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Abstract 1 

The expression of membrane proteins remains a major bottleneck in the characterization of these 2 

important proteins. Expression levels are currently unpredictable, which renders the pursuit of these 3 

targets challenging and inefficient. Evidence demonstrates that small changes in the nucleotide or 4 

amino-acid sequence can dramatically affect membrane protein biogenesis; yet these observations have 5 

not resulted in generalizable approaches to improve expression. Here, we develop a data-driven 6 

statistical model, named IMProve, that enriches for the likelihood of selecting membrane proteins that 7 

express in E. coli directly from sequence. The model, trained on experimental data, combines a set of 8 

sequence-derived variables resulting in a score that predicts the likelihood of expression. We test the 9 

model against various independent datasets that contain a variety of experimental outcomes 10 

demonstrating that the model significantly enriches for expressed proteins. Analysis of the underlying 11 

features reveals a significant role for nucleotide derived features in predicting expression. This 12 

computational model can immediately be used to identify favorable targets for characterization. 13 

Author Summary 14 

Membrane proteins play a pivotal role in biology, representing a quarter of all proteomes and a 15 

majority of drug targets. While considerable effort has been focused on improving our functional 16 

understanding of this class, much of the investment has been hampered by the inability to obtain 17 

sufficient amounts of sample. Until now, there have been no broadly successful strategies for predicting 18 

and improving expression which means that each target requires an ad hoc adventure. Complex 19 

biological processes govern membrane protein expression; therefore, sequence characteristics that 20 

influence protein biogenesis are not simply additive. Many properties must be considered 21 

simultaneously in predicting the expression level of a protein. 22 

We provide a first solution to the membrane protein expression problem by learning from 23 

published data to develop a statistical model that predicts the outcomes of expression trials across 24 

families, scales, and laboratories (all independent of the model’s training data). Given that the process of 25 

finding a target for large-scale expression is arduous, often requiring a long trial-and-error process that 26 

consumes significant financial and human resources, this work will have immediate applicability. The 27 

ability to study and engineer inaccessible membrane proteins becomes feasible with the use of our 28 

predictor. Furthermore, this work will enable others in developing new computational methods to assist 29 

in the experimental study of membrane proteins. 30 

Introduction 31 

The central role of integral membrane proteins motivates structural and biophysical studies that 32 

require large amounts of purified protein, often at considerable cost of both material and labor. Only a 33 

small percentage can be produced at high-levels resulting in membrane protein structural 34 

characterization lagging behind that of soluble proteins presently constituting just 1.7% of known 35 

atomic-level structures [1]. To increase the pace of structure determination, the scientific community 36 

created large government-funded structural genomics consortia facilities, like the NIH-funded New 37 

York Consortium on Membrane Protein Structure (NYCOMPS)[2]. For this representative example, 38 

more than 8000 genes, chosen based on characteristics hypothetically related to success, yielded only 39 

600 (7.1%) highly expressing proteins [3] resulting to date in 34 (5.6% of expressed proteins) unique 40 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2017. ; https://doi.org/10.1101/098673doi: bioRxiv preprint 

https://doi.org/10.1101/098673
http://creativecommons.org/licenses/by-nc/4.0/


 3 

structures (based on annotation in the RCSB PDB [4]).  This highlights the funnel problem of structural 41 

biology where each stage of the structure pipeline eliminates a large percentage of targets compounding 42 

into an overall low rate of success [5]. With new and rapidly advancing technologies like cryo-electron 43 

microscopy and micro-electron diffraction, we expect that the latter half of the funnel, structure 44 

determination, will increase in success rate [6,7]. In any case, membrane protein expression will 45 

continue to limit targets accessible for study [8]. 46 

Tools for improving the number of expressed membrane proteins are needed. While significant 47 

work has shown promise on a case-by-case basis, e.g. growth at lower temperatures, codon optimization 48 

[9], and regulating transcription [10], a generalizable solution remains elusive. Currently, each target 49 

must be addressed individually as the conditions that were successful for a previous target seldom carry 50 

over to other proteins, even amongst closely related homologs [5,11]. For individual cases, simple 51 

changes can have dramatic effects on the amount of expressed proteins [12,13]. Considering the 52 

scientific value of membrane protein studies, it is surprising that there are no methods that can provide 53 

solutions for improved expression outcomes with broad applicability across protein families and 54 

genomes. 55 

Currently no approaches are available that decode sequence-level information for predicting 56 

membrane protein expression; yet the concept that sequence variation can measurably influence 57 

membrane protein biogenesis is commonplace. For example, positive-charges on cytoplasmic loops are 58 

important determinants of membrane protein topology [14,15]; yet introduction of mutations presumed 59 

to enhance certain properties, such as the positive inside rule, has not proven generalizable for 60 

improving expression [11]. The reasons for this likely lie in the complex underpinnings of membrane 61 

protein biogenesis, where the interplay between sequence features at the protein and nucleotide levels 62 

must be considered. Optimizing for a single sequence-level feature likely diminishes the beneficial 63 

effect of other features (e.g. increasing positive residues on internal loops might diminish favorable 64 

mRNA properties). Without accounting for the broad set of features related to membrane protein 65 

expression, it is impossible to predict differences in expression. 66 

Attempts to develop algorithms that predict membrane protein expression have failed. Several 67 

examples, Daley, von Heijne, and coworkers [9,16,17] as well as NYCOMPS, were unable to use 68 

experimental expression data sets to train models that returned any predictive performance (personal 69 

communication). Statistical tools have been developed to predict expression and/or crystallization 70 

propensities from sequence information based on outcomes. These are primarily based on results from 71 

the Protein Structure Initiative where experimental outcomes are deposited in TargetTrack[18,19] and 72 

include well-known methods such as SPINE[20], Xtalpred[21–23], and PXS[24] as well as others[25–73 

35]. While collectively these methods have supported significant advances in biochemistry, each suffers 74 

from similar issues when predicting membrane protein outcomes due to the criteria applied during the 75 

model development process. As membrane proteins have an extremely low success rate compared to 76 

soluble proteins, they are either explicitly excluded from the training process or are implicitly down-77 

weighted by the statistical model. The result is that these methods do not predict membrane protein 78 

expression (representative methodology [21]). 79 

In an ideal world, a perfect predictor would define the subset of protein sequences that can be 80 

expressed in a given host. As discussed elsewhere [9,16,17], none have successfully been able to map 81 

membrane protein expression to sequence. Given the scale of difficulty in expressing membrane 82 

proteins, we demonstrate here for the first time that it is possible to predict membrane protein expression 83 

purely based on sequence allowing one to enrich their expression trials for proteins with a higher 84 

probability of success. 85 
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To connect sequence to prediction, we develop a statistical model that maps a set of sequences to 86 

experimental expression levels via calculated features—thereby simultaneously accounting for the many 87 

potential determinants of expression. The resulting model allows ranking of any arbitrary set of 88 

membrane protein sequences in order of their relative likelihood of successful expression. In this first 89 

demonstration of prediction, we sought to select the simplest framework necessary to capture the 90 

problem. In particular, we train a linear equation that provides a score based on calculating the sum of 91 

weighted features where the weights are derived from fitting to experimental expression data, a “training 92 

set.” These features attempt to encapsulate the corpus of work that shows that sequence-level 93 

characteristics are important determinants of protein biogenesis, e.g. RNA secondary structure [36,37], 94 

transmembrane segment hydrophobicity [38–40], the positive inside rule [41], and loop disorder [42].  95 

We extensively validate our model against a variety of independent datasets demonstrating its 96 

generalizability. This model can be used broadly to score any membrane protein based on its calculated 97 

features. In the process, we have built a method to enrich for positive expression outcomes with respect 98 

to the low positive rate attained from randomly selecting targets. To support further experimental efforts, 99 

we showcase the performance of the model across protein families and we broadly score the membrane 100 

proteome from a variety of important genomes. This approach and resulting model provides an exciting 101 

example for connecting sequence space to complex experimental outcomes. 102 

Results 103 

For this study, we focus on heterologous expression in E. coli, due to its ubiquitous use as a tool 104 

for membrane protein expression. While the benefits derived from low cost and low barriers for 105 

adoption are obvious, the applicability to the spectrum of the membrane proteome are becoming clearer. 106 

Of note, 43 of the 216 unique eukaryotic membrane protein structures were solved using protein 107 

expressed in E. coli (based on annotation in the RCSB PDB [4]). This demonstrates the utility of E. coli 108 

as a broad tool and its potential if the expression problem can be overcome. 109 

Development of a computational model trained on E. coli expression data 110 

A key component of any data-driven statistical model is the choice of dataset used for training. 111 

Having searched the literature, we identified two publications that contained quantitative datasets on the 112 

IPTG-induced overexpression of E. coli polytopic membrane proteins in E. coli. The first set, Daley, 113 

Rapp et al., contained activity measures, proxies for expression level, from C-terminal tags of either 114 

GFP or PhoA (alkaline phosphatase)[16]. The second set, Fluman et al., used a subset of constructs from 115 

the first and contained a more detailed analysis utilizing in-gel fluorescence to measure folded 116 

protein[43] (see Methods 4c). The expression results strongly correlated (Spearman’s ρ = 0.73) between 117 

the two datasets demonstrating that normalized GFP activity was a good measure of the amount of 118 

folded membrane protein (Fig 1A and [43,44]). The experimental set-up employed multiple 96-well 119 

plates over multiple days resulting in pronounced variability in the absolute expression level of a given 120 

protein between trials. Daley, Rapp et al. calculated average expression levels by dividing the raw 121 

expression level of each protein by that of a control construct (Inverse LepB-GFP or LepB-PhoA) on the 122 

corresponding plate. While the resulting values were useful for the relevant question of identifying 123 

topology, we were unable to successfully fit a linear regression or a standard linear Support Vector 124 

Machine (SVM) to predict either the raw expression data compiled from all plates or averaged outcomes 125 

of each gene using numerical features calculated from nucleotide and protein sequences (see S1 Table; 126 
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Methods 2,3). This unexpected outcome suggested that the measurements required a more complex 127 

analysis. 128 

 129 

Fig 1. Training performance. (A) A comparison of GFP activity [16] with measured folded protein 130 

[43] where each point represents the mean for a given gene tested in both works, and error bars plot the 131 

extrema. Spearman’s rank correlation coefficient and 95% confidence interval (CI) [45] are shown. (B) 132 

Plates are the number of independent sets of measurements within which expression levels can be 133 

reliably compared. Genes are the number of proteins for which the C-terminus was reliably ascertained 134 

[16]. Observations are the total number of expression data points accessible. Total pairs are the number 135 

of comparable expression measurements (i.e. those within a single plate). Kendall’s τ is the metric 136 

maximized by the training process (See Methods 4b). The color of the column heading identifying each 137 

experimental set is retained throughout the figure. (C) Agreement against the normalized outcomes 138 

plotted as the mean activity (see Methods 5 for definition) versus the score with error bars providing the 139 

extent of observed activities (Spearman’s ρ and 95% CI noted). (D) Illustrative Receiver Operating 140 

Characteristics (ROC) for thresholds at 25th and 75th percentile in activity with the number of positive 141 

outcomes at that threshold, the Area Under the Curve (AUC), and 95% CI indicated. (E) The AUC of 142 

the ROC at every possible activity threshold. 143 

 144 

We hypothesized that measurements could be more accurately compared within an individual 145 

plate then across the entire dataset. To account for this, a preference-ranking linear SVM algorithm 146 

(SVMrank [46]) was chosen (see Methods 4b). Simply put, the SVMrank algorithm determines the optimal 147 

weight for each feature to best rank the order of expression outcomes within each plate over all plates, 148 

which results in a model where higher expressing proteins have higher scores. The outcome is identical 149 

in structure to a multiple linear regression, but instead of minimizing the sum of squared residuals, the 150 

SVM cost function is used accounting for the plate-wise constraint specified above. In practice, the 151 

process optimizes the correlation coefficient Kendall’s τ, as a training metric, to converge upon a set of 152 

weights. Kendall’s τ measures the agreement between ordinal quantities by calculating the number of 153 

correctly ordered and swapped pairs. 154 

Various metrics related to the training data can be derived to assess the accuracy with which the 155 

model fits the input data (see Methods 4c). The SVMrank training metric shows varying agreement for all 156 

groups (i.e., τkendall >0) (Fig 1B). For individual genes, activity values normalized and averaged across 157 

trials were not directly used for the training procedure (see Methods 4a); yet one would anticipate that 158 

scores for each gene should broadly correlate with the expression average. Indeed, the observed 159 

normalized activities positively correlate with the score (dubbed IMProve score for Integral Membrane 160 

Protein expression improvement) output by the model (Fig 1C). Since SVMrank transforms raw 161 

expression levels within each plate to ranks before training, there is no expectation or guarantee that 162 

magnitude differences in expression level manifest in magnitude differences in score. As a result, 163 

Spearman’s ρ, a rank correlation coefficient describing the agreement between two ranked quantities, is 164 

better suited for quantifying correlation over more common metrics like the R2 of a regression and 165 

Pearson’s r. 166 

For a more quantitative approach to assessing the model’s success within the training data, we 167 

turn to the Receiver Operating Characteristic (ROC). ROC curves quantify the tradeoff between true 168 

positive and false positive predictions across the numerical scores output from a predictor. This is a 169 

more reliable assessment of prediction than simply calculating accuracy and precision from a single, 170 
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arbitrary score threshold [47]. The figure of merit that quantifies a ROC curve is the Area Under the 171 

Curve (AUC). Given that the AUC for a perfect predictor corresponds to 100% and that of a random 172 

predictor is 50% (Fig 1D, grey dashed line), an AUC greater than 50% indicates predictive performance 173 

of the model (percentage signs hereafter omitted) (see Methods 5 and [47]). Here, the ROC framework 174 

will be used to quantitatively assess the ability of our model to predict the outcomes within the various 175 

datasets. 176 

The training datasets are quantitative measures of activity requiring that an activity threshold be 177 

chosen that defines positive or negative outcomes. For example, ROC curves using two distinct activity 178 

thresholds, at the 25th or 75th percentile of highest expression, are plotted with their calculated AUC 179 

values (Fig 1D). While both show that the model has predictive capacity, a more useful visualization 180 

would consider all possible activity thresholds. For this, the AUC value for every activity threshold is 181 

plotted showing that the model has predictive power regardless of an arbitrarily chosen expression 182 

threshold (Fig 1E). In total, the analysis demonstrates that the model can rank expression outcomes 183 

across all proteins in the training set. Interestingly, for PhoA-tagged proteins the model is progressively 184 

less successful with increasing activity. Since PhoA activity is an indirect measure of expression of 185 

proteins with their C-termini in the periplasm, this brings into question either the utility of this 186 

quantification method relative to GFP activity or perhaps that this class of proteins are special in the 187 

model. An argument for the former is presented later (Fig 2E). 188 

 189 

Fig 2. Success of the model against outcomes from NYCOMPS. (A) An overview of the NYCOMPS 190 

outcomes and (B) a histogram of the number of conditions tested per gene colored based on outcome. 191 

(C) Receiver Operating Characteristics for positive groupings given by Only Positive outcomes genes 192 

(red) and genes with at least one positive outcome (pink). The percent positive for each group 193 

(corresponding color), total counts (black), and Area Under the Curve (AUC) values with 95% 194 

Confidence Interval (CI) are shown. The ROC considering genes with Mixed outcomes only as positive 195 

is shown as a blue dashed line with an AUC of 53.5 (51.8-55.2). The grey dashed line shows the 196 

performance of a completely random predictor (AUC = 50). (D) Histograms of genes with Only Positive 197 

(red) and Only Negative outcomes (grey) across IMProve scores (binned as described in Methods 5). 198 

The percentage of Only Positive outcomes in each bin is overlaid as a brown line (right axis). (E) The 199 

Positive Predictive Value (PPV) plotted for each percentile IMProve score, e.g. 75 on the x-axis 200 

indicates the PPV for the top 25% of genes based on score for genes, where positive indicates genes 201 

with Only Positive outcomes. The dashed line shows the overall success rate of the NYCOMPS 202 

experimental outcomes (~11% Only Positive). (F) The fold change in the PPV as a function of IMProve 203 

score relative to the success rate of NYCOMPS. (G) The AUCs for outcomes in each individual plasmid 204 

and solubilization condition (DDM except LDAO where noted) along with 95% CI (numerically in S2 205 

Table). Performances are also split by predicted C-terminal localization [48]. The numbers below 206 

indicate the total number of trials for each group and the percent within that group that were positive.  207 

 208 

Demonstration of prediction against an independent large expression dataset  209 

While the above analyses show that the model successfully fits the training data, we assess the 210 

broader applicability of the model outside the training set based on its success at predicting the outcomes 211 

of independent expression trials from distinct groups and across varying scales. The first test considers 212 

results from NYCOMPS, where 8444 membrane protein genes entered expression trials, in up to eight 213 
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conditions, resulting in 17114 expression outcomes (Fig 2A) [2]. The majority of genes were attempted 214 

in only one condition (Fig 2B), and, importantly, outcomes were non-quantitative (binary: expressed or 215 

not expressed) as indicated by the presence of a band by Coomassie staining of an SDS-PAGE gel after 216 

small-scale expression, solubilization, and nickel affinity purification [3]. For this analysis, the 217 

experimental results are either summarized as outcomes per gene or broken down as raw outcomes 218 

across defined expression conditions. For outcomes per gene, we can consider various thresholds for 219 

considering a gene as positive based on NYCOMPS expression success (Fig 2B). The most stringent 220 

threshold only regards a gene as positive if it has no negative outcomes (“Only Positive”, Fig 2B, red). 221 

Since a well expressing gene would generally advance in the NYCOMPS pipeline without further small-222 

scale expression trials, this positive group likely contains the best expressing proteins. A second 223 

category comprises genes with at least one positive and at least one negative trial (“Mixed”, Fig 2B, 224 

blue). These genes likely include proteins that are more difficult to express. 225 

ROCs assess predictive power across these groups (Fig 2C). IMProve scores markedly 226 

distinguish genes in the most stringent positive group (Only Positive) from all other genes (Fig 2C red). 227 

A permissive threshold considering genes as positive with at least one positive trial (Only Positive plus 228 

Mixed genes) shows more moderate predictive power (Fig 2C pink, AUC = 59.7 versus 67.1). If instead 229 

solely the Mixed genes are considered positive (excluding the Only Positive), the difference in the two 230 

positive groups is clear as the model very weakly distinguishes the mixed group from Only Negative 231 

genes (Fig 2C dashed blue, AUC = 53.5 (51.8-55.2)). This likely supports the notion that this pool 232 

largely consists of more difficult-to-express genes. For further analysis of NYCOMPS, we focus on the 233 

Only Positive pool as this likely represents the pool of best expressing proteins. 234 

This predictive power can be qualitatively visualized as a histogram of the IMProve scores for 235 

genes separated by protein group (Only Positive, red; Only Negative, grey) (Fig 2D). Visually, the 236 

distribution of the scores for the Only Positive group is shifted to a higher score relative to the Only 237 

Negative group. This is emphasized considering the dramatic increase in the percentage of positive 238 

genes as a function of increasing IMProve score (overlaid as a brown line). A major aim of this work is 239 

to enrich the likelihood of choosing positively expressing proteins. The positive predictive value (PPV, 240 

true positives ÷ predicted positives) becomes a useful metric for positive enrichment as it conveys the 241 

degree of improved prediction over the experimental baseline of the dataset. The PPV of the model is 242 

plotted as a function of the percentile of the IMProve score for the Only Positive group (Fig 2E). In the 243 

figure, the experimental baseline is represented by a dashed line (11.1%); therefore, a relative increase 244 

reflects the predictive power of the algorithm. For example, considering the PPV of 20% for the top 245 

fourth of genes by IMProve score (75th percentile) shows that the algorithm increases the positive 246 

outcomes by 9% over baseline. For further illustration, we plot the fold-change in PPV across the 247 

various thresholds (Fig 2F). Here, if only genes with an IMProve score greater than -0.21 (75th 248 

percentile) were tested, the experiments would have returned nearly twice as many positives, a 1.82 fold 249 

change (Fig 2D). Higher score cut-offs would have even better returns. 250 

Because there were eight different expression conditions, a final consideration looks at the 251 

NYCOMPS data based on the type of trial. Importantly, the model shows consistent performance 252 

throughout each of the eight conditions tested (Fig 2F, numerically in S2 Table). This highlights that the 253 

model is not sensitive to the experimental design of the training set and appears to predict broadly 254 

against different vector backbones. With this in mind, as an overall perspective, using a reasonable 255 

threshold for IMProve score (91st percentile or 0.5 (Fig 2E, yellow line)), had NYCOMPS tested the 256 

same number of genes an additional 1207 proteins would have been positive, representing a significant 257 

improvement in the return on investment. 258 
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The ability to predict the experimental data from NYCOMPS allows returning to the question of 259 

alkaline phosphatase as a metric for expression. For the training set, proteins with C-termini in the 260 

periplasm show less consistent fitting by the model (Fig 1, orange). To assess the generality of this 261 

result, the NYCOMPS outcomes are split into pools for either cytoplasmic or periplasmic C-terminal 262 

localization and AUCs are calculated for each. There are no significant differences in predictive capacity 263 

across all conditions (Fig 2G, green vs. orange) demonstrating that the model is applicable for all 264 

topologies. 265 

Further demonstration of prediction against small-scale independent datasets  266 

The NYCOMPS example demonstrates the predictive power of the model across the broad range 267 

of sequence space encompassed by that dataset. Next, the performance of the model is tested against 268 

relevant subsets of sequence space (e.g. a family of proteins or the proteome from a single organism), 269 

which are reminiscent of laboratory-scale experiments that precede structural or biochemical analyses. 270 

While a number of datasets exist [5,49–59], we identified six for which complete sequence information 271 

could be obtained to calculate all the necessary sequence features [49–54]. 272 

The first dataset is derived from the expression of 14 archaeal transporters in E. coli chosen 273 

based on their homology to human proteins [49]. For each putative transporter, expression was 274 

performed in three plasmids and two strains (six total conditions) with the membrane fraction quantified 275 

by both a Western blot against a histidine-affinity tag and Coomassie Blue staining of an SDS-PAGE 276 

gel. Here, the majority of the expressing proteins fall into the higher half of the IMProve scores, 7 out of 277 

9 of those with multiple positive outcomes (Fig 3A). Strikingly, quantification of the Coomassie Blue 278 

staining highlights a clear correlation with the IMProve score where the higher expressing proteins have 279 

the highest score (Fig 3B). ROC curves are plotted for the two thresholds: expression detected at least by 280 

Western blot or, for the smaller subset, by Coomassie Blue (Fig 3C). In both cases, the model shows 281 

predictive power. Consistent with what was seen for NYCOMPS, selecting only the top half of proteins 282 

by IMProve score would have captured the majority of the positive outcomes. 283 

 284 

Fig 3. Success of the model against a variety of small scale outcomes. For each set, vertical lines 285 

indicate the median IMProve score. Receiver Operating Characteristics (ROC) along with Areas Under 286 

the Curves (AUC) and 95% confidence interval as well as the total number of positives for the given 287 

threshold (red hues) along with the total outcomes (black) are presented. In each curve, increasing 288 

expression thresholds as defined by the original publication are displayed as deeper red. (A,B) The 289 

expression of archaeal transporters in up to 6 trials. (A) Positive expression count is plotted above the 290 

dashed line and negative outcomes below the line. (B) From the same work, the expression of proteins 291 

detected by Coomassie Blue [49]. (C) ROC curves for each positive threshold (i.e. Coomassie Blue or 292 

Western Blot) from trials in A,B. (D) Experimental expression of M. tuberculosis membrane proteins 293 

plotted based on outcomes. (E) ROC curves for each possible threshold from trials in D. (F) Mammalian 294 

GPCR expression in either E. coli (top) or P. pastoris (bottom). (G) ROC curves for each possible 295 

threshold from trials in F. 296 

 297 

The next test considers the expression of 105 Mycobacterium tuberculosis proteins in E. coli 298 

[50]. Protein expression was measured both by Coomassie Blue staining of an SDS-PAGE gel and 299 

Western blot with only outcomes from the membrane fraction considered for this analysis. The highest 300 
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expressing proteins (detected via Coomassie Blue) follow the trend given by the IMProve score with 7 301 

of the 9 falling within the higher half of scoring proteins (Fig 3D) and is reflected in the ROC (Figure 302 

3E). In contrast, using the positive Western blot outcomes as the minimum threshold (Fig 3D) shows an 303 

AUC no better than random (Fig 3E). Given that no internal standard was used and that each expression 304 

trial was performed only once, proteins that were positive by Western blot may represent a pool 305 

indistinguishable in expression from those not detected; alternatively, these results support that IMProve 306 

accurately captures the most highly expressing proteins. Again, selecting only the top half of the 307 

proteins based on their IMProve score would have captured nearly all of the high expressing proteins.  308 

A broader test considers expression trials of 101 mammalian GPCRs in bacterial and eukaryotic 309 

systems [51]. Trials in E. coli, measured via Western blot of an insoluble fraction, again show highly 310 

expressing proteins at higher IMProve scores while the expression of the same proteins in P. pastoris, 311 

measured via dot blot, fail to show broad agreement (Fig 3F,G). The lack of predictive performance in 312 

P. pastoris suggests that the parameterization of the model, calibrated for broadly characterizing E. coli 313 

expression, requires retraining to generate a different model that captures the distinct interplay of 314 

sequence parameters in yeast. Still, the higher IMProve score clearly enriches for expressing proteins in 315 

E. coli.  316 

Further expression trials of membrane proteins from H. pylori, T. maritima as well as microbial 317 

secondary transporters continues to show the same broad agreement [52–54] (S1 Fig). H. pylori 318 

membrane proteins showed that as the threshold for positive expressing proteins increases, the 319 

performance of the model improves (using the highest threshold n=46 and AUC=67.7) (S1 Fig. A,B). 320 

For T. maritima expression, the model weakly captures outcomes for two defined thresholds (n=5 and 321 

19, AUC=61.7 and 58.7), but due to the small number of successful outcomes, the confidence intervals 322 

are broad (S1 Fig. C,D). The expression of microbial secondary transporters shows varied agreement 323 

with the model. Taking proteins at the lower defined expression threshold shows predictive performance 324 

(n=59, AUC=60.5); however, considering the defined high-expressing proteins is less conclusive (n=26, 325 

AUC=52.0) (S1 Fig. E,F). Broadly, independent of laboratory and experimental set-up, the IMProve 326 

score can enrich for the highest expressing proteins. 327 

Performance of the model across protein families 328 

To provide a clear path forward for experiment, we consider the performance of the model with 329 

regards to protein homology families, as defined by Pfam family classifications [60]. The 8444 genes in 330 

the NYCOMPS dataset fall into 555 families with ~15% not classified. To understand whether IMProve 331 

score is biased towards families present in the training set, we separate genes in the NYCOMPS dataset 332 

into three groups: part of the 153 families found in the training set, family not in the training set, and no 333 

defined Pfam family. There is no significant difference in AUC at 95% confidence between these groups 334 

(Fig 4A, bottom row). Therefore, the predictive power for a gene does not depend on the presence of its 335 

family within the training set. 336 

 337 

Fig 4. Model performance across protein families. (A) The NYCOMPS dataset split by the presence 338 

or absence of a Pfam family in the training set with AUCs calculated by considering Only Positive genes 339 

as positive outcomes. (B) For each family within NYCOMPS with at least five outcomes (including one 340 

positive and one negative), the AUC across all outcomes is plotted with horizontal bars indicating the 341 

95% confidence interval. The color indicates the significance of the prediction within the family: purple, 342 

predictive at 95% confidence, blue, predictive but not at 95% confidence, green, not predictive. The size 343 
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of each significance group and total number of families (grey) are indicated on the plot. (C) Outcomes 344 

for specific protein families with an optimal IMProve score threshold indicated. Each was only tested in 345 

a single condition (N: His-FLAG-TEV-gene). CopD is classified as TCDB 9.B.62 and AtoE as TCDB 346 

2.A.73 [61]. (D) For the families in C, a ROC curve with the overall positive percentage within the 347 

group, total number of outcomes, and AUC with 95% CI is labelled. 348 

 349 

The scale of NYCOMPS allows us to investigate whether there are protein families for which the 350 

model does better or worse than the aggregate. For this, an AUC is calculated for each protein family 351 

that has minimally five total outcomes (including at least one positive and one negative). Fig 4B plots 352 

the AUC for each protein family in increasing order as a cumulative distribution function. The breadth 353 

of the AUC values highlights the variability in predictive power across families. Most families can be 354 

predicted by the model (115 of 159 have an AUC > 0.5, visually blue and purple) though some not at 355 

95% confidence (57 of 115, blue), likely due to an insufficient number tested. Therefore, the 356 

NYCOMPS dataset provides some perspective on the protein families that IMProve best predicts. 357 

For the protein families that are well-predicted within the NYCOMPS set, IMProve gives highly 358 

accurate insight into the likelihood of expression of a given protein. We demonstrate the utility of this 359 

prediction by looking at protein families that have yet to be characterized structurally. While there are a 360 

number of choices, one example is the protein family annotated as copper resistance proteins (CopD, 361 

PF05425), that typically contains eight transmembrane domains with an overall length of ~315 amino 362 

acids. A second example is the protein family annotated as short-chain fatty-acid transporters (AtoE, 363 

PF02667), that typically contains 10 transmembrane domains with an overall length of ~450 amino 364 

acids. In Fig 4C, genes from the two families are plotted by IMProve score and colored by outcome. In 365 

both cases, as indicated by the ROCs (Fig 4D), the model provides a clear score cut-off to guide target 366 

selection for future expression experiments. For example, considering CopD homologs, one would 367 

expect that those with IMProve scores above -1 will have a higher likelihood of expressing than on 368 

average across all homologs. This analysis can be broadly applied across the families that are predicted 369 

with high accuracy (S3 Table). 370 

Forward predictions on genomes of interest 371 

The model successfully enriches for heterologous expression of membrane proteins in E. coli 372 

strikingly across scales, laboratories, quantification methods, and protein families supporting its broad 373 

generalizability. While few genes express in every condition tested (Fig 2B and 3A), IMProve predicts 374 

the likelihood that a gene will express within a set of conditions and enriches for those that will work in 375 

any condition (Fig 2G, numerically in S2 Table).  376 

To expand on the utility of this model, IMProve scores were calculated for membrane proteins 377 

from a variety of metazoan and microbial genomes (Fig 5A and S2 Fig. A). Many genomes have a 378 

significant proportion of proteins with high scores particularly evidenced by portions of the distributions 379 

ahead of the median in E. coli given by the vertical dashed line (Fig 5A). The likelihood for successful 380 

expression may be inferred by equating IMProve score with the PPV of Only Positive gene outcomes 381 

within the NYCOMPS dataset which rises significantly at scores above zero (Fig 5B). The range of 382 

scores spans those representative of high-expressing membrane proteins in both E. coli (Fig 1C) as well 383 

as in the NYCOMPS dataset (Fig 2C) and provides suggested targets for future biophysical studies (S4 384 

Table). 385 

 386 
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Fig 5. Forward predictions of membrane protein expression for various genomes. (A) Calculated 387 

scores for proteins from a variety of genomes (count in parentheses; complete set provided in S2 Fig. A) 388 

plotted as contours of kernel density estimates of the number of proteins at a given score. Amplitude is 389 

only relative within a genome. The dot indicates the median, and the lines depict quantities of an 390 

analogous Tukey boxplot[62,63]. The vertical line shows the median score in E. coli to provide context 391 

for other distributions. (B) PPV of Only Positive gene outcomes within the NYCOMPS dataset. (C) 392 

Distribution of overlap coefficients (see Methods 7) for each sequence parameter comparing the entire 393 

E. coli membrane proteome vs. the training set from E. coli. The dashed line provides a threshold 394 

separating the cluster of highly-related features from those with lower overlap. (D-F) A comparison of 395 

overlap coefficients with the training set between NYCOMPS and (D) all forward predictions (S2 Fig. 396 

A), (E) thermophilic genomes (orange), or (F) P. falciparum. Mean Absolute Deviation is indicated for 397 

each plot. 398 

 399 

The predictions present several surprises at the biological level. One such is that the distribution 400 

of membrane proteins from representative thermophilic bacterial genomes have generally lower relative 401 

IMProve scores than other genomes, which implies that these proteins, on average, are harder to express 402 

in E. coli. This is in contrast to the many empirical examples of proteins from thermophiles which are 403 

often primary targets of biophysical characterization, although analysis of structural genomics data of 404 

soluble proteins suggests only a small crystallization advantage for this group [24]. In the case of the 405 

malarial parasite P. falciparum, the inverse trend is true with higher than anticipated relative IMProve 406 

scores despite the expectation that these proteins would be hard to express in E. coli. A possible cause 407 

for the distribution of scores may lie in the differences in the features that define the proteins in these 408 

particular groups. As the training set consists only of native E. coli sequences, the range of values for 409 

each feature in the training set may not represent the full range of possible values for the feature. For the 410 

special cases highlighted, perhaps the underlying sequence features fall into a poorly characterized 411 

subset of sequence space bringing into question the applicability of the model for these cases. 412 

To address the utility of the model relative to differences in the sampling of sequence features, 413 

we measure the overlap of the distributions of sequence features used for prediction (S1 Table) for a 414 

given subset (see Methods 7) (S2 Fig B). Simply put, if two subsets contain the same distribution of 415 

sequence features the expectation is that a given feature should approach 100%. In the simplest case, 416 

comparing the distribution of sequences features in all E. coli membrane proteins against the subset used 417 

in the training set shows that the majority of features have overlap values over 75% (Fig 5C), which 418 

provides a lower threshold for similarity of sequence feature range. For NYCOMPS sequences, most of 419 

the overlap values relative to the training set are above the threshold. As this set shows predictive 420 

performance, comparison to the training set provides a baseline to assess the reliability of predictions 421 

within other subsets (Fig 5D-F, x-axis). In the first case (Fig 5D), there is a strong correlation between 422 

all the forward predictions and NYCOMPS, i.e. values are near the diagonal (quantified by a Mean 423 

Absolute Deviation (MAD) = 11.6), suggesting that differences in feature space do not significantly 424 

affect the predictive power of the model. For the thermophiles subset (Fig 5E), the values again are close 425 

to the diagonal (i.e. low MAD = 10.6) implying that the predictions are credible. P. falciparum (Fig 5F), 426 

on the other hand, clearly shows stark differences as most features fall below the 75% cut-off (MAD = 427 

29.0) bringing into question the reliability of these predictions. A training set with broader coverage of 428 

the feature space may generate a better predictor for all genomes. 429 
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Biological importance of various sequence features 430 

Using a simple proof-of-concept linear model has allowed for a straightforward and useful 431 

predictor. Understanding if any single biological determinant is driving prediction may provide insight 432 

into membrane protein biogenesis and expression. With a linear model, as employed here, this task is 433 

ordinarily straightforward; assuming features are distributed identically and independently (“i.i.d.”), the 434 

weight assigned to each feature corresponds its relative importance. However, in our case, the input 435 

features do not satisfy these conditions, i.e. a lack of uniformity in feature distributions (S2 Fig B) and 436 

significant correlation between individual features (S3 Fig). As a result, during the training procedure, 437 

unequal weight is placed across correlating features that represent the same underlying biological 438 

phenomena, thereby, complicating the process of determining the biological underpinnings of the 439 

IMProve score. For example, the importance of transmembrane segment hydrophobicity is distributed 440 

between several features: among these the average ΔGinsertion [40] of TM segments has a positive weight 441 

whereas average hydrophobicity, a correlating feature, has a negative weight (S1 Table, S3 Fig). As 442 

many features, such as those related to hydrophobicity, are correlated; conclusive information cannot be 443 

obtained simply using weights of individual features to interpret the relative importance of their 444 

underlying biological phenomena. We address this complication by coarsening our view of the features 445 

to two levels: First, we analyze features derived from protein versus those derived from nucleotide 446 

sequence, and then we look more closely at features groups after categorizing by biological phenomena.   447 

The coarsest view of the features is a comparison of those derived from protein sequence versus 448 

those derived from nucleotide sequence. The summed weight for protein features is around zero, 449 

whereas for nucleotide features the summed weight is slightly positive suggesting that in comparison 450 

these features may be more important to the predictive performance of the model (Fig 6A). Within the 451 

training set, protein features more completely explain the score both via correlation coefficients (Fig 6B) 452 

as well as through ROC analysis (Fig 6C). However, comparison of the predictive performance of the 453 

two subsets of weights shows that the nucleotide features alone can give similar performance to the full 454 

model for the NYCOMPS dataset (Fig 6D). Within the small-scale datasets investigated, using only 455 

protein or nucleotide features shows no difference in predictive power at 95% confidence (Fig 6E). It is 456 

important to note that this does not suggest that protein features are not important for membrane protein 457 

expression. Instead, within the context of the trained model, nucleotide features are critical for predictive 458 

performance for a large and diverse dataset such as NYCOMPS. This finding corroborates growing 459 

literature that the nucleotide sequence holds significant determinants of biological processes [36,43,64–460 

66]. 461 

 462 

Fig 6. Feature contributions to the model. (A) Classifying features by the type of sequence they are 463 

calculated from. (B) Considering the training set (as in Fig 1), Spearman correlation coefficients with 464 

95% confidence intervals using individual feature categories for each grouping of data within the 465 

training set of E. coli membrane proteins. Colors indicate the subset being assessed (green, whole cell 466 

GFP fluorescence; orange, alkaline phosphatase activity; purple, folded protein by in-gel fluorescence). 467 

(C) Protein/nucleotide feature dependence within the training set substantiated by the AUC of the ROC 468 

at every possible activity threshold for feature subsets independently (as in Fig 1E). (D) The AUC and 469 

95% confidence intervals using only protein or nucleotide features. (E) Protein/nucleotide feature 470 

dependence across small scale datasets shown as AUCs of the ROC along with 95% CI for the condition 471 

with the best overall predictive power (black). 472 

 473 
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To understand whether we may be able to provide more detailed evidence for feature 474 

importance, we collapse conceptually similar features into categories that allow for potential biological 475 

interpretation (S1 Table). As compared to the entire set of individual features, this process substantially 476 

reduces inter-feature correlation (S3 Fig, S4 Fig B). For example, the hydrophobicity group incorporates 477 

sequence features such as average hydrophobicity, maximum hydrophobicity, ΔGinsertion, etc. The full list 478 

of groupings is provided in S1 Table and S3 Fig. 479 

Analysis of categories suggests the phenomena that drive prediction. To visualize this, the 480 

collapsed weights are summarized in Fig 6B where each bar contains individual feature weights within a 481 

category. Features with a negative weight are stacked to the left of zero and those with a positive weight 482 

are stacked to the right. A red dot represents the sum of all weights, and the length of the bar gives the 483 

total absolute value of the combined weights within a category. Ranking the categories based on the sum 484 

of their weight suggests that some of categories play a more prominent role than others. These include 485 

properties related to transmembrane segments (hydrophobicity and TM size/count), codon pair score, 486 

loop length, and overall length/pI. 487 

To explore the role of each category in prediction, the performance of the model is assessed 488 

using only features within a single category at a time. First understanding which categories perform well 489 

in the training set indicates which feature the model pulls information from and suggests hypotheses as 490 

to which categories ought to perform well across the validation datasets. Since the outcomes within the 491 

training set are real-valued, predictive power can be assessed via correlation coefficients with the 492 

predicted score yielding a single number (as in Fig 1C) or through AUCs across all possible expression 493 

thresholds (as in Fig 1D,E). Using the former metric, for simplicity, to assess the predictive capacity of 494 

feature subsets within the training set (Fig 6C) suggests several of interest with high correlation 495 

coefficients including 5’ Codon Usage, Length/pI, Loop Length, and SD-like Sites. Only Length/pI 496 

shows some predictive across subsets of the NYCOMPS dataset (S4 Fig D). 497 

Importantly, careful analysis of the training and large-scale testing dataset shows that no feature 498 

category independently drives the predictor. Excluding each individually does not significantly affect 499 

the overall predictive performance, except for Length/pI (isoelectric point) (S4 Fig D). Sequence length 500 

composes the majority of the weight within this category and is one of the highest weighted features in 501 

the model. This is consistent with the anecdotal observation that larger membrane proteins are typically 502 

harder to express. However, this parameter alone would not be useful for predicting within a smaller 503 

subset, like a single protein family, where there is little variance in length (e.g. Fig 3,4). One might 504 

develop a predictor that was better for a given protein family under certain conditions with a subset of 505 

the entire features considered here; yet this would require a priori knowledge of the system, i.e. which 506 

sequence features were truly most important, and would preclude broad generalizability as shown for the 507 

predictor presented here. 508 

Sequence optimization for expression 509 

The predictive performance of the model implies that the features defined here provide a coarse 510 

approximation of the fitness landscape for membrane protein expression. Attempting to optimize a 511 

single feature by modifying the sequence will likely affect the resulting score and expression due to 512 

changes in other features. Fluman, et al. provides an illustrative experiment [43]. They hypothesized that 513 

altering the number of Shine-Dalgarno (SD)-like sites in the coding sequence of a membrane protein 514 

would affect expression. To test this, silent mutations were engineered within the first 200 bases of three 515 

proteins (genes ygdD, brnQ, and ybjJ from E. coli) to increase the number of SD-like sites with the goal 516 

of improving expression. Expression trials demonstrated that only one of the proteins (BrnQ) had 517 

improved expression of folded protein (Fig 7). However, the resulting changes in the IMProve score 518 
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correspond with the changes in measured expression as the model considers changes to other nucleotide 519 

features. Capture of the outcomes in this small test case by the model illustrates the utility of integrating 520 

the contribution of the numerous parameters involved in membrane protein biogenesis.  521 

 522 

Fig 7. Synonymous mutations affect expression. Relative difference in SD-like sites (green), 523 

expression (purple), and IMProve score (yellow) between wild-type and mutants with silent mutations 524 

engineered to increase anti-SD sequence binding propensity [43]. See Methods 7 for further detail. 525 

 526 

Discussion 527 

Here, we have demonstrated the ability to predict membrane protein expression using 528 

computational methods, a feat some have considered impossible. Our success is built on encompassing a 529 

multitude of experimental results into a single computational model. The predictive power of IMProve 530 

provides a low barrier-to-entry method to enrich for positive expression outcomes.  531 

The current best practice for characterization of a membrane protein target begins with the 532 

identification and testing of many homologs or variants for expression. IMProve will allow for 533 

prioritization of targets to test for expression thereby making more optimal use of limited human and 534 

material resources. In addition, due to the scale of NYCOMPS, protein families that were extensively 535 

tested provide ranges of scores (e.g. Fig 5C) where the score of an individual target directly indicates its 536 

likelihood of expression relative to known experimental results. We provide the current predictor as web 537 

service where scores can be calculated, and the method, associated data, and suggested analyses are 538 

publically available to catalyze progress across the community (clemonslab.caltech.edu). 539 

Having shown that membrane protein expression can be predicted, the generalizability of the 540 

model is remarkable despite several known limitations. Using data from a single study for training 541 

precludes including certain variables that empirically influence expression such as the features 542 

corresponding to fusion tags and the context of the protein in an expression plasmid, e.g. the 5' 543 

untranslated region, for which there was no variation in the Daley, Rapp, et al. dataset. Moreover, using 544 

a simple proof-of-concept linear model allowed for a straightforward and robust predictor; however, 545 

intrinsically it cannot be directly related to the biological underpinnings. While we can extract some 546 

biological inference, a linear combination of sequence features does not explicitly reflect the reality of 547 

physical limits for host cells. To some extent, constraint information is likely encoded in the complex 548 

architecture of the underlying sequence space (e.g. through the genetic code, TM prediction, RNA 549 

secondary structure analyses). Future statistical models that improve on these limitations will likely hone 550 

predictive power and more intricately characterize the interplay of variables that underlie membrane 551 

protein expression in E. coli and other systems. 552 

A perhaps surprising outcome of our results is the demonstration of the quantitatively important 553 

contribution of the nucleotide sequence as a component of the IMProve score. This echoes the growing 554 

literature that aspects of the nucleotide sequence are important determinants of protein biogenesis in 555 

general [36,43,64–66]. While one expects that there may be different weights for various nucleotide 556 

derived features between soluble and membrane proteins, it is likely that these features are important for 557 

soluble proteins as well. An example of this is the importance of codon optimization for soluble protein 558 

expression, which has failed to show any general benefit for membrane proteins [9]. Current expression 559 

predictors that have predictive power for soluble proteins have only used protein sequence for deriving 560 
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the underlying feature set [22,35]. Future prediction methods will likely benefit from including 561 

nucleotide sequence features as done here.  562 

The ability to predict phenotypic results using sequence based statistical models opens a variety 563 

of opportunities. As done here, this requires a careful understanding of the system and its underlying 564 

biological processes enumerated in a multitude of individual variables that impact the stated goal of the 565 

predictor, in this case enriching protein expression. As new features related to expression are discovered, 566 

future work will incorporate these leading to improved models. Based on these results, expanding to 567 

new expression hosts such as eukaryotes seems entirely feasible, although a number of new features may 568 

need to be considered, e.g. glycosylation sites and trafficking signals. Moreover, the ability to score 569 

proteins for expressibility creates new avenues to computationally engineer membrane proteins for 570 

expression. The proof-of-concept described here required significant work to compile data from 571 

genomics consortia and the literature in a readily useable form. As data becomes more easily accessible, 572 

broadly leveraging diverse experimental outcomes to decode sequence-level information, an extension 573 

of this work, is anticipated.  574 
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Methods 575 

Sequence mapping & retrieval and feature calculation was performed in Python 2.7 [67] using 576 

BioPython [68] and NumPy [69]; executed and consolidated using Bash (shell) scripts; and parallelized 577 

where possible using GNU Parallel [70]. Data analysis and presentation was done in R [71] within 578 

RStudio [72] using magrittr [73], plyr [74], dplyr [75], asbio [76], and datamart [77] for data handling; 579 

ggplot2 [78], ggbeeswarm [79], GGally [80], gridExtra [81], cowplot [82], scales [83], viridis [84], and 580 

RColorBrewer [85,86] for plotting; multidplyr [87] with parallel [71] and foreach [88] with iterators 581 

[89] and doMC [90]/doParallel [91] for parallel processing; and roxygen2 [92] for code organization and 582 

documentation as well as other packages as referenced. 583 

 584 

1. Collection of data necessary for learning and evaluation 585 

E. coli Sequence Data – The nucleotide sequences from [16] were deduced by reconstructing forward 586 

and reverse primers (i.e. ~20 nucleotide stretches) from each gene in Colibri (based on EcoGene 11), the 587 

original source cited and later verified these primers against an archival spreadsheet provided directly by 588 

Daniel Daley (personal communication). To account for sequence and annotation corrections made to 589 

the genome after Daley, Rapp, et al.’s work, these primers were directly used to reconstruct the 590 

amplified product from the most recent release of the E. coli K-12 substr. MG1655 genome [93] 591 

(EcoGene 3.0; U00096.3). Although Daniel Daley mentioned that raw reads from the Sanger sequencing 592 

runs may be available within his own archives, it was decided that the additional labor to retrieve this 593 

data and parse these reads would not significantly impact the model. The deduced nucleotide sequences 594 

were verified against the protein lengths given in S1 Table from [16]. The plasmid library tested in [43] 595 

was provided by Daniel Daley, and those sequences are taken to be the same. 596 

 597 

E. coli Training Data – The preliminary results using the mean-normalized activities echoed the 598 

findings of [16] that these do not correlate with sequence features either in the univariate sense (many 599 

simple linear regressions, S1 Table [16]) or a multivariate sense (multiple linear regression, data not 600 

shown). This is presumably due to the loss of information regarding variability in expression level for 601 

given genes or due to the increase in variance of the normalized quantity (See Methods 4a) due to the 602 

normalization and averaging procedure. Daniel Daley and Mikaela Rapp provided spreadsheets of the 603 

outcomes from the 96-well plates used for their expression trials and sent scanned copies of the readouts 604 

from archival laboratory notebooks where the digital data was no longer accessible (personal 605 

communication). Those proteins without a reliable C-terminal localization (as given in the original 606 

work) or without raw expression outcomes were not included in further analyses. 607 

Similarly, Nir Fluman also provided spreadsheets of the raw data from the set of three expression 608 

trials performed in [43]. 609 

 610 

New York Consortium on Membrane Protein Structure (NYCOMPS) Data – Brian Kloss, Marco 611 

Punta, and Edda Kloppman provided a dataset of actions performed by the NYCOMPS center including 612 

expression outcomes in various conditions [2,3]. The protein sequences were mapped to NCBI GenInfo 613 

Identifier (GI) numbers either via the Entrez system [94] or the Uniprot mapping service[95]. Each GI 614 

number was mapped to its nucleotide sequence via a combination of the NCBI Elink mapping service 615 

and the “coded_by” or “locus” tags of Coding Sequence (CDS) features within GenBank entries. 616 

Though a custom script was created, a script from Peter Cock on the BioPython listserv to do the same 617 

task via a similar mapping mechanism was found [96]. To confirm all the sequences, the TargetTrack 618 

[18] XML file was parsed for the internal NYCOMPS identifiers and compared for sequence identity to 619 
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those that had been mapped using the custom script; 20 (less than 1%) of the sequences had minor 620 

inconsistencies and were manually replaced. 621 

 622 

Archaeal transporters Data – The locus tags (“Gene Name” in Table 1) were mapped directly to the 623 

sequences and retrieved from NCBI [49]. Pikyee Ma and Margarida Archer clarified questions regarding 624 

their work to inform the analysis. 625 

 626 

GPCR Expression Data – Nucleotide sequences were collected by mapping the protein identifiers 627 

given in Table 1 from [51] to protein GIs via the Uniprot mapping service [95] and subsequently to their 628 

nucleotide sequences via the custom mapping script described above (see NYCOMPS). The sequence 629 

length and pI were validated against those provided. Renaud Wagner assisted in providing the 630 

nucleotide sequences for genes whose listed identifiers were unable to be mapped and/or did not pass the 631 

validation criteria as the MeProtDB (the sponsor of the GPCR project) does not provide a public 632 

archive.  633 

 634 

Helicobacter pylori Data – Nucleotide sequences were retrieved by mapping the locus tags given in 635 

Supplemental Table 1 from [52] to locus tags in the Jan 31, 2014 release of the H. pylori 26695 genome 636 

(AE000511.1). To verify sequence accuracy, sequences whose molecular weight matched that given by 637 

the authors were accepted. Those that did not match, in addition to the one locus tag that could not be 638 

mapped to the Jan 31, 2014 genome version, were retrieved from the Apr 9, 2015 release of the genome 639 

(NC_000915.1). Both releases are derived from the original sequencing project [97]. After this curation, 640 

all mapped sequences matched the reported molecular weight. 641 

In this data set, expression tests were performed in three expression vectors and scored as 1, 2, or 642 

3. Two vectors were scored via two methods. For these two vectors, the two scores were averaged to 643 

give a single number for the condition making them comparable to the third vector while yielding 2 644 

additional thresholds (1.5 and 2.5) result in the 5 total curves shown (S1 Fig. B). 645 

 646 

Mycobacterium tuberculosis Data – The authors note using TubercuList through GenoList [98], 647 

therefore, nucleotide sequences were retrieved from the archival website based on the original 648 

sequencing project [99]. The sequences corresponding to the identifiers and outcomes in Table 1 from 649 

[50] were validated against the provided molecular weight . 650 

 651 

Secondary Transporter Data – GI Numbers given in Table 1 from [54] were matched to their CDS 652 

entries using the custom mapping script described above (see NYCOMPS). Only expression in E. coli 653 

with IPTG-inducible vectors was considered. 654 

 655 

Thermotoga maratima Data – Gene names given in Table 1 [100] were matched to CDS entries in the 656 

Jan 31, 2014 release of the Thermotoga maritima MSB8 genome (AE000512.1), a revised annotation of 657 

the original release[101]. The sequence length and molecular weight were validated against those 658 

provided. 659 

 660 

2. Calculation of sequence features 661 

Based on experimental analyses and anecdotal evidence, approximately 105 different protein and 662 

nucleotide sequence features thought to be relevant to expression were identified and calculated for each 663 

protein using custom code together with published software (codonW [102], tAI [103], NUPACK [104], 664 

Vienna RNA [105], Codon Pair Bias [106], Disembl [42], and RONN [107]). Relative metrics (e.g. 665 
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codon adaptation index) are calculated with respect to the E. coli K-12 substr. MG1655 [93] quantity. 666 

The octanol-water partitioning [39], GES hydrophobicity [38], ∆G of insertion [40] scales were 667 

employed as well. Transmembrane segment topology was predicted using Phobius Constrained for the 668 

training data and Phobius for all other datasets [48]. We were able to obtain the Phobius code and 669 

integrate it directly into our feature calculation pipeline resulting in significantly faster speeds than any 670 

other option. Two RNA secondary structure metrics were prompted in part by Goodman, et al. [36]. 671 

Several features were obtained by averaging per-site metrics (e.g. per-residue RONN3.2 disorder 672 

predictions) in windows of a specified length. Windowed tAI metrics are calculated over all 30 base 673 

windows (not solely over 10 codon windows). S1 Table lists a description of each feature. Features are 674 

calculated solely from a gene of interest excluding portions of the ORFs such as linkers and tags derived 675 

from the plasmid backbone employed (future work will explore contributions of these elements). 676 

 677 

3. Preparation for model learning 678 

Calculated sequence features for the membrane proteins in the E. coli dataset as well as raw 679 

activity measurements, i.e. each 96-well plate, were loaded into R. As is best practice in using Support 680 

Vector Machines, each feature was “centered” and “scaled” where the mean value of a given feature was 681 

subtracted from each data point and then divided by the standard deviation of that feature using 682 

preprocess [108]. As is standard practice, the resulting set was then culled for those features of near 683 

zero-variance, over 95% correlation (Pearson’s r), and linear dependence (nearZeroVar, 684 

findCorrelation, findLinearCombos)[108]. In particular this procedure removed extraneous 685 

degrees of freedom during the training process which carry little to no additional information with 686 

respect to the feature space and which may over represent certain redundant features. Features and 687 

outcomes for each list (“query”) were written into the SVMlight format using a modified 688 

svmlight.write [109]. 689 

The final features were calculated for each sequence in the test datasets, prepared for scoring by 690 

“centering” and “scaling” by the training set parameters via preprocess [108], and then written into 691 

SVMlight format again using a modified svmlight.write. 692 

 693 

4. Model selection, training, and evaluation using SVMrank 694 

a. At the most basic level, our predictive model is a learned function that maps the parameter space 695 

(consisting of nucleotide and protein sequence features) to a response variable (expression level) 696 

through a set of governing weights (w1, w2, …, wN). Depending on how the response variable is defined, 697 

these weights can be approximated using several different methods. As such, defining a response 698 

variable that is reflective of the available training data is key to selecting an appropriate learning 699 

algorithm. 700 

The quantitative 96-well plate results [16] that comprise our training data do not offer an 701 

absolute expression metric valid over all plates—the top expressing proteins in one plate would not 702 

necessarily be the best expressing within another. As such, this problem is suited for preference-ranking 703 

methods. As a ranking problem, the response variable is the ordinal rank for each protein derived from 704 

its overexpression relative to the other members of the same plate of expression trials. In other words, 705 

the aim is to rank highly expressed proteins (based on numerous trials) at higher scores than lower 706 

expressed proteins by fitting against the order of expression outcomes from each constituent 96-well 707 

plate. 708 

b. As the first work of this kind, the aim was to employ the simplest framework necessary taking in 709 

account the considerations above. The method chosen computes all valid pairwise classifications (i.e. 710 

within a single plate) transforming the original ranking problem into a binary classification problem. 711 
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The algorithm outputs a score for each input by minimizing the number of swapped pairs thereby 712 

maximizing Kendall’s τ [110]. For example, consider the following data generated via context A 713 

(𝑋A,1, 𝑌A,1), (𝑋A,2, 𝑌A,2) and B (𝑋B,1, 𝑌B,1), (𝑋B,2, 𝑌B,2) where observed response follows as index 𝑖, i.e. 714 

𝑌𝑛 < 𝑌𝑛+1. Binary classifier f (𝑋𝑖 , 𝑋𝑗) gives a score of 1 if an input pair matches its ordering criteria and 715 

−1 if not, i.e. 𝑌𝑖 < 𝑌𝑗 : 716 

𝑓(𝑋A,1, 𝑋A,2) = 1; 𝑓(𝑋A,2, 𝑋𝐴,1) =  −1 717 

𝑓(𝑋B,1, 𝑋B,2) = 1; 𝑓(𝑋B,2, 𝑋B,1) =  −1 718 

𝑓(𝑋A,1, 𝑋B,2), 𝑓(𝑋A,2, 𝑋B,1) are invalid 719 

Free parameters describing f are calculated such that those calculated orderings 720 

𝑓(𝑋A,1), 𝑓(𝑋A,2) … ;  𝑓(𝑋B,1), 𝑓(𝑋B,2) … most closely agree (overall Kendall’s τ) with the observed 721 

ordering 𝑌𝑛, 𝑌𝑛+1, …. In this sense, f is a pairwise Learning to Rank method. 722 

Within this class of models, a linear preference-ranking Support Vector Machine was employed 723 

[111]. To be clear, as an algorithm a preference-ranking SVM operates similarly to the canonical SVM 724 

binary classifier. In the traditional binary classification problem, a linear SVM seeks the maximally 725 

separating hyper-plane in the feature space between two classes, where class membership is determined 726 

by which side of the hyper-plane points reside. For some 𝑛 linear separable training examples 𝐷 =727 

{ (𝑥𝑖)| 𝑥𝑖 𝜖 ℝ𝑑}𝑛 and two classes 𝑦𝑖 𝜖 {−1, 1}, a linear SVM seeks a mapping from the d-dimensional 728 

feature space ℝ𝑑 → {−1, 1} by finding two maximally separated hyperplanes 𝑤 ∙ 𝑥 − 𝑏 = 1 and  𝑤 ∙729 

𝑥 − 𝑏 = − 1 with constraints that  𝑤 ∙ 𝑥𝑖  − 𝑏 ≥ 1 for all 𝑥𝑖 with 𝑦𝑖 𝜖 {1} and 𝑤 ∙ 𝑥𝑖  − 𝑏 ≤  − 1 for all 730 

𝑥𝑖 with 𝑦𝑖 𝜖 {−1}. The feature weights correspond to the vector w, which is the vector perpendicular to 731 

the separating hyperplanes, and are computable in O(n log n) implemented as part of the SVMrank 732 

software package, though in O(n2) [46]. See [111] for an in-depth, technical discussion. 733 

c. In a soft-margin SVM where training data is not linearly separable, a tradeoff between misclassified 734 

inputs and separation from the hyperplane must be specified. This parameter C was found by training 735 

models against raw data from Daley, Rapp, et al. with a grid of candidate C values (2𝑛 ∀ 𝑛 𝜖 [−5, 5]) 736 

and then evaluated against the raw “folded protein” measurements from Fluman, et al. The final model 737 

was chosen by selecting that with the lowest error from the process above (C = 25). To be clear, the final 738 

model is composed solely of a single weight for each feature; the tradeoff parameter C is only part of the 739 

training process. 740 

Qualitatively, such a preference-ranking method constructs a model that ranks groups of proteins 741 

with higher expression level higher than other groups with lower expression value. In comparison to 742 

methods such as linear regression and binary classification, this approach is more robust and less 743 

affected by the inherent stochasticity of the training data. 744 

 745 

5. Quantitative Assessment of Predictive Performance 746 

In generating a predictive model, one aims to enrich for positive outcomes while ensuring they 747 

do not come at the cost of increased false positive diagnoses. This is formalized in Receiver Operating 748 

Characteristic (ROC) theory (for a primer see [47]), where the true positive rate is plotted against the 749 

false positive rate for all classification thresholds (score cutoffs in the ranked list). In this framework, the 750 

overall ability of the model to resolve positive from negative outcomes is evaluated by analyzing the 751 

Area Under a ROC curve (AUC) where AUCperfect=100% and AUCrandom=50% (percentage signs are 752 

omitted throughout the text and figures). All ROCs are calculated through pROC [112] using the 753 

analytic Delong method for AUC confidence intervals [113]. Bootstrapped AUC CIs (N = 106) were 754 

precise to 4 decimal places suggesting that analytic CIs are valid for the NYCOMPS dataset. 755 
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With several of our datasets, no definitive standard or clear-cut classification for positive 756 

expression exists. However, the aim is to show and test all reasonable classification thresholds of 757 

positive expression for each dataset in order to evaluate predictive performance as follows: 758 

Training data – The outcomes are quantitative (activity level), so each ROC is calculated by 759 

normalizing within each dataset to the standard well subject to the discussion in 4a above (LepB for 760 

PhoA, and InvLepB for GFP) (examples in Fig 1D) for each possible threshold, i.e. each normalized 761 

expression value with each AUC plotted in Fig 1E. 95% confidence intervals of Spearman's ρ are given 762 

by 106 iterations of a bias-corrected and accelerated (BCa) bootstrap of the data (Fig 1A,C) [45]. 763 

Large-scale – ROCs were calculated for each of the expression classes (Fig 2E). Regardless of the split, 764 

predictive performance is noted. The binwidth for the histogram was determined using the Freedman-765 

Diaconis rule[114], and scores outside the plotted range comprising <0.6% of the density were implicitly 766 

hidden. 767 

Small-scale – Classes can be defined in many different ways. To be principled about the matter, ROCs 768 

for each possible cutoff are presented based on definitions from each publication (Fig 3C,E,G, S1 Fig. 769 

B,D,F). See Methods 1 for any necessary details about outcome classifications for each dataset. 770 

 771 

6. Feature Weights 772 

Weights for the learned SVM are pulled directly from the model file produced by SVM light and are given 773 

in S1 Table. 774 

 775 

7. Forward Predictions 776 

Data collection – We selected several genomes for comparison as shown in Fig 5, S2 Fig. A, and S4 777 

Table. Coding sequences of membrane proteins from human and mouse genomes were gathered by 778 

mapping Uniprot identifiers of proteins noted to have at least one transmembrane segment by Uniprot 779 

[95] to Ensembl (release 82) coding sequences [115] via Biomart [116]. C. elegans coding sequences 780 

were similarly mapped via Uniprot but to WormBase coding sequences [117] also via Biomart. S. 781 

cerevisiae strain S288C coding sequences [118] were retrieved from the Saccharomyces Genome 782 

Database. P. pastoris strain GS115 coding sequences [119] were retrieved from the DOE Joint Genome 783 

Institute (JGI) Genome Portal [120]. Those sequences without predicted [48] TMs were excluded from 784 

subsequent analyses. Microbial sequences were gathered via a custom, in-house database populated with 785 

data compiled primarily from Pfam [60], DOE JGI Integrated Microbial Genomes [121], and the 786 

Microbial Genome Database [122].  787 

Feature calculation – Because of the incredible number of sequences, we did not calculate the features 788 

derived from the most computationally expensive calculation (whole sequence mRNA pairing 789 

probability). Since predictive performance on the NYCOMPS dataset is slightly smaller, but not 790 

significantly different at 95% confidence, in the absence of these features (S2 Table), the forward 791 

predictions are still valid.  For future experiments, these features can be calculated for the subset of 792 

targets of interest. 793 

Parameter space similarity – As a first approximation of the similarity of the ~90 dimensional 794 

sequence parameter space between two groupings, features were compared pairwise via the following 795 

metric. Let fi and gi represent the true distributions for a given feature i between two groups of interest. 796 

The distribution overlap, i.e. shared area, Δi is formalized as 797 

∆𝑖(𝑓𝑖 , 𝑔𝑖) =  ∫ min{𝑓𝑖(𝑥), 𝑔𝑖(𝑥)} 𝑑𝑥 798 

ranging from 0, for entirely distinct distributions, to 1 for entirely identical distributions.  799 
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As written fi and gi are probability densities, they need to be approximated before calculating Δi 800 

and are done so via kernel density estimates (KDE) of the observed samples [𝑥1
𝑓

, … , 𝑥𝑛
𝑓

] and [𝑥1
𝑔

, … , 𝑥𝑛
𝑔

] 801 

using a nonparametric, locally adaptive method allowing for variable bandwidth smoothing 802 

implemented in LocFit[123] (adpen=2σ2) providing 𝑓𝑖 and 𝑔𝑖 . The distribution overlap Δi is evaluated 803 

over a grid of 213 equally spaced points over the range of fi and gi. 804 

Shine-Dalgarno-like mutagenesis – Folded protein is quantified by densitometry measurement [124,125] 805 

of the relevant band in Figure 6 of [43]. Relative difference is calculated as is standard: 806 

 807 

metricmutant − metricwildtype

1
2 |metricmutant − metricwildtype|

 808 

 809 

8. Availability 810 

All analysis is documented in a series of R notebooks[126] available openly at 811 

github.com/clemlab/IMProve. These notebooks provide fully executable instructions for the 812 

reproduction of the analyses and the generation of figures and statistics in this study. The ranking engine 813 

is available as a web service at clemonslab.caltech.edu. Additional code is available upon request. 814 
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 1095 

Supporting Information 1096 

S1 Fig. Additional small-scale predictions and outcomes. (A) Experimental expression of 116 H. 1097 

pylori membrane proteins in E. coli in at most 3 vectors (238 trials) scored as either a 1, 2, or 3 from the 1098 

outcome of a dot blot as well as Coomassie Staining of an SDS-PAGE gel for two of the vectors. To 1099 

compare the three vectors with a single set of scores, the two scores were averaged to give a single 1100 

number for a condition making them comparable to the third vector while yielding 2 additional 1101 

thresholds (1.5 and 2.5) and the 6 total levels shown. (B) The Reciever Operating Characteristic (ROC) 1102 

with each cutoff is plotted, where a higher cutoff is represented by a deeper red, followed by the Area 1103 

Under the Curves (directly below) in colors that correspond to the respective curve. (C) Expression of 1104 

77 T. maritima membrane proteins in E. coli noted as purified (5), not purified but expressed (14), or 1105 

neither. (D) ROC curve for each threshold. (E) Expression of 37 microbial secondary transporters in 4 1106 

IPTG-inducible vectors (144 trials) in E. coli quantified as 10 ng/mL (pink) or 100 ng/mL (red) via dot 1107 

blot. (F) ROC curve for each threshold. 1108 

S2 Fig. Complete set of forward predictions. (A) Extended from Fig 5C, the full complement of score 1109 

distributions calculated by genome is plotted and arranged to accentuate similar features by physiology, 1110 

e.g. growth condition, or scientific interest, e.g. pathogenic. Raw scores along with sequence identifiers 1111 

are available in the S4 Table. (B) Histograms of representative sequence features between the training 1112 

data set (green), thermophiles (orange), and P. falciparum (purple). Values for sequence parameter 1113 

overlap coefficients derived from kernel density estimates (Methods 7) versus the E. coli training data 1114 

are included. See S1 Table for parameter descriptions. 1115 

S3 Fig. Complete set of feature correlations and their individual contributions to the model. 1116 

Features are ordered first by category (as in Fig 5) and then by weight (grey bars). Labels are green for 1117 

protein-sequence derived and brown for nucleotide-sequence derived features. Pearson correlation 1118 

coefficient between each pair of features across the NYCOMPS dataset is plotted (right). See S1 Table 1119 

for a detailed description of each feature. Feature categories are overlaid as square boxes and indicated 1120 

by black bars on the top, left, and right of the correlation matrix. 1121 

S4 Fig. Feature contributions to the model across datasets used for training and validation. (A) 1122 

Total weight for each category is represented as a bar. The contribution of each feature to the category is 1123 

shown by partitioning the bar. The red dot indicates the total sum of weights within the category. (B) 1124 

Pearson correlation coefficients between feature categories are shown. Feature labels are green for 1125 

protein-sequence derived and brown for nucleotide-sequence derived. (C) Feature category dependence 1126 

within the training set is shown by Spearman’s ρ and 95% CI between the normalized outcomes versus 1127 
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the feature subset. (D) Considering the NYCOMPS data set (as in Fig 2), the Area Under the Curve 1128 

(AUC) of a Receiver Operating Characteristic and 95% confidence interval when predicting solely by 1129 

features from the specified category against the NYCOMPS dataset. Red, using positive only as the cut-1130 

off for individual genes (Fig 2C); grey, using positive outcomes within each plasmid and solubilization 1131 

condition (as in Fig 2E). 1132 

S1 Table. Sequence parameter weights and descriptions. Weights are presented after normalizing to 1133 

the mean value for clarity. Features that were calculated but removed in pre-processing are noted 1134 

(Methods 3). 1135 

S2 Table. AUC values for the NYCOMPS dataset. AUC values and 95% confidence intervals are 1136 

presented in summary, by expression condition, and by predicted C-terminal localization as well as for 1137 

IMProve scores calculated without the most computationally expensive RNA secondary structure 1138 

calculation (as in Fig 5). 1139 

S3 Table. Predictive performances of the model across protein families. The proteins and 1140 

performances are with respect to those tested by NYCOMPS as summarized in Fig 5. This data is 1141 

available in an interactive format at clemonslab.caltech.edu. 1142 

S4 Table. Full list of predicted membrane proteins. This includes corresponding identifiers, 1143 

descriptions, Pfam families, coding sequences, and IMProve scores. This data is available in an 1144 

interactive format at clemonslab.caltech.edu. 1145 
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