is

important because in most cases only one of the two measures has been recorded. One general

prediction is that stimulus variables that follow Weber’s law should exhibit perceptual biases that

are linearly proportional to the stimulus value as demonstrated with examples in Fig. 2D. Percep-

tual illusions are often examples of a strong form of perceptual bias. Thus, we predict that these

illusions should be accompanied with substantial threshold changes. Perhaps the most surprising

result is that the law also holds for contextual modulations (e.g. spatial context) that are instanti-

ated either immediately or on very short time-scales (Fig. 2E). It suggests that changes in encoding

and decoding can happen quickly and are matched, which has profound implications for the neural

computations and mechanisms underlying perception.
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