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TUTORIAL ON GAUSSIAN PROCESS REGRESSION 2

Abstract

This tutorial introduces the reader to Gaussian process regression as a tool to model, actively

explore and exploit unknown functions. Gaussian process regression is a powerful,

non-parametric Bayesian approach towards regression problems that can be utilized in

exploration and exploitation scenarios. This tutorial aims to provide an accessible introduction

to these techniques. We will introduce Gaussian processes as a distribution over functions used

for Bayesian non-parametric regression and demonstrate different applications of it. Didactic

examples will include a simple regression problem, a demonstration of kernel-encoded prior

assumptions, a pure exploration scenario within an optimal design framework, and a

bandit-like exploration-exploitation scenario where the goal is to recommend movies. Beyond

that, we describe a situation in which an additional constraint (not to sample below a certain

threshold) needs to be accounted for and summarize recent psychological experiments

utilizing Gaussian processes. Software and literature pointers will be provided.

Keywords: Gaussian process, Exploration-Exploitation, Bandit Problems
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TUTORIAL ON GAUSSIAN PROCESS REGRESSION 3

A tutorial on Gaussian process regression with a focus on exploration-exploitation scenarios

Introduction

No matter if we try to find a function that describes participants’ behaviour (Cavagnaro,

Aranovich, McClure, Pitt, & Myung, 2014), estimate parameters of psychological models

(Wetzels, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2010), try to sequentially optimize

stimuli in an experiment (Myung & Pitt, 2009), or model how participants themselves learn to

interact with their environment (Meder & Nelson, 2012), many problems require us to assess

unknown functions that map inputs to outputs, f : X → Y (Mockus, 2010). Often times, the

shape of the underlying function might be unknown, the function can be hard to evaluate

analytically, or other requirements such as design costs might complicate the process of

information acquisition. In these situations, Gaussian process regression can serve as a useful

tool for performing regression both passively (for example, with the intent to predict newly

observed points) as well as actively (for example, with the intent to minimize queries that lead

to a pre-defined goal such as producing the highest possible output) (Williams & Rasmussen,

2006). Gaussian process regression is a non-parametric Bayesian approach (Gershman & Blei,

2012) towards regression problems. It can capture many different relations between inputs and

outputs by utilizing a theoretically infinite number of parameters and letting the data decide

upon the level of complexity through the means of Bayesian inference (Williams, 1998).

This tutorial will introduce Gaussian process regression as an approach towards

modeling, actively learning and optimizing unknown functions. It is intended for a general

readership and mostly contains practical examples and high level explanations. It consists of

six main parts: The first part will introduce the mathematical underpinnings of Gaussian

process regression. The second part will show how different kernels encode various prior

assumptions about the underlying function. Next, we will show how Gaussian processes can

be used in problems of optimal experimental design, when the goal is pure exploration, i.e., to

learn a function as well as possible. The fourth part will describe how Gaussian process-based

Bayesian Optimization (here defined as an exploration-exploitation problem) works. In the

fifth part, we will talk about ways of utilizing Gaussian process exploration-exploitation

methods in situations with additional requirements and show one example where the goal is to
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TUTORIAL ON GAUSSIAN PROCESS REGRESSION 4

avoid outputs that are below a certain threshold. We will conclude by summarizing current

research that treats Gaussian process regression as a psychological model to assess function

learning.

This tutorial attempts to provide an accessible and practical introduction to various

applications of Gaussian process regression. As a tutorial like this can never be fully

comprehensive, we have tried to provide detailed references and software pointers whenever

possible. The tutorial will mainly focus on applications of Gaussian process-based methods.

Gaussian processes – distributions over functions

Motivation

Let f denote an (unknown) function which maps inputs x to outputs y: f : X → Y

(Mockus, 2010). Throughout the following examples, we will have one of three different

goals. Modeling a function f means mathematically representing the relation between inputs

and outputs. An accurate model of f allows us to predict the output for many possible input

values. In practice, this means generating accurate predictions for newly observed points after

some observations of both inputs and outputs have been collected. Exploration in this context

means to actively choose the input points for which to observe the outputs in order to

accurately model the function. In pure exploration problems, this is the only objective. In

exploration-exploitation problems, we are concerned with obtaining the best possible outputs,

and exploring the function serves the purpose of doing so most efficiently. In such active

learning scenarios, the following 2 ingredients are needed:

1. A model of f that can be used to learn about its shape.

2. A method to select inputs based on the current knowledge of f .

Within exploration scenarios the next inputs are chosen in order to learn about the

function as quickly and accurately as possible, whereas the intention in

exploration-exploitation scenarios is to actively find those inputs that produce the best (e.g.,

highest) output values as quickly as possible in order to maximise the total reward accrued

within a particular period of time. As a valid model of the underlying function f is crucial for
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TUTORIAL ON GAUSSIAN PROCESS REGRESSION 5

all three goals, we will first focus on Gaussian processes as a powerful and expressive method

to model unknown functions, before then applying this tool to exploration and exploitation

scenarios later on.

Modeling functions: the weight space view

Let us start by considering a standard approach to model functions: linear regression

(here defined as Bayesian regression). Imagine we have collected the observations shown in

Table 1 and that we want to predict the value of y for a new input point x? = 3. In linear

Table 1

Observations for the regression example. Inputs xt and corresponding outputs yt observed at

times t = 1, . . . , 6.

t xt yt

1 0.9 0.1

2 3.8 1.2

3 5.2 2.1

4 6.1 1.1

5 7.5 1.5

6 9.6 1.2

regression, we assume the outputs are a linear function of the inputs with additional noise:

yt = f(xt) + εi

= β0 + β1xt + εt,

where the noise term εt follows a normal distribution

εt ∼ N (0, σ2
ε )

with mean 0 and variance σ2
ε . As this will be useful later, we can write this in matrix algebra as

yt = x>t w + εi
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defining the vectors

xt =

 1

xt

, w =

β0

β1


To predict the output for x?, we need to estimate the weights from the previous observations

Xt =



1 0.9

1 3.8
...

...

1 9.6


, yt =



0.1

1.2
...

1.2


.

Using a Bayesian framework, we do so through the posterior distribution over the weights. If

we use a Gaussian prior over the weights p(w) = N (0,Σ) and the Gaussian likelihood

p(yt|Xt,w) = N (X>t w, σ2
ε I), then this posterior distribution is

p(w|yt,Xt) ∝ p(yt|Xt,w)p(w)

= N
(

1
σ2
ε

A−1
t Xtyt,A−1

t

)
(1)

where At = Σ−1 + σ−2
ε XtX>t . As inference here is performed over the weights (i.e., we try to

find the best estimate for the β-weights given the data), this is also sometimes referred to as

“the weight space view of regression”. To predict the output y? at a new test point x?, we

ignore the error term and focus on the expected value which is provided by the function f ,

predicting f? = y? − ε? = f(x?). In the predictive distribution of f?, we average out our

uncertainty regarding the weights

p(f?|x?,Xt,yt) =
∫
p(f?|x?,w)p(w|Xt,yt)dw

= N
(

1
σ2
ε

x>? A−1
t Xtyt,x>? A−1

t x?
)

(2)

A good prediction is the mean of this predictive distribution and comparing the mean to that in

(1), we see that we can simply multiply the posterior mean of w with the new input x?,

resulting in the prediction 0.56 + 3× 0.12 = 0.92.

While linear regression is often chosen to model functions, it assumes the function has

indeed a linear shape. However, only few relations in the real world are truly linear, and we
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need a way to model non-linear dependencies as well. One possible adjustment is to use a

projection of the inputs x onto a “feature space” by using a function φ(x). A common

projection is to use polynomials, resulting in polynomial regression. Take a cubic regression

as an example, which assumes a function f(x) = β0 + β1x+ β2x
2 + β3x

3. Deriving the

posterior for this model is similar to the linear regression described before, only that the input

matrix Xt is replaced by the projection

Φt = φ(Xt) =



1 0.9 0.81 0.729

1 3.8 14.44 54.872
...

...
...

...

1 9.6 92.16 884.736


.

In our example, this would result in the prediction

f? = −0.67 + 0.98× 3− 0.13× 32 + 0.01× 33 = 1.37.
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Figure 1. Example of performing Bayesian linear and cubic regression. Grey lines indicate

predictions for different sampled posterior weights. Black dots mark empirical observations.

Dark grey lines mark the current mean posterior predictions. The red triangle shows the

prediction for a new data point x? = 3 .

Projecting input variables into a feature space offers considerable flexibility and allows

one to model functions of any shape. However, this flexibility is also a drawback. There are

infinitely many projections possible and we have to choose one either a priori or by model
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comparison within a set of possible projections. Especially if the problem is to explore and

exploit a completely unknown function, this approach will not be beneficial as there is little

guidance to which projections we should try. Gaussian process regression, which we will

discuss next, offers a principled solution to this problem in which projections are chosen

implicitly, effectively letting “the data decide” on the complexity of the function.

Modeling functions: the function space view

In the weight space view of the previous section, we focused on distributions over

weights. As each set of weights implies a particular function, a distribution over weights

implies a distribution over functions. In Gaussian process regression, we focus on such

distributions over functions directly. A Gaussian process defines a distribution over functions

such that, if we pick any two points in a function (i.e. two different input-output pairs),

observations of the outputs at these two points follow a joint (multivariate) Gaussian

distribution. More formally, a Gaussian process is defined as a collection of random variables,

any finite number of which have a joint (multivariate) Gaussian distribution.

In Gaussian process regression, we assume the output y of a function f at input x can be

written as

y = f(x) + ε (3)

with ε ∼ N (0, σ2
ε ). Note that this is similar to the assumption made in linear regression, in

that we assume an observation consists of an independent “signal” term f(x) and “noise” term

ε. New in Gaussian process regression, however, is that we assume that the signal term is also

a random variable which follows a particular distribution. This distribution is subjective in the

sense that the distribution reflects our uncertainty regarding the function. The uncertainty

regarding f can be reduced by observing the output of the function at different input points.

The noise term ε reflects the inherent randomness in the observations, which is always present

no matter how many observations we make. In Gaussian process regression, we assume the

function f(x) is distributed as a Gaussian process:

f(x) ∼ GP (m(x), k(x,x′)) .
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A Gaussian process GP is a distribution over functions and is defined by a mean and a

covariance function. The mean function m(x) reflects the expected function value at input x:

m(x) = E[f(x)],

i.e. the average of all functions in the distribution evaluated at input x. The prior mean

function is often set to m(x) = 0 in order to avoid expensive posterior computations and only

do inference via the covariance directly. The covariance function k(x,x′) models the

dependence between the function values at different input points x and x′:

k(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))]

The function k is commonly called the kernel of the Gaussian process (Jäkel, Schölkopf,

& Wichmann, 2007). The choice of an appropriate kernel is based on assumptions such as

smoothness and likely patterns to be expected in the data (more on this later). A sensible

assumption is usually that the correlation between two points decays with the distance

between the points according to a power function. This just means that closer points are

expected to behave more similarly than points which are further away from each other. One

very popular choice of a kernel fulfilling this assumption is the radial basis function kernel,

which is defined as

k(x,x′) = σ2
f exp

(
−‖x− x′‖2

2λ2

)
.

The radial basis function provides an expressive kernel to model smooth functions. The two

hyper-parameters λ (called the length-scale) and σ2
f (the signal variance) can be varied to

increase or reduce the correlation between points and consequentially the smoothness of the

resulting function.

Once a mean function and kernel are chosen, we can use the Gaussian process to draw a

priori function values, as well as posterior function values conditional upon previous

observations.

Sampling functions from a GP. Although Gaussian processes are continuous,

sampling a function from a Gaussian process is generally done by selecting a set of input

points. Theoretically, a function can be represented as a vector of infinite size; however, as we

only have to make predictions for finitely many points in practice, we can simply draw outputs
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for these points by using a multivariate normal distribution with a covariance matrix generated

by the kernel. Let X? be a matrix with on each row a new input point x?i , i = 1, . . . , n. To

sample a function, we first compute the covariances between all inputs in X? and collect these

in an n× n matrix:

K(X?,X?) =



k(x?1,x?1) k(x?1,x?2) . . . k(x?1,x?n)

k(x?2,x?1) k(x?2,x?2) . . . k(x?2,x?n)
...

...
...

k(x?n,x?1) k(x?n,x?2) . . . k(x?n,x?n)


Choosing the usual prior mean function m(x) = 0, we can then sample values of f at inputs

X? from the GP by sampling from a multivariate normal distribution

f? ∼ N (0, K (X?,X?))

where we use the notation f? = [f(x?1), . . . , f(x?n)]>. Note that f? is a sample of the function

values. To sample observations y?, we would have to add an additional and independent

sample of the noise term ε.

Posterior predictions from a GP. Suppose we have collected observations

Dt = {Xt,yt} and we want to make predictions for new inputs X? by drawing f? from the

posterior distribution p(f |Dt). By definition, previous observations yt and function values f?

follow a joint (multivariate) normal distribution. This distribution can be written as

yt

f?

 ∼ N
0,

K(Xt,Xt) + σ2
ε I K(Xt,X?)

K(X?,Xt) K(X?,X?)




where I is an identity matrix (with 1’s on the diagonal, and 0 elsewhere) and σ2
ε is the assumed

noise level of observations (i.e. the variance of ε). Using standard results, the conditional

distribution p(f?|Xt,yt,X?) is then a multivariate normal distribution with mean

K(X?,Xt)[K(Xt,Xt) + σ2
ε I]−1yt

and covariance matrix

K(X?,X?)−K(X?,Xt)[K(Xt,Xt) + σ2
ε I]−1K(Xt,X?)

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 21, 2017. ; https://doi.org/10.1101/095190doi: bioRxiv preprint 

https://doi.org/10.1101/095190


TUTORIAL ON GAUSSIAN PROCESS REGRESSION 11

Note that this posterior is also a GP with mean function

mt(x) = K(x,Xt)[K(Xt,Xt) + σ2
ε I]−1yt (4)

and kernel

kt(x,x′) = k(x,x′)−K(x,Xt)[K(Xt,Xt) + σ2
ε I]−1K(Xt,x′) (5)

To predict f?, we can simply use the mean function in (4), or sample functions from the GP

with this mean function and kernel (5) as described in the previous section.

Figure 2 shows an example of samples from a radial basis function GP prior and the

posterior mean functions after the data in Table 1 has been observed.
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0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
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y

Gaussian Process Regression

Figure 2. Example of samples from a Gaussian process prior and posterior. Grey lines indicate

samples from the GP. Black dots mark empirical observations. The dark grey line marks the

current mean of the GP. The red triangle shows the prediction for the new input point.

Switching back to the weight view. We can rewrite the mean function (4) as

mt(x) =
t∑
i=1

wik(xi,x)

where each xi is a previously observed input value in Xt and the weights are collected in the

vector w = (K(Xt,Xt) + σ2
ε I)−1 yt. What this equation tells us is that Gaussian process

regression is equivalent to a linear regression model using basis functions k to project the
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inputs into a feature space. To make new predictions, every output yt is weighted by how

similar the corresponding input xt was to the to be predicted point x by a similarity measure

induced by the kernel. This results in a simple weighted sum to make predictions for new

points1. The posterior predictive mean then is a linear combination of the features. Therefore,

a conceptually infinite parameter space boils down to a finite sum when making predictions.

This sum only depends on the chosen kernel k and the data Dt observed thus far (Kac &

Siegert, 1947). This is why Gaussian process regression is referred to as a non-parametric

technique. It is not the case that this regression approach has no parameters. Actually, it has

theoretically as many parameters w as there are observations. However, in making predictions,

we only use a finite sum over all past observations. Details for generating a prediction for

x? = 3 given a radial basis function kernel with length scale λ = 1, and observation variance

σ2
ε = 0.01 are provided in Table 3.

Table 2

Example of generating a prediction using a Gaussian process with a radial basis function

kernel. wi = (K(X,X) + σ2
ε I)−1

yi; x?=3;

t xt yt wt k(xt, x?) wtk(xt, x?)

1 0.9 0.1 0.51 0.38 0.19

2 3.8 1.2 -3.88 0.87 -3.37

3 5.2 2.1 13.3 0.34 4.53

4 6.1 1.1 -12.55 0.12 -1.48

5 7.5 1.5 5.83 0.01 0.06

6 9.6 1.2 -0.34 0.00 0.00∑6
t=1 wtk(xt, x?): -0.06

We can see that Gaussian process regression is a powerful tool to capture many

stationary functions. This in turn can be easily applied to contexts where the task is to explore

or exploit these functions actively, in a step-wise fashion.

1In fact, simple Bayesian linear regression can be recovered by using a linear kernel k(x, x′) = σ2
b + σ2

f (x−

c)(x′ − c)
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Optimizing hyper-parameters

The kernel normally contains hyper-parameters such as the length-scale, the signal

variance, and the noise variance. These are usually not assumed to be known but rather are

learned from the data. As the posterior distribution over the hyper-parameters is generally

difficult to obtain, full Bayesian inference of the hyper-parameters is generally not used.

Instead, a point estimate of the hyper-parameters is usually computed by maximising the

marginal (log) likelihood. This is similar to parameter estimation by maximum likelihood and

is also referred to as type-II maximum likelihood (ML-II, cf Williams & Rasmussen, 2006).

Given the data D = {X,y} and hyper-parameters θ, the log marginal likelihood is

log p(y|X, θ) = −1
2y>K−1

y y− 1
2 log |Ky| −

n

2 log 2π (6)

where Ky = K(X,X) + σ2
ε I is the covariance matrix of the noisy output values y. The

marginal log likelihood can be viewed as a penalized fit measure, where the term −1
2y>K−1

y y

measures the data fit, that is how well the current kernel parametrization explains the

dependent variable, and −1
2 log |Ky| is a complexity penalization term. The final term

−n
2 log 2π is a normalization constant. The marginal likelihood is normally maximized

through a gradient-ascent based optimization tool such as implemented in MATLAB’s

minimize.m function. These routines make use of the partial derivatives w.r.t. θ:

∂

∂θj
log p(y|X, θ) = 1

2y>K−1y− 1
2 tr

(
K−1∂K

∂θj

)
(7)

= 1
2 tr

(
(αα> −K−1)∂K

∂θj

)
(8)

with α = K−1y.

Encoding prior assumptions via the kernel

So far we have only focused on the radial basis function kernel to perform Gaussian

process inference. However, other kernels are possible and flexibility in choosing the kernel is

one of the benefits of Gaussian process regression. The kernel function k directly encodes

prior assumptions about the underlying function such as its smoothness and periodicity.

Additionally, more complex kernels can be created by combining simpler kernels through

addition or multiplication.
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Encoding smoothness

The radial basis function kernel is a special case of a general class of kernel functions

called the Matérn kernel. The Matérn covariance between two points with distance

τ = |x− x′| is

kν(τ) = σ2 21−ν

Γ(ν)

(√
2ν τ
ρ

)
Kν

(√
2ν τ
ρ

)
(9)

where Γ is the gamma function, Kv is the modified Bessel function of the second kind, and ρ

and ν are non-negative covariance parameters. A GP with a Matérn covariance has sample

paths that are ν − 1 times differentiable. When ν = p+ 0.5, the Matérn kernel can be written

as a product of an exponential and a polynomial of order p.

kp+0.5(τ) = σ2 exp
(
−
√

2ντ
ρ

)
Γ(p+ 1)
(2p+ 1) ×

p∑
i=0

(p+ i)!
i!(p− i)!

(√
8ντ
ρ

)p−i
(10)

Here, p directly determines how quickly the covariance between two points thins out in

dependency of how far the two points are apart. If p = 0, then this leads to the

Ornstein-Uhlenbeck process kernel

k(τ) = σ2
f exp

(
−τ
λ

)
, (11)

which encodes the prior assumption that the function is extremely unsmooth (rough) and that

observations do not provide a lot of information about points that are anything but very close

to the points we have observed so far. If p→∞ in the limit, then the Matérn kernel becomes a

radial basis function kernel. This kernel expects very smooth functions for which observing

one point provides considerably more information than if we assume very rough underlying

functions. Figure 3 shows prior and posterior samples for both the Ornstein-Uhlenbeck

process and the radial basis function kernel. Notice how the prior samples are a lot more

“rugged” for the former and very smooth for the later. We can also see how encoding different

prior smoothness assumptions leads to different posterior samples after having observed the

same set of points (the points we used before). In particular, expecting very rough functions a

priori leads to posteriors that do not generalize far beyond the encountered observations,

whereas expecting very smooth functions leads to posterior samples that generalize more

broadly beyond the encountered points.
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Figure 3. Example of samples from differently smooth Gaussian process priors and their

posteriors after having observed the same set of points. Grey lines indicate samples from the

GP. Black dots mark empirical observations. The dark grey line marks the current mean of the

GP. The red triangle shows the prediction for the new data point.

In most real world applications of Gaussian process regression, the practitioner either

chooses the radial basis function kernel and then optimizes its length-scale in order to account

for potential mismatches between prior smoothness assumptions and the observed functions or

again optimizes the length-scale parameter but a priori chooses a Matérn kernel with p = 5 as

an intermediate solution to encode the expectation of smooth but not too smooth functions. In

general, it seems always better to think hard about the expected properties of the underlying

function in order to avoid ill-posed priors (Schulz, Speekenbrink, Hernández-Lobato,

Ghahramani, & Gershman, 2016).

Composing kernels

Another advantage of Gaussian process regression is that different kernels can be

combined, thereby creating a rich set of interpretable and reusable building blocks (Duvenaud,

Lloyd, Grosse, Tenenbaum, & Ghahramani, 2013). For example, adding two kernels together

models the data as a superposition of independent functions. Multiplying a kernel with for

example the radial basis function kernel, locally smoothes the effect of the first kernel.
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Take as an example data set the atmospheric concentration of carbon dioxide over a

forty year horizon as shown in Figure 4. We can immediately see a pattern within this data,

which is that the CO2-concentration seems to increase over the years, that there seems to be

some periodicity by which at some times within each year the CO2 emission is higher, and

that this period may not be perfectly replicated every year. Using a Gaussian process

regression framework, we can combine different kernels as building blocks in the attempt to

explain these patterns. Figure 4 shows posterior mean predictions for different kernel

combinations. The first one shows a radial basis function alone, the second a sum of a radial

RBF RBF+Lin RBFxPer+Lin

325

350

375

400

1960 1980 2000 1960 1980 2000 1960 1980 2000
Year

C
O

2

Kernel composition example

Figure 4. Example of composing kernels by combining simpler kernels in order to explain a

complex function. Data were mean-centred before fitting the Gaussian process and predictions

were transformed back afterwards. Grey lines show observed CO2 emissions. Red lines show

posterior predictions of Gaussian process regressions with different kernels: RBF is a radial

basis function kernel, RBF+Lin is a kernel composed by adding a RBF and a linear kernel,

RBF×Per + Lin is a kernel composed by multiplying a radial basis and periodic kernel and

adding a linear kernel.

basis function kernel and a linear kernel, k(x, x′) = (x− c)(x′ − c), and the third one the sum

between a linear kernel and the product between a radial basis function kernel and a periodic

kernel, k(x, x′) = θ2
1 exp

(
−2 sin2(π|x−x′|θ2)

λ2

)
. As the radial basis function kernel tends to

reverse back to the mean over time, it does not do a good job capturing the linear trend of the

data. Therefore, adding a linear kernel to the radial basis function kernel already seems to
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improve predictions. Finally, multiplying the radial basis function kernel with a periodic

kernel to create a locally smoothed periodic kernel, which is then combined with an increasing

trend by adding a linear kernel seems to predict the data reasonably well. This shows that the

kernel can also be used to encode structural assumptions about the underlying function more

explicitly, especially when one wants to cover more complex patterns than just interpolating

smooth functions (see Lloyd, Duvenaud, Grosse, Tenenbaum, & Ghahramani, 2014, for an

exciting application of compositional kernels).

General set-up for exploration-exploitation problems

Having found a general way to model functions, we can now focus on ways to cleverly

explore or exploit the unknown function as we are learning about it over time. Within the

Gaussian process approach both pure exploration and exploration-exploitation can be treated

in a similar manner. Both use Gaussian process regression to model the underlying function2

and estimate the utility of available queries (candidate input points to sample next) through

what is called an acquisition function. An acquisition function V can be seen as measuring the

usefulness (or utility) of candidate input points in terms of allowing one to learn the function

as best as possible (exploration) or producing the best possible output (exploitation). The

approach then goes on to choose as the next input the one that promises to produce the highest

utility. The way this works is shown in Algorithm 1.

Algorithm 1 General GP optimization algorithm

Require: Input space X ; acquisition function Vt; GP-prior for f with mean function m(x)

and kernel k(x,x′)

for t = 1, 2, . . . do

Choose x?t = arg maxx∈X Vt(x)

Sample yt = f(x?t ) + εt

end for

This algorithm starts out with a Gaussian process distribution over functions, then

2In this context, a Gaussian process regression is sometimes also referred to as a “surrogate model” (see

Gramacy & Lee, 2008).
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assesses the usefulness of the available samples by utilizing the acquisition function and

selects the point that currently maximizes this function. The value of the utility function Vt(x)

thereby always depends on the current posterior of the Gaussian process at time point t (it can

change on every trial). Afterwards, the new output at the chosen sample point is observed, the

Gaussian process is updated, and the process starts anew. As in this setting the function is

always modelled as interpolation within a given candidate set of points, we will use a simple

radial basis function kernel to model unknown functions for all of the remaining examples.

Gaussian process exploration

The goal in a pure exploration setting is to learn an unknown function as accurately and

quickly as possible. In a psychological setting this could mean for example to try and find out

what a participant-specific forgetting function might look like and designing stimuli

adaptively in order to optimally learn about this function on each subsequent trial of an

experiment (e.g., Myung, Cavagnaro, & Pitt, 2013).

Acquisition function

In the current setting, learning about a function means that the posterior distribution

becomes more certain (e.g., less dispersed). A useful measure of the uncertainty about a

random variable Y with probability distribution p is the differential entropy

H(Y ) = −
∫
p(y) log p(y) dy = E[log p(Y )]

The information that an input x provides about the random variable, which we call the

information gain, is the (expected) reduction in entropy

I(Y ;x) = H(Y )−H(Y |x) = −
∫
p(y) log p(y) + p(y, x) log p(y, x) dy

For example, if Y follows a d-variate Gaussian distribution with mean µ and covariance Σ,

then the entropy is

H(Y ) = 1
2 log (2πe)d|Σ|
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In our setting, we want to learn about the function, i.e. reduce the entropy in the

distribution p(f). We can write the information gain as

I(f ; y) = 1
2 log |I + σ−2K|, (12)

where K = [k(x, x′)]. Even though finding the overall information gain maximizer is

NP-hard, it can be approximated by an efficient greedy algorithm based on Gaussian process

regression. If F (A) = I(f ; yA), then this algorithm picks xt = arg maxF (At−1 ∪ {x}), that

is greedily querying the point whose predicted output is currently most uncertain.

Vt(x) = arg max st−1(x) (13)

where st(x) = kt−1(x, x) is the variance of f at input x.

This algorithm starts with a Gaussian process prior for f and at each time t = 1, . . . , T ,

sequentially samples those input points where the current posterior predictive distribution

p(f |Dt−1) evaluated at x shows the highest variance, i.e. the highest predictive uncertainty.

This is a “greedy” algorithm in the sense that it focuses on minimizing the current uncertainty,

rather than looking further ahead into the future. Even though this algorithm, sometimes also

called uncertainty sampling in statistics, looks naïve at first, it can actually be shown to obtain

at least a constant fraction of the maximum information gain reachable using at most T

samples (see Krause, Singh, & Guestrin, 2008, for more details):

F (AT ) ≥
(

1− 1
e

)
max
|A|⊆T

F (A) (14)

where F (AT ) measures the information about f at time point t. This is based on two

properties of the acquisition function called submodularity and monotonicity (Krause &

Golovin, 2012). Intuitively, submodularity here corresponds to a diminishing returns property

of the acquisition function by which newly sampled points will add less and less information

about the underlying function. Montonicity means that information never hurts (it is always

helpful to observe more points). Both properties are crucial to show that the greedy algorithm

can be successful. A simple example of the Gaussian process uncertainty reduction sampler is

shown in Figure 5 below. We have used the same set of observations as before and let the

algorithm select a new observation by picking as the next observation the one that currently

has the highest predictive uncertainty attached.
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Figure 5. GP-uncertainty reduction example. The dark grey line marks the current mean of the

GP. The dashed line shows the mean plus the standard deviation. The light grey lines are

samples from the GP. The red triangle marks the current candidate point with the highest

attached uncertainty.

Example: Learning unknown functions

In order to demonstrate how Gaussian process-based exploration works, we will show

how the algorithm learns a set of unknown functions and compare it to other algorithms. The

objective is to learn an unknown function as quickly and accurately as possible. For

simplicity, we will focus on a function f which takes a one-dimensional and discretized input

x ∈ [0, 0.01, 0.02, . . . , 10] and to which it maps an output y.

As GP regression is considered to learn a plurality of different functions well, we will

test the algorithm on a number of different functions that are frequently encountered in

psychology: a linear, quadratic, cubic, logarithmic, sine, and a non-stationary3 function. The

functions are summarized in Table 3.

3A non-stationary function for our purpose is a function that changes its parametric form over different parts

of the input space.
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Table 3

Functions used in the Gaussian process exploration simulation.

Function Equation

linear f(x) = x

quadratic f(x) = x2 + x

cubic f(x) = x3 − x2 + x

sine f(x) = x× sin(x)

non-stationary f(x) =


sin(πx) + cos(πx), if x < 8

x, otherwise

In addition to a GP regression model, we also used models that explicitly assume

parametric forms of the function. These latter models learn the parameters (the weights)

defining the function directly and were defined as a Gaussian process with a polynomial

kernel with fixed degrees of freedom, i.e. performing Bayesian linear regression. Each model

was set up to learn the underlying function by picking as the next observation the one that

currently has the highest uncertainty (standard deviation of the predicted mean).

We let each model run 100 times over 40 trials (on each trial optimizing the

hyper-parameters) for each underlying function and averaged the mean squared error over the

whole discretized input space for each step. We tested two different versions of learning the

underlying functions with a Gaussian process regression, one which selected input points at

random (GP-Random), and the uncertainty reduction sampler described above, which learns

actively by choosing input points based on their predictive variance (GP-Active). Results are

shown in Figure 6.
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Figure 6. GP-uncertainty reduction example. GP-produced error always goes down.
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It can be seen that the Gaussian process model learns all functions efficiently and well.

Even when the inputs are sampled at random, the error always goes down for a Gaussian

process regression. However, the error generally goes down faster when inputs are selected

actively. Only in the cases in which the used learning function is indeed the same as the

underlying function (for example, using a linear function to learn an underlying linear

function), does another model occasionally learn better than the Gaussian process. In some

cases, using a cubic Bayesian regression seems to result into over-fitting of the underlying

function which leads to the overall error going up again. Overall, the results indicate that

Gaussian process regression is especially useful in cases where the underlying function is not

known. For example, one could easily use Gaussian process regression to learn participants’

utility function over different experiments or simply use them to generate stimuli that are very

informative overall.

Exploration-Exploitation and Bayesian Optimization

In an exploration-exploitation scenario the goal is to find the input to a function that

produces the maximum output as quickly as possible.

x∗ = arg max
x∈D

f(x) (15)

where x∗ is the input that produces the highest output. One way to measure the quality of this

search process is to quantify regret. Regret is the difference between the output of the

currently chosen argument and the best output possible

r(x) = f(x∗)− f(x). (16)

The total regret is the sum of the regret over all trials, and the goal in an

exploration-exploitation scenarios is to minimize the cumulative regret:

Rt =
t∑

u=1
r(xu) (17)

Again, finding the strategy that chooses the inputs to minimize the expected cumulative regret

is NP-hard. That is, determining the sequence of queries (i.e. input choices) that leads to the

lowest total regret is impossible for all but the most trivial cases. However, there is again a
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greedy trick one can apply in this scenario, which starts by reinterpreting the function

maximization – or regret minimization – problem as a multi-armed bandit task (cf Steyvers,

Lee, & Wagenmakers, 2009). In a bandit task there are multiple options (arms) with unknown

probability of producing a reward and the goal is to choose the best arm in order to maximise

the overall reward (the name stems from the one armed bandits that can be found in casinos).

In the current situation, we can view the discretized input points as the arms of a multi-armed

bandit, and the output of the function at those points as the unknown rewards that are

associated to each arm. What distinguishes the current situation from traditional bandit tasks

is that the rewards of the arms are correlated in dependency of the underlying covariance

kernel. Nevertheless, viewing the task as a multi-armed bandit allows us to use strategies that

have been devised for traditional bandit tasks. One popular strategy is called the upper

confidence bound (UCB) algorithm, which relies on the following acquisition function:

Vt(x) = mt−1(x) + ω
√
st−1(x), (18)

where ω is a free parameter that determines the width of the confidence interval and
√
st−1(x)

is the predictive standard deviation at a point x. For example, setting ω = 1.96, results in a

95% confidence interval for a single value x given a Gaussian distribution.

The UCB algorithm chooses the arm for which the upper confidence bound is currently

the highest. The upper confidence bound is determined by two factors: the current estimate of

the mean of f at a particular point (the higher the estimate, the higher the bound) and the

uncertainty attached to that estimate (the higher the uncertainty, the higher the bound).

Therefore, the UCB algorithm trades off naturally between expectation and uncertainty. An

example of how the UCB algorithm works, using the same data as before, is shown in

Figure 7.

Even though the greedy UCB strategy is naïve, it can be shown that its regret is

sublinear, again using an argument that relies on the submodularity and monotonicity of the

overall information gain (Srinivas, Krause, Kakade, & Seeger, 2009). Sublinear regret here

just means that the regret per round goes down in expectation, thereby guaranteeing that the

algorithm picks better points over time.
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Figure 7. GP-UCB example. The dark grey line marks the current mean of the GP. The

dashed line marks the GP’s upper confidence bound. The light grey lines are samples from the

GP. The red triangle marks the point that currently produces the highest UCB.

GP-UCB Example: Recommending movies

As an example of applying GP-UCB to exploration-exploitation problems, we will use it

in an movie recommendation scenario, where the task is to recommend the best movies

possible to a user with unknown preferences. This involves both learning how different

features of movies influence the liking of a movie and recommending the movies that will be

liked the most. For this application, we sampled 5141 movies from the IMDb database and

recorded their features such as the year they appeared, the budget that was used to make them,

their length, as well as how many people had evaluated the movie on the platform, number of

facebook likes of different actors within the movie, genre of the movie, etc. As a proxy for

how much the person would enjoy the movie, we used the average IMDb score, which is

based on the ratings of registered users. As there were 27 features in total, we performed a

Principal Component Analysis extracting 8 components that together explained more than

90% of the variance within the feature sets. These components were then used as an input for

the optimization routine. We used a GP-UCB with a radial basis function kernel, set ω = 3 in

the UCB acquisition function, initialized the GP with 5 randomly sampled observations, and

then let the algorithm pick 20 movies sequentially. This procedure was repeated 50 times.
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Even though recommender systems normally try to recommend the best movie for a particular

user, this approach can be seen as recommending movies to an average user.
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Figure 8. Recommending movies with a GP-UCB algorithm. The score (upper left, errorbars

represent the standard error of the mean) goes up over all runs and plateaus very quickly at

around the highest value possible (9.3). Vice versa, the overall regret (upper right) goes down

over trials an quickly approaches 0. Within the first 5 samples, movies are mostly picked at

random and no clear pattern of movies seems to dominate (bottom right). However, within the

last 5 trials GP-UCB preferentially samples highly rated movies (bottom right).

Results are shown in Figure 8. It can be seen that the algorithm quickly starts choosing

movies that produce high scores which results in the overall mean score to go up and the

regret to go down over time. Moreover, the variance of the picked movies also goes down over

time as GP-UCB almost exclusively samples highly rated movies later on. Whereas the 10
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most frequently sampled movies within the first 5 samples seem to be sampled closely to

random, the most frequently sampled movies within the last 5 trials are movies that are

generally highly rated. In the end, the algorithm has explored the input space well, learned the

unknown preference function of the average user rather well, and returned movies that are on

average highly rated. When we let the GP-UCB algorithm run over 200 trials in another, it

started only sampling the movie “The Shawshank Redemption”, which is the highest rated

movie on the internet movie database.

Safe exploration-exploitation

Sometimes an exploration-exploitation scenario may come with additional

requirements. For example, an additional requirement can be to avoid certain outputs as much

as possible. Consider excitatory stimulation treatment, where the task is to stimulate the spinal

chord in such a way that certain movements are achieved (Desautels et al., 2015). Here, it is

important to stimulate the spinal chord such that optimal recovery is achieved, but not too

much as this might lead to painful reactions within the patients.

Again, Gaussian process optimization methods can be used to learn the underlying

function of what stimulation leads to which strength of reaction. However, an additional

requirement now could be to avoid particularly reactions that result in pain. An algorithm that

balances exploration and exploitation whilst avoiding certain outputs is called Safe

Optimization (Sui, Gotovos, Burdick, & Krause, 2015). This algorithm adapts the Upper

Confidence Bound approach described earlier to accommodate this additional requirement. It

works by trading-off two different goals: Firstly, it keeps track of a set of safe options it

considers to be above a given safe threshold (points currently showing a high likelihood of

being above the threshold) and tries to expand this set as much as it can. Secondly, it

maintains a set of potential maximizers (points of likely to produce high outcomes) that, if

used as an input, would potentially achieve the highest output. It then chooses as the next

input a point within the intersection of these two sets, that is a safe point that is either a

maximizer or an expander that has the highest predictive variance and potentially expands the

set of maximisers. This algorithm can also be set up to separate the optimization routine from

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 21, 2017. ; https://doi.org/10.1101/095190doi: bioRxiv preprint 

https://doi.org/10.1101/095190


TUTORIAL ON GAUSSIAN PROCESS REGRESSION 28

a given set of constraints as described by (Berkenkamp, Krause, & Schoellig, 2016). For

technical details, we refer the interested reader to Sui et al. (2015).

Example: Cautious stimulus optimization

As an illustration of the Safe Optimization algorithm, we apply it to a situation in which

the objective is to choose inputs x in order to learn about the underlying function in a

two-dimensional space such that –eventually– points that produce high outputs in y will be

sampled whilst avoiding to choose inputs that produce an output below 0. To simplify

presentation, we sampled the underlying function from a Gaussian process parameterized by a

radial basis function kernel. This can be seen as similar to the case where one wants to present

stimuli to participants, but make sure that participants never react with an intensity below a

certain threshold.

Results are shown in Figure 9. It can be seen that the Safe Optimization algorithm

explores the function exceptionally well in its attempt to expand the space of possible safe

inputs. At the same time, the algorithm does not at any time choose inputs from the white area

(producing output values below 0). This algorithm could be applied to optimal design settings

that require additional constraints.
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Figure 9. GP-Safe Optimization example showing samples after 1,10, 50 and 100 samples.

White represents areas below 0. The black crosses show where the Safe Optimization

algorithm has sampled. Lighter areas represent higher scores. The algorithm efficiently

explores other safe areas. It never samples points within the surrounding white area as these

are below the threshold.
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Gaussian processes and cognition

We have seen that Gaussian process regression is a powerful tool to model, explore, and

exploit unknown functions. However, Gaussian process regression might also be applied in a

different, more psychological context, namely as an actual model for human cognition in

general and function learning in particular. Recently, Lucas, Griffiths, Williams, and Kalish

(2015) have proposed to use Gaussian process regression as a rational model of function

learning that can explain various effects within the literature of human function learning.

Schulz, Tenenbaum, Reshef, Speekenbrink, and Gershman (2015) used Gaussian processes to

assess participants’ judgements of the predictability of functions in dependency of the

smoothness of the underlying kernel. As many different kernels can be used to model function

learning, Wilson, Dann, Lucas, and Xing (2015) tried to infer backwards what the human

kernel might look like by using a non-parametric kernel approach to Gaussian process

regression. As explained above, kernels can also be added together and multiplied to build

more expressive kernels, which led Schulz, Tenenbaum, Duvenaud, Speekenbrink, and

Gershman (2016) to assess if participants’ functional inductive biases can be described as

made up of compositional building blocks. In a slightly different context, Gershman,

Malmaud, and Tenenbaum (2016) modeled participants’ utility of combinations of different

objects by a Gaussian process parametrized by a tree-like kernel. Gershman, Vul, and

Tenenbaum (2012) used Gaussian process regression to describe how people perceive motion.

Within an exploration-exploitation context, Borji and Itti (2013) showed that Gaussian

process-based optimization can explain how participants actively search for the best output

when trying to optimize one-dimensional functions. Schulz, Konstantinidis, and Speekenbrink

(2016) used Gaussian process exploration-exploitation algorithms to model behaviour in tasks

that combine function learning and decision making (contextual multi-armed bandit tasks).

Lastly, Schulz, Huys, Bach, Speekenbrink, and Krause (2016) applied the safe optimization

algorithm described here to scenarios in which participants had to cautiously optimize

functions while never sampling below a given threshold.
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Discussion

This tutorial has introduced Gaussian process regression as a general purpose inference

engine to model, explore and exploit unknown functions. We have mainly focused on

Gaussian process regression with a radial basis function kernel, but many other kernels and

kernel combinations are possible and –as we have indicated above– many standard Bayesian

regression approaches can be re-parametrized to be equivalent to Gaussian process regression,

given specific assumptions about the kernel (Duvenaud et al., 2013).

Of course a tutorial like this can never be fully comprehensive. For example, many other

acquisition functions than the ones introduced here (uncertainty sampling and UCB) exist. For

pure exploration, another commonly used acquisition function attempts to minimize the

expected variance over the whole input space (Gramacy & Apley, 2014). This method tends to

sample less on the bounds of the input space, but can be hard to compute, especially if the

input space is large. There also exist many different acquisition functions in the

exploration-exploitation context, that are mostly discussed under the umbrella term Bayesian

optimization (de Freitas, Smola, & Zoghi, 2012). Two other common acquisition functions

that are frequently applied here are the probability of improvement and the expected

improvement (Močkus, 1975), which choose inputs that have a high probability to produce a

better output than the input that is currently estimated to be best, or that produce an output

which is expected to surpass the expected outcome of the input currently thought best.

Another situation in which Gaussian processes are frequently applied is called “global

optimization”, in which the goal is finding the overall maximum of a function as quickly as

possible, but without worrying about the outputs that were produced in the search process.

Parameter estimation is an example of such a problem and again different algorithms have

been proposed, in particular the proposal by Hennig and Schuler (2012) to maximize the

information gain about the location of the maximum. There is also a growing community of

researchers who apply Gaussian process-based algorithms to return uncertainty estimates of

traditional computational methods such as optimization, quadrature, or solving differential

equations under the umbrella term “probabilistic numerics” (Hennig, Osborne, & Girolami,

2015).
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Of course Gaussian process regression does not come without drawbacks. One such

drawback, as compared to traditional regression models, is that parameter-based

interpretations such as “if x increases by 1, y increases by 2” are not directly possible.

However, as different kernels encode different assumptions about the underlying functions,

assessing which kernel describes the underlying function best can be used as a basis to

interpret the modeled function (Lloyd et al., 2014). Choosing the appropriate kernel is a

difficult problem. General solutions to this are to construct more complicated kernels from a

set of relatively simple base kernels (as shown above) and to search the kernel space by

proposing and checking new kernel combinations (Duvenaud et al., 2013), or to define the

kernel in a non-parametric manner by using a non-parametric approach towards estimating the

kernel itself (Wilson & Adams, 2013). Possibly the biggest drawback of Gaussian process

regression is its poor scaling. As inferring the posterior involves inverting the matrix

[K(Xt,Xt) + σ2
ε I], inference scales cubically with the number of observations. Speeding up

inference for Gaussian process regression therefore is a vivid topic of ongoing research. Some

methods that have been proposed are to sparsely approximate inputs (Lawrence, Seeger, &

Herbrich, 2003) or to bound the computational cost of the matrix inversion by projecting into

a pre-defined finite basis of functions drawn from the eigen-spectrum of the kernel (Rahimi &

Recht, 2007).

We hope to have shown some interesting examples of Gaussian process regression as a

powerful tool for many applied situations, specifically exploration-exploitation scenarios, and

hope that this tutorial will inspire more scientists to apply these methods in the near future.

Currently available software that can assist in this is listed in Table 4.

Table 4

Gaussian process packages

Name Algorithm Language Author

GPML GP Toolbox Matlab Rasmussen and Nickisch (2010)

SFO Submodular Optimization Matlab Krause (2010)

GPy GP Toolbox Python Sheffield ML group (since 2012)

tgp Tree GPs, GP regression R Gramacy et al. (2007)
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