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Abstract

In this paper we describe a novel data driven spatial filtering tech-
nique that can be applied to the ERP analysis in order to find statis-
tically significant hidden differential activations in the EEG data. The
technique is based on the known morphological characteristics of the
response. Underlying optimization problem is formulated as a gener-
alized Rayleigh quotient maximization problem. We supply our tech-
nique with a relevant randomization-based statistical test to assess the
significance of the discovered phenomenon. Furthermore, we describe
an application of the proposed method to the EEG data acquired in
the study devoted to the analysis of the auditory neuroplasticity. We
show how the mismatch negativity component, a tiny and short-lasting
negative response that hallmarks the novel stimuli activating primary
error-detection mechanisms, can be detected after filtration.

1 Introduction

Superfine temporal resolution is the most significant advantage the elec-
troencephalography (EEG) and magnetoencephalography (MEG) techniques
offer to cognitive neuroscientists [1]. With these techniques and using the
evoked-response methodology (ERP) it became possible to discover and then
reliably detect the mismatch negativity phenomenon (MMN) — a tiny and
short-lasting negative response that hallmarks the novel stimuli activating
primary error-detection mechanisms. Since then a plethora of studies inves-
tigating the presence of the MMN response in various paradigms and involv-
ing various sensory modalities appeared. Recent neuroscience advances pre-
dict the presence of the MMN like response not only in the primary sensory
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2 OBSERVED DATA MODEL

brain regions but also in the structures responsible for executive control, de-
cision making and value encoding such as medial prefrontal cortex(mPFC),
posterior ad anterior cingulate cortex (PCC, ACC). Despite the averaging
implied by ERP approach, the activity of these deeper located brain re-
gions when recorded by the non-invasive EEG and MEG sensors tends to
get obscured by that of more superficial structures impinging on the array
of sensors.

Here we describe a novel data driven spatial filtering technique that
can be applied to the ERP data in order to find statistically significant
hidden differential activations not otherwise seen in the sensor data. Based
on the expected morphological characteristics of the response it allows to
find a spatial filter to single out the sought response from the influence of
other sources. We supply our technique with a relevant randomization-based
statistical test to assess the significance of thus discovered phenomenon.

2 Observed data model

EEG or MEG data recorded by a K-sensor array during the i-th repetition
of a cognitive task can be written as the following linear combination

e1(t) pi(t)
Xi<t) = [al,...,aR] —‘r[bl,...,bL] —|—n(t) (1)
er(t) pL(t)

In other words, the recorded multichannel signal at each instance of
time ¢, z;(t), is a noisy additive mixture of source topographies [aj,...,ag]
weighted with the corresponding stimulus-locked activation timeseries
[e1(t),...,er(t)] and similarly represented task unrelated contribution from
sources with topographies [by, ..., by] scaled with [p1(¢),...,pr(t)] time de-
pendent activations. Topographies of task related sources form K-dimen-
sional signal subspace and topographies of task unrelated sources form L-
dimensional coherent interference subspace. ERP experiments are usually
accompanied by a binary stimulus signal marking task onset. Usually the
goal of data analysis is to identify task related signals and extract task-
related signal component from these data. For completeness we should have
included induced sources whose activation power is locked to the task-onset
moment but the phase is random. However, since in the context of this
paper we are interested in analysis of ERP we did not include the induced
component in (1).
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2 OBSERVED DATA MODEL

The averaging procedure emphasizes the phase-locked to the stimulus
component of the response leaves us with the multichannel ERP data X(¢)

Eq (1)
X(t) = [a1,...,aRg] : + €(t) (2)

Source level ERPs FE;(t) are stacked into the source timeseries vector
that scales the corresponding source topographies a;. Source topography
norms ||a;|| determine the signal-to-noise ratio specific to the i-th source.
These norms vary due to location and orientation of the sources. The depth
of a source appears to be the key factor here. For example, in the MEG
data the field strength is inversely proportional to the cube of the source-
sensor distance. In the EEG case the relation is complicated but results
into significantly more pronounced potential spread of the deeper source as
compared to the more superficial ones.

Taking into account the linearity of the above mixture, the activity of
the ¢-th source can be estimated by means of spatial filtering that boils
down to computing the linear combination E;(t) = w;X(t) of sensor signals
with weights w; determined by solving the inverse problem via one of the
many available non-parametric, parametric techniques or by a data driven
decomposition such as CSP [2] or ICA [0].

In the exploratory analysis the obtained source activation timeseries esti-
mates EAl(t) are then scrutinized for significance in order to draw conclusions
related to the studied hypothesis. In the non-parametric scenario the entire
inverse operator is obtained. The procedure of finding sources with signif-
icant activations requires a statistical test for multiple (~ 10*) hypotheses
which results into a significant reduction of statistical power. When w; is ob-
tained by a spatial decomposition the multiple comparisons (~ 100) is still a
problem and additionally, there is no guarantee the decomposition employed
isolates the sought phenomenon into a single component. For instance, in
[1] it has been demonstrated that the ICA tends to deliver a suboptimal
performance in the task of finding the narrow-band sources when applied to
a typical instantaneous mixture, i.e. (1). When solving the inverse problem
with the parametric approach, the source of interest may be obscured by the
activity of more superficial dipoles and therefore the dipole-fitting algorithm
will fail to find this deeper source.

Response latency and peak duration are the most physiologically in-
terpretable features of the ERPs and the corresponding source timeseries.
Therefore, when searching for a neurophysiologically plausible solution it is
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3 METHOD

often desirable to be able to supply this information to the algorithm. In
what follows we describe a novel Rayleigh-quotient based method that al-
lows to find weak sources whose activity possesses the desired morphological
features.

3 Method

When performing comparative analysis of the responses in two conditions
we usually have some expectation regarding the timing of the expected dif-
ference. For example, when studying classical MMN responses we expect
the difference to occur around 100 ms following the deviant stimuli. This
information is then used and the corresponding source is found by fitting
a dipole to the interval around the peak of the difference waveform. It is
noteworthy, that in the classical MMN paradigm we ideally would like this
deviation to occur only within a single time interval so that the rest of the
deviant stimulus response is similar to the standard response.

A Flanker range (FR)

- 4.-:Target range {TFE)|<¢—>
-~

Pre-stimulus interval
% -—/ — -
0 time
I EE— == Response in condition 1
Response latency == Response in condition 2

Figure 1: The diagram illustrating the proposed method. Two typical ERPs
are superimposed. We expect to see statistically significant difference be-
tween the two conditions in the Target range and to see no such difference
over the rest of the time points (flanker range)

3.1 Optimization problem

We now describe an optimization problem underlying the proposed method
for detecting the hidden regularities of evoked response with known temporal
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3.1 Optimization problem 3 METHOD

structure. The goql here is to find spch a spatial filter w that the projected
differential ERP D(t) = E(t) — E2(t) = WT(XL(t) — X2(t)) satisfies
the following two conditions:

1. D(t) should have maximum deflection within the Target range, see
figure 1.

2. ﬁ(t) should have minimal possible amplitude over the rest of the re-
sponse time, the flanker range, see figure 1.

Similarly to the CSP method, the corresponding problem can be formu-
lated as a generalized Rayleigh quotient maximization:

0- wi(Xgpl{% — Xf,?g)(X%f — X§?§)TW _ W; Crpw , )
wh(Xpp — X5p)(Xip — XFr)w Wi Crrw W

where X7, is a [K x Tprg|-matrix containing the condition n ERP samples
from the target range (TR), and X is a [ x Tpg|-matrix containing the
complimentary subset of condition n ERP samples that form the flanker
range.

Since the intervals may contain fewer time samples than the number of
channels K the resultant matrices Crr and Crg will be ill-conditioned. In
order to resolve this we replace these matrices with their Tikhonov regu-
larized versions as CTR = Crp + Argl and CFR = Cpgr + Apgrl where A
is taken to be a small fraction (0.1) of the trace(C)/K — average diagonal
element. Alternatively, the shrinkage technique can be used to analytically
compute a value for .

Thus, our method reduces to finding the w that maximizes the following
Rayleigh quotient

w! Crpw

Q= (4)

which can be performed by solving the generalized eigenvalue problem for
the (Crg, Crr) pair of matrices. As a result we will obtain matrix W of
generahzed eignevectors so that CrpW = ACprW. The optlmal spatial
filter w* will correspond to the largest eigenvalue of the CTRC 7R Mmatrix.
In order to find the matrix V of the corresponding topographies we invert
the generalized eigenvectors matrix so that V.= W~1. The topography of
the source whose activity matches the desired temporal profile is then given
by the corresponding row of V.

wlCprw
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3.2 Statistical testing procedure 4 DATA DESCRIPTION

3.2 Statistical testing procedure

Since the optimal filter w* computed and applied to the ERP we should
provide the guarantees that the obtained component is not spurious. In
order to check the consistency of obtained results the nonparametric per-
mutation test can be used [3]. Under the null hypothesis all trials in the data
are assigned with some unknown probability distribution fx, = f(X; = z;).
The null hypothesis of the permutation test states that responses in all tri-
als are drawn from the same distribution, regardless of the condition under
which it was recorded (¢ = {cl, ¢2}). The alternative hypothesis states that
the probability distributions are different due to the different experimental
conditions.

HO:fX1:fX2:"':fXN (5)

To perform the test we need to draw new samples from the permutation
distribution, apply the statistical method proposed to the new samples and
compute some statistics .S which can be compared with the same statistics
for the original data S*. After M repetitions of permutation resampling, the
p-value of the test computed as a ratio of the statistics values that exceed
the original value

YN L[S > S7]
_ j=11~7
P N (6)

Drawing from the permutation distribution implies randomly permuting
trials under the different experimental conditions in such a way that all
possible permutations appears with equal chances. The statistics should
reflect the difference between the responses observed in different conditions.
If the value for permuted samples is higher than for the original data it means
that the detected effect is spurious and does not evoked by the experimental
conditions.

4 Data description

In this paper we describe an application of the proposed statistical method
to the data acquired in the study devoted to the analysis of the auditory
neuroplasticity of neuroeconomics. During this study subjects participated
in two sessions of the experiment in two consecutive days. The experimental
paradigm combines two widely used approaches: monetary incentive delay
task (MID task) and oddball session.
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5 RESULTS

The design of the study has several specific features. While in the original
MID task the incentive cues are visual, the goal of this research is analysis
of the auditory neuroplasticity, so the auditory modification of MID task
were used. During two consecutive MID task sessions the participants built
associations between sounds and monetary rewards they could get in each
trial corresponding to the sound. Since the design includes two oddball
sessions — one before the MID task and one after — the differences in the
mismatch negativity (MMN) component magnitudes between two days can
be used as a marker of neuroplasticity caused by learning.

During the oddball session the subject heard sequences of sounds, where
on of them was the standard sound and appears much frequently than other
deviant sounds. The sounds differs both in frequency and intensity and
during the session all deviants were presented in the randomized sequence.
The number of each deviant amounts to 5% of the standards. EEG data were
recorded using 60 active electrodes (Brain Products GmbH) at a sampling
rate of 500 Hz.

It is suggested that MMN changes its magnitude as a result of learning
only in the case when subject did not discriminate the sounds absolutely
before the experiment [5]. Therefore, the sounds used as incentive cues in
the MID task and as deviant sounds in the oddball session were chosen in
accordance with a personal auditory sensitivity level and were not absolutely
discriminated by the subjects.

Unexpectedly, the observed MMN magnitude in the acquired data is
too small to detect it on the single channel. It seems that the possible
explanation of this phenomena is that the sounds were too close to each
other and it was difficult for a subject to distinguish them.

5 Results

In order to detect the MMN component in the data described above we use
the proposed statistical method of maximal discrimination between evoked
responses in the time interval of interest. The developed method implies
single-trial within-subject analysis, so here we demonstrate the results on
the one subjects’ data.

As in this case we are looking for the MMN, the Target range for cal-
culations is 80-180 ms since it covers the period when we expect to observe
the component. After the filter w* was calculated, the permutation test was
performed to check the consistency of the results. In the described case the
null hypothesis of the permutation test is rejected at the failure rate of less
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5 RESULTS

than 5% (p-values lower than 5%).

ERPs projected with computed spatial filters

25 —Day1| 1
——Day2

Figure 2: Difference between averaged deviant trials and standard trials
projected with the obtained spatial filters; the highlighted time interval is
80-180 ms used as a target interval for discrimination of two conditions.

Figure 2 demonstrates the projected responses with filter wj for the
first day (blue line) and wj for the second day (red line) after the training.
The Target time interval of 80-180 ms is highlighted. It is clearly seen that
the filtration allows us to detect the significant peak in the Target interval
while the difference in responses in flanker range fluctuates around 0. The
topographies of the potential spatial distribution are demonstrated on the
B) and D) parts of figure 3.

Figure 3: A) Spatial distribution of filters computed (Day 1); B) Topogra-
phy of the potential distribution (Day 1); C) Spatial distribution of filters
computed (Day 2); D) Topography of the potential distribution (Day 2);
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5 RESULTS

Since the detected component has an appropriate latency and negative
potential deflection is located in the fronto-central area, the detected com-
ponent can be defined as MMN. We can conclude from the figures that this
subject were successfully trained during the MID-task as both amplitude
and area of propagation of the component increased on the second day.

Day 1: eigenvalues for different time spans Day 2: eigenvalues for different time spans

*,
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Figure 4: Eigenvalues for different time spans used for filter calculation,
two days. The highlighted region is 80-180 ms. Eigenvalues colored in
accordance with the statistical significance of the observed component (red
points correspond to the permutation test p-values < 0.05).

Consistency of the obtained results is supported by the analysis of the
whole time interval with the proposed method. We fixed the length of Target
range for 100 ms and then moved the starting point from the beginning of
the whole range (-200 ms) to the end (700 ms) with step of 20 ms. Figure
4 demonstrates the maximal obtained eigenvalues for each interval for two
days. Figure 5 shows the corresponding p-values from the permutation test
performed for chosen target time intervals, horizontal dashed lines cut the
classic thresholds for p-values of 0.1, 0.05 and 0.01.

Magnitudes of maximal eigenvalues equal to the maximal value of the
Rayleigh quotient (equation (4)) obtained with the optimal filters w*. The
correct Target range which used for MMN detection previously highlighted
with red and the eigenvalues corresponding to this time span marked with
stars. While there are a lot of eigenvalues which are rather high in com-
parison with the target eigenvalue (in the true Target value 80-180 ms), the
permutation test approve the consistency only for three of them (colored in
red).
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Figure 5: Permutation test p-values for different time spans used for filter
calculation, two days. The highlighted region is 80-180 ms. Dashed lines
cut off the 0.1, 0.05 and 0.001 levels, points under the 0.05 threshold colored
in red

The evidence of the MMN magnitude increase on the second day are
supported by the fact that there are several time intervals concentrated
near the highlighted initial Target range, which give the significant result
after the filtration. This effect can be explained by the enlarged propagation
of the MMN component in time.
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