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Abstract 

In metagenome analysis, computational methods for assembly, taxonomic profiling 

and binning are key components facilitating downstream biological data 

interpretation. However, a lack of consensus about benchmarking datasets and 

evaluation metrics complicates proper performance assessment. The Critical 

Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global 

developer community to benchmark their programs on datasets of unprecedented 

complexity and realism. Benchmark metagenomes were generated from ~700 newly 

sequenced microorganisms and ~600 novel viruses and plasmids, including 

genomes with varying degrees of relatedness to each other and to publicly available 

ones and representing common experimental setups. Across all datasets, assembly 

and genome binning programs performed well for species represented by individual 

genomes, while performance was substantially affected by the presence of related 

strains. Taxonomic profiling and binning programs were proficient at high taxonomic 

ranks, with a notable performance decrease below the family level. Parameter 

settings substantially impacted performances, underscoring the importance of 

program reproducibility. While highlighting current challenges in computational 

metagenomics, the CAMI results provide a roadmap for software selection to answer 

specific research questions. 
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Introduction 

The biological interpretation of metagenomes relies on sophisticated computational 

analyses such as read assembly, binning and taxonomic profiling. All subsequent 

analyses can only be as meaningful as the outcome of these initial data processing 

steps. Tremendous progress has been achieved in metagenome software 

development in recent years1. However, no current approach can completely recover 

the complex information encoded in metagenomes. Methods often rely on simplifying 

assumptions that may lead to limitations and inaccuracies. A typical example is the 

classification of sequences into Operational Taxonomic Units (OTUs) that neglects 

the phenotypic and genomic diversity found within such taxonomic groupings2. 

Evaluation of computational methods in metagenomics has so far been largely 

limited to publications presenting novel or improved tools. However, these results are 

extremely difficult to compare, due to the varying evaluation strategies, benchmark 

datasets, and performance criteria used in different studies. Users are thus not well 

informed about general and specific limitations of computational methods, and their 

applicability to different research questions and datasets. This may result in 

difficulties selecting the most appropriate software for a given task, as well as 

misinterpretations of computational predictions. Furthermore, due to lack of regularly 

updated benchmarks within the community, method developers currently need to 

individually evaluate existing approaches to assess the value of novel algorithms or 

methodological improvements.  Due to the extensive activity in the field, performing 

such evaluations represents a moving target, and consumes substantial time and 

computational resources, and may introduce unintended biases. 

We tackle these challenges with a new community-driven initiative for the Critical 

Assessment of Metagenome Interpretation (CAMI). CAMI aims to evaluate 

computational methods for metagenome analysis comprehensively and most 

objectively. To enable a comprehensive performance overview, we have organized a 

benchmarking challenge on datasets of unprecedented complexity and degree of 

realism. Although comparative benchmarking has been done before3,4, this is the first 

time it has been performed as a community-driven effort. CAMI seeks to establish 
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consensus on performance evaluation and to facilitate objective assessment of newly 

developed programs in the future through community involvement in the design of 

benchmarking datasets, evaluation procedures, choice of performance metrics, and 

specific questions to focus on. 

We assessed the performance of metagenome assembly, binning and taxonomic 

profiling programs when encountering some of the major challenges commonly 

observed in metagenomics. For instance, the study of microbial communities benefits 

from the ability to recover genomes of individual strains from metagenome 

samples2,5. This enables fine-grained analyses of the functions of community 

members, studies of their association with phenotypes and environments, as well as 

understanding of the microevolution and dynamics in response to environmental 

changes (e.g. SNPs, lateral gene transfer, genes under directional selection, 

selective sweeps6,7 or strain displacement in fecal microbiota transplants8). In many 

ecosystems, a high degree of strain-level heterogeneity is observed9,10. To date, it is 

not clear how much assembly, genome binning and profiling software are influenced 

by factors such as the evolutionary relatedness of organisms present, varying 

community complexity, the presence of poorly categorized taxonomic groups such as 

viruses, or the specific parameters of the algorithms being used.  

To address these questions, we generated extensive metagenome benchmarking 

datasets employing newly sequenced genomes of approximately 700 microbial 

isolates and 600 complete plasmids, viruses, and other circular elements, which were 

not publicly available at the time of the challenge and include organisms that are 

evolutionarily distinct from strains, species, genera, or orders already represented in 

public sequence databases. Using these genomes, benchmark datasets were 

designed to mimic commonly used experimental settings in the field. They include 

frequent properties of real datasets, such as the presence of multiple, closely related 

strains, of plasmid and viral sequences, and realistic abundance profiles.  For 

reproducibility, CAMI challenge participants were encouraged to provide their 

predictions together with an executable docker-biobox implementing their software 

with specification of parameter settings and reference databases used. Overall 215 

submissions representing 25 computational metagenomics programs and 36 biobox 
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implementations of 17 participating teams from around the world were received with 

consent to publish. To facilitate future comparative benchmarking, all data sets are 

provided for download together with the current submissions in the CAMI 

benchmarking platform (https://data.cami-challenge.org/), allowing to submit 

predictions for further programs and computation of a range of performance metrics.  

Our results supply users and developers with extensive data about the performance 

of common computational methods on multiple datasets. Furthermore, we provide 

guidance for the application of programs, their result interpretation and suggest 

directions for future work. 

 

RESULTS  

Assembly challenge 

Assembling genome sequences from short-read data remains a computational 

challenge, even for microbial isolates. Assembling genomes from metagenomes is 

even more challenging, as the number of genomes in the sample is unknown and 

closely related genomes occur, such as from multiple strains of the same species, 

potentially representing genome-sized repeats that are challenging to resolve. 

Nevertheless, sequence assembly is a crucial part of metagenome analysis and 

subsequent analyses – such as binning – depend on the quality of assembled 

contigs. 

Overall performance trends 

Developers submitted reproducible results for six assemblers and assembly 

pipelines, namely for Megahit11, Minia12, Meraga (Meraculous13 + Megahit), A* (using 

the OperaMS Scaffolder14), Ray Meta15 and Velour16. Several of these were 

specifically developed for metagenomics, while others are more broadly used (Table 

1, Supplementary Table 1). The assembly results were evaluated using the 

MetaQUAST17 metrics and the reference genome and circular element sequences of 

the benchmark datasets (Supplementary Table 2, Supplementary methods 

“Assembly metrics”). As performance metrics, we focused on genome fraction and 
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assembly size, as well as on the number of unaligned bases and misassemblies. 

Genome fraction measures the assembled percentage of an individual reference 

genome, assembly size denotes the total length in bp for an assembly (including 

misassembled contigs), and the number of misassemblies and unaligned bases are 

error metrics reflective of the assembly quality. Combined, they provide an indication 

of the performance of a program, while individually, they are not sufficient for 

assessment. For instance, while assembly size might be large, a high-quality 

assembly also requires the number of misassemblies and unaligned bases to be low. 

To assess how much metagenome data was included in each assembly, we also 

mapped all reads back to them.  

Across all datasets (Supplementary Table 3) the assembly statistics varied 

substantially by program and parameter settings (Supplementary Figures SA1-

SA12). The gold standard co-assembly of the five samples from the high complexity 

data set has 2.80 Gbp in 39,140 contigs. For the assemblers, values for this data set 

ranged from 12.32 Mbp to 1.97 Gbp assembly size (0.4% - 70% of the gold standard 

co-assembly, respectively), 0.4% to 69.4% genome fraction, 11 to 8,831 

misassemblies and 249 bp to 40.1 Mbp unaligned contigs (Supplementary Table 2, 

Supplementary Fig. SA1). Megahit11 (Megahit) produced the largest assembly of 1.97 

Gb, with 587,607 contigs, 69.3% genome fraction, and 96.9% mapped reads. It had a 

substantial number of unaligned bases (2.28 Mbp) and the largest number of 

misassemblies (8,831). Changing the parameters of Megahit (Megahit_ep_mtl200) 

substantially increased the unaligned bases to 40.89 Mbp, while the total assembly 

length, genome fraction and fraction of mapped reads remained almost identical 

(1.94 Gbp, 67.3%, and 97.0%, respectively, number of misassemblies: 7,538). The 

second largest assembly was generated by Minia12 (1.85 Gbp in 574,094 contigs), 

with a genome fraction of 65.7%, only 0.12 Mbp of unaligned bases and 1,555 

misassemblies. Of all reads, 88.1% mapped to the Minia assembly. Meraga 

generated an assembly of 1.81 Gbp in 745,109 contigs, to which 90.5% of reads 

could be mapped (2.6 Mbp unaligned, 64.0% genome fraction, 2,334 

misassemblies). Velour (VELOUR_k63_C2.0) produced the most contigs (842,405) 

in a 1.1 Gb assembly (15.0% genome fraction), with 381 misassemblies and 56 kbp 

unaligned sequences. 81% of the reads mapped to the Velour assembly. The 
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smallest assembly was generated by Ray6 using k-mer of 91 (Ray_k91) with 12.3 

Mbp assembled into 13,847 contigs (genome fraction <0.1%). Only 3.2% of the reads 

mapped to this assembly. Altogether, we found that Megahit, Minia and Meraga 

produced results within a similar quality range when considering these various 

metrics, generated a higher contiguity for the assemblies (Supplementary Figures 

SA10-SA12) and assembled a substantial part of the genomes across a broad range 

of abundances. Analysis of the low and medium complexity data sets delivered 

similar results (Supplementary Figs SA4-SA6, SA7-SA9). 

Closely related genomes 

To assess how the presence of closely related genomes affects the performance of 

assembly programs, we divided genomes according to their Average Nucleotide 

Identity (ANI18) to each other into “unique strains” (genomes with < 95% ANI to any 

other genome) and “common strains” (genomes with closely related strains present; 

all genomes with an ANI >= 95% to any other genome in the dataset). When 

considering the fraction of all reference genomes recovered, Meraga, Megahit and 

Minia performed best (Fig. 1a). For the unique strains, Minia and Megahit had the 

highest genome recovery rate (Fig. 1c; median over all genomes 98.2%), followed by 

Meraga (median 96%) and VELOUR_k31_C2.0 (median 62.9%). Notably, for the 

common strains, the recovery rate dropped substantially for all assemblers (Fig. 1b). 

Megahit (Megahit_ep_mtl200) recovered this group of genomes best (median 

22.5%), followed by Meraga (median 12.0%) and Minia (median 11.6%). 

VELOUR_k31_C2.0 showed only a genome fraction of 4.1% (median) for this group 

of genomes. Thus, current metagenome assemblers produce high quality results for 

genomes for which no close relatives are present. Only a small fraction of the 

“common strain” genomes was assembled, with assembler-specific differences. For 

very high ANI groups (>99.9%), most assemblers recovered individual genomes 

(Supplementary Fig. SA16). The resolution of strain-level diversity represents a 

substantial challenge to all evaluated programs.  

Effect of sequencing depth 

To investigate the effect of sequencing depth on the assembly metrics, we compared 
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the genome recovery rate (genome fraction) to the genome sequencing coverage for 

the gold standard and all assemblies (Fig. 1d, Supplementary Fig. SA2 for complete 

results). The chosen k-mer size affects the recovery rate (Supplementary Fig. SA3): 

while small k-mers allowed an improved recovery of low abundance genomes, large 

k-mers led to a better recovery of highly abundant ones. Assemblers using multiple k-

mers (Minia, Megahit, Meraga) substantially outperformed single k-mer assemblers. 

Most assemblers poorly recovered very high copy circular elements (sequencing 

coverage > 100x), except for Meraga and the Minia Pipeline, which both performed 

well for a substantial portion, though Minia surprisingly lost all genomes with a 

sequencing coverage between 80 and 200x (Fig. 1d). Notably, no program 

investigated contig topology, and determined whether these were circular and 

complete. 

 

Binning challenge 

Metagenome assembly programs return mixtures of variable length fragments 

originating from individual genomes. Metagenome binning algorithms were devised 

to tackle the problem of classifying, or "binning" these fragments according to their 

genomic or taxonomic origins. These “bins”, or sets of assembled sequences and 

reads, group data from the genomes of individual strains or of higher-ranking taxa 

present in the sequenced microbial community. Such bin reconstruction allows the 

subsequent analysis of the genomes (or pangenomes) of a strain (or higher-ranking 

taxon) from a microbial community. While genome binners group sequences into 

unlabeled genome bins, taxonomic binners group the sequences into bins with a 

taxonomic label attached. 

Results for five genome binners and four taxonomic binners were submitted together 

with bioboxes of the respective programs in the CAMI challenge, namely for MyCC19, 

MaxBin 2.020, MetaBAT21, MetaWatt-3.522, CONCOCT23, PhyloPythiaS+24, taxator-

tk25, MEGAN 626 and Kraken27. Submitters could choose to run their program on the 

provided gold standard assemblies or on individual read samples (MEGAN 6), 

according to their suggested application. We then determined their performance for 
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addressing important questions in microbial community studies: do they allow the 

recovery of high quality genome bins for individual strains, i.e. with high average 

completeness (recall), and purity (precision), i.e. low contamination levels? How does 

strain level diversity affect performance? How is performance affected by the 

presence of non-bacterial sequences in a sample, such as viruses or plasmids? Do 

current taxonomic binners allow recovery of higher-ranking taxon bins with high 

quality? How does their performance vary across taxonomic ranks? Which programs 

are highly precise in taxonomic assignment, so that their outputs can be used to 

assign taxa to genome bins?  Which software has high recall in the detection of taxon 

bins from low abundance community members, as is required for metagenomes from 

ancient DNA and for pathogen detection? Finally, which programs perform well in the 

recovery of bins from deep-branching taxa, for which no sequenced genomes yet 

exist?  

Recovery of individual genome bins 

We first investigated the performance of each program in the recovery of individual 

genome (strain-level) bins. We calculated completeness and purity (Supplementary 

Methods) for every bin relative to the genome that was most abundant in that bin in 

terms of assigned sequence length. In addition, we calculated the Adjusted Rand 

Index (ARI) as measure of assignment accuracy for the portion of the data assigned 

by the different programs.  As not all programs assigned the entire data set to 

genome bins, these values should be interpreted under consideration of the fraction 

of data assigned (Fig. 2d). These two measures complement completeness and 

purity averaged over genome bins, as assignment accuracy is evaluated per bp, with 

large bins contributing more than smaller bins in the evaluation.  

For the genome binners, both average bin completeness (ranging from 34% to 80%) 

and purity (ranging from 70% to 97%) varied substantially across the three datasets 

(Supplementary Table 4, Supplementary Fig. B1).  For the medium and low 

complexity datasets, MaxBin 2.0 had the highest average values (70-80% 

completeness, more than >92% purity), followed by other programs with comparably 

good performance in a narrow range (completeness ranging with one exception from 

50-64%, more than 75% purity). Notably, other programs assigned a larger portion of 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2017. ; https://doi.org/10.1101/099127doi: bioRxiv preprint 

https://doi.org/10.1101/099127
http://creativecommons.org/licenses/by/4.0/


11 

 

the datasets in bp than MaxBin 2.0, though with lower ARI (Fig. 2d). For applications 

where binning a larger fraction of the dataset at the cost of some accuracy is 

important, therefore, programs such as MetaWatt-3.5, MetaBAT and CONCOCT 

could be a good choice. The high complexity dataset was more challenging to all 

programs, with average genome completeness decreasing to around 50% and more 

than 70% purity, except for MaxBin 2.0 and MetaWatt-3.5, which showed an 

outstanding purity of above 90%. The programs either assigned only a smaller 

dataset portion (>50% of the sample bp, MaxBin 2.0) with high ARI or assigned a 

larger fraction with lower ARI (more than 90% with less than 0.5 ARI). The exception 

was MetaWatt-3.5, which assigned more than 90% of the dataset with an ARI larger 

than 0.8, thus best recovering abundant genomes from the high complexity dataset. 

Overall, MetaWatt-3.5, closely followed by MaxBin 2.0, recovered the most genomes 

with high purity and completeness from the three datasets (Fig. 2c, Supplementary 

Table 17).  

Effect of strain diversity 

When considering only unique strains, the performance of all genome binners 

improved substantially, both in terms of average purity and completeness per 

genome bin (Fig. 2a). For the medium and low complexity datasets, all had a purity of 

above 80%, while completeness was more variable. MaxBin 2.0 performed best 

across all three datasets, showing more than 90% purity and 70% or more 

completeness. An almost equally good performance for two datasets was delivered 

by MetaBAT, CONCOCT and MetaWatt-3.5.  

For the "common strains" of all three datasets, however, completeness decreased 

substantially (Fig. 2b), similarly to purity for most programs. MaxBin 2.0 still stood 

out, with more than 90% purity on all datasets. Interestingly, when considering the 

value of bins reconstructed by taxon binners for genome reconstruction, taxonomic 

binners had lower completeness than genome binners, but reached a similar purity, 

thus delivering high quality, partial genome bins (Supplementary Material 1.4.4; 

Supplementary Fig. B9). Overall, the presence of multiple related strains in a 

metagenome sample had a substantial effect on the quality of the reconstructed 

genome bins, both for genome and taxonomic binners. Very high quality genome bin 
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reconstructions were attainable with genome binning programs for “unique” strains, 

while the presence of several closely related strains presented a notable hurdle to 

these tools.  

Performance in taxonomic binning 

We next investigated the performance of taxonomic binners in recovering taxon bins 

at different ranks. These results can be used for taxon-level evolutionary or functional 

pangenome analyses and conversion into taxonomic profiles. As performance 

metrics, the average purity (precision) and completeness (recall) per taxon bin were 

calculated for individual ranks under consideration of the taxon assignment 

(Supplementary Material, Binning metrics). In addition, we determined the overall 

classification accuracy for each dataset, as measured by total assigned sequence 

length, and misclassification rate for all assignments. While the former two measures 

allow assessing performance averaged over bins, where all bins are treated equally, 

irrespective of their size, the latter are influenced by the actual sample taxonomic 

constitution, with large bins having a proportionally larger influence. 

For the low complexity data set, PhyloPythiaS+ had the highest sample assignment 

accuracy, average taxon bin completeness and purity, which were all above 75% 

from domain to family level. Kraken followed, with average completeness and 

accuracy still above 50% until family level. However, purity was notably lower, mostly 

caused by prediction of many small false bins, which affects purity more than overall 

accuracy, as explained above (Supplementary Fig. B3). Removing the smallest 

predicted bins (1% of the data set) increased purity for Kraken, MEGAN, and, most 

strongly, for taxator-tk, for which it was close to 100% until the order level, and above 

75% until the family level (Supplementary Fig. B4). This shows that small predicted 

bins by these programs are not reliable, but otherwise, high purity can be reached for 

higher ranks. Below the family level no program performed very well, with all either 

assigning very little data (low completeness and accuracy, accompanied by a low 

misclassification rate), or performing more assignments with a substantial amount of 

misclassification. Another interesting observation is the similar performance for 

Kraken and Megan, which was not observed on the other datasets, though. These 

programs employ different features of the data (Table 1), but rely on similar 
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algorithms. 

The results for the medium complexity data set qualitatively agreed with those 

obtained for the low complexity data set, except that Kraken, MEGAN and taxator-tk 

performed better (Fig.  2e). With the smallest predicted bins removed, both Kraken 

and PhyloPythiaS+ performed similarly well, reaching above 75% for accuracy, 

average completeness and purity until the family rank (Fig. 2f). Similarly, taxator-tk 

showed an average purity of almost 75% even down to the genus level (almost 100% 

until order level) and MEGAN more than 75% down to the order level, while 

maintaining accuracy and average completeness of around 50%. The results of high 

purity taxonomic predictions can be combined with genome bins, to enable their 

taxonomic labeling. The performance for the high complexity data set was similar to 

that for the medium complexity data set (Supplementary Figs. B5, B6).  

Analysis of low abundance taxa 

We determined which programs had high completeness also for low abundance taxa. 

This is relevant when screening for pathogens in diagnostic settings28, or for 

metagenome studies of ancient DNA samples. Even though a high completeness 

was achieved by PhyloPythiaS+ and Kraken until the rank of family (Fig. 2e,f), it 

degraded for lower ranks and low abundance bins (Supplementary Fig. B7), which 

are of most interest for these applications. It therefore remains a challenge to further 

improve the predictive performance. 

Deep-branchers 

Taxonomic binning methods commonly rely on comparisons to reference sequences 

for taxonomic assignment. To investigate the effect of increasing evolutionary 

distances between a query sequence and available genomes, we partitioned the 

challenge datasets by their taxonomic distances to sequenced reference genomes as 

genomes of new strains, species, genus or family (Supplementary Fig. B8). For 

genomes representing new strains from sequenced species, all programs performed 

well, with generally high purity and oftentimes high completeness, or with 

characteristics observed also for other datasets (such as low completeness for 

taxator-tk). At increasing taxonomic distances to the reference, performance for 
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MEGAN and Kraken dropped substantially, in terms of both purity and completeness, 

while PhyloPythiaS+ decreased most notably in purity and taxator-tk in 

completeness. For deep branchers at larger taxonomic distances to the reference 

collections, PhyloPythiaS+ maintained the best overall purity and completeness. 

Influence of plasmids and viruses  

The presence of plasmid and viral sequences had almost no effect on the 

performance for binning bacterial and archaeal organisms. Although the copy 

numbers of plasmids and viral data were high, in terms of sequence size, the fraction 

of viral, plasmid and other circular elements was small (<1.5%, Supplementary Table 

6). Only Kraken and MEGAN 6 made predictions for the viral fraction of the data or 

predicted viruses to be present, though with low purity (<30%) and completeness 

(<20%). 

 

Profiling challenge  

Taxonomic profilers predict the identity and relative abundance of the organisms (or 

higher level taxa) from a microbial community using a metagenome sample. This 

does not result in classification labels for individual reads or contigs, which is the aim 

of taxonomic binning methods. Instead, taxonomic profiling is used to study the 

composition, diversity, and dynamics of clusters of distinct communities of organisms 

in a variety of environments29-31. In some use cases, such as identification of 

potentially pathogenic organisms, accurate determination of the presence or absence 

of a particular taxon is important. In comparative studies (such as quantifying the 

dynamics of a microbial community over an ecological gradient), accurately 

determining the relative abundance of organisms is paramount.  

Members of the community submitted results for ten taxonomic profilers to the CAMI 

challenge: CLARK32; ‘Common kmers’ (an early version of MetaPalette33, 

abbreviated CK in the figures); DUDes34; FOCUS35; MetaPhlAn 2.036; Metaphyler37; 

mOTU38; a combination of Quikr39, ARK40, and SEK41 (abbreviated Quikr); Taxy-

Pro42; and TIPP43. For several programs, results were submitted with multiple 
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versions or different parameter settings, bringing the number of unique submissions 

to twenty.  

Performance trends 

We employed commonly used metrics (Supplementary Material ‘Profiling Metrics’) to 

assess the quality of taxonomic profiling submissions with regard to the biological 

questions outlined above. These can be divided into abundance metrics (L1 norm 

and weighted Unifrac44) and binary classification measures (true positives, false 

positives, false negatives, recall, and precision). In short, the abundance metrics 

assess how well a particular method reconstructs the relative abundances in 

comparison to the gold standard, with the L1 norm using the sum of differences in 

abundances (ranges between 0 and 2) and Unifrac using differences weighted by 

distance in the taxonomic tree (ranges between 0 and 16). The binary classification 

metrics assess how well a particular method detects the presence or absence of an 

organism in comparison to the gold standard, irrespective of their abundances. All 

metrics except the Unifrac metric (which is rank independent) are defined at each 

taxonomic rank. 

We observed a large degree of variability in reconstruction fidelity for all profilers 

across metrics, taxonomic ranks, and samples. Each had a unique error profile, with 

different profilers showing different strengths and weaknesses (Fig. 3a). In spite of 

this variability, when comparing results for each sample, a number of patterns 

emerged. The profilers could be placed in three categories: (1) profilers that correctly 

predicted the relative abundances, (2) precise ones, and (3) profilers with high recall. 

To quantify this observation, we determined the following summary statistics: for 

each metric, on each sample, we ranked the profilers by their performance. Each 

was assigned a score for its ranking (0 for first place among all tools at a particular 

taxonomic rank for a particular sample, 1 for second place, etc.). These scores were 

then added over the taxonomic ranks to the genus level and summed over the 

samples, to give a global performance score (Fig. 3b, Supplementary Figs P1-P7, 

Supplementary Table 7).  

The profilers with the highest recall were Quikr, CLARK, Tipp, and Taxy-Pro (Fig. 3), 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2017. ; https://doi.org/10.1101/099127doi: bioRxiv preprint 

https://doi.org/10.1101/099127
http://creativecommons.org/licenses/by/4.0/


16 

 

indicating their suitability for pathogen detection, where failure to identify an organism 

can have severe negative consequences. The profilers with the highest recall were 

also among the least precise (Supplementary Figs P8-P12) where low precision was 

typically due to prediction of a large number of low abundance organisms. In terms of 

precision, MetaPhlAn 2.0 and “Common Kmers” demonstrated an overall superior 

performance, indicating that these two are best at only predicting organisms that are 

actually present in a given sample and suggesting their use in scenarios where many 

false positives can cause unwanted increases in costs and effort in downstream 

analysis. The programs that best reconstructed the relative abundances were 

MetaPhyler, FOCUS, TIPP, Taxy-Pro, and CLARK, making such profilers desirable 

for analyzing organismal abundances between and among metagenomic samples. 

Often, a balance between precision and recall is desired. To assess this, we took for 

each profiler one half of the sum of precision and recall and averaged this over all 

samples and taxonomic ranks. The top performing programs by this criterion were 

Taxy-Pro v0, (mean=0.616), MetaPhlAn 2.0 (mean=0.603), and DUDes v0 

(mean=0.596). 

Performance at different taxonomic ranks 

Most profilers performed well at higher taxonomic ranks (Fig. 3c and Supplementary 

Figs. P8-P12). A high recall was achieved until family level, and degraded 

substantially below.  For example, over all samples and tools at the phylum level, the 

mean±SD recall was 0.845±0.194, and the median L1 norm was 0.382±0.280, both 

values close to each of these metrics’ optimal value (ranging from 1 to 0 and 0 to 2, 

respectively). The precision had the largest variability among the metrics, with a 

mean phylum level value of 0.529 with a standard deviation of 0.549. Precision and 

recall were simultaneously high for several methods (DUDes, Common Kmers, 

mOTU, and MetaPhlAn 2.0) until the rank of order. We observed that accurately 

reconstructing a taxonomic profile is still difficult for the genus level and below. Even 

for the low complexity sample, only MetaPhlAn 2.0 maintained its precision down to 

the species level, while the maximum recall at genus rank for the low complexity 

sample was 0.545 for Quikr. Across all profilers and samples, there was a drastic 

average decrease in performance between the family and genus level of 47.5±14.9% 
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and 51.6±18.1% for recall and precision, respectively. In comparison, there was little 

change between the order and family levels, with a decrease of only 9.7±6.9% and 

8.8±26.4% for recall and precision, respectively. The other error metrics showed 

similar performance trends for all samples and methods (Figs 3c and Supplementary 

Figs. P13-P17).  

Parameter settings and software versions 

Several profilers were submitted with different parameter settings or versions 

(Supplementary Table 1). For some, this had little effect: for instance, the variance in 

recall among 7 different versions of FOCUS on the low complexity sample at the 

family level was only 0.002. For others, this caused large changes in performance: 

for instance, one version of DUDes had twice the recall compared to another at the 

phylum level on the pooled high complexity sample (Supplementary Figs. P13-P17). 

Interestingly, a few developers chose not to submit results beyond a fixed taxonomic 

rank, such as for Taxy-Pro and Quikr. These submissions generally performed better 

than default program versions submitted by the CAMI team; indicating that, not 

surprisingly, experts can generate better results than when using a program’s default 

setting.  

Performance for viruses and plasmids 

In addition to microbial sequence material, the challenge datasets also included 

sequences of plasmids, viruses and other circular elements (Supplementary Table 

7). We investigated the effect of including these data in the gold standard profile for 

the taxonomic profilers (Supplementary Figs P18-P20). Here, the term “filtered” is 

used to indicate the gold standard did not include these data, and the term 

“unfiltered” indicates use of these data. The metrics affected by the presence of 

these data were the abundance-based metrics (L1 norm at the superkingdom level 

and Unifrac), and precision and recall (at the superkingdom level). All methods 

correctly detected Bacteria and Archaea, indicated by a recall of 1.0 at the 

superkingdom level on the filtered samples.  The only methods to detect viruses in 

the unfiltered samples were MetaPhlAn 2.0 and CLARK. Averaging over all methods 

and samples, the L1 norm at the superkingdom level increased from 0.051 for the 
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filtered samples to 0.287 for the unfiltered samples. Similarly, the Unifrac metric 

increased from 7.213 for the filtered to 12.361 for the unfiltered datasets. Thus, a 

substantial decrease in the fidelity of abundance estimates was caused by the 

presence of viruses and plasmids in a sample. 

Taxonomic profilers vs. profiles derived from taxonomic binning 

We compared the profiling results to those generated by several taxonomic binners 

using a simple coverage-approximation conversion algorithm for deriving profiles 

from taxonomic bins (Supplementary Methods, Figs P21-P24). Overall, the 

taxonomic binners were comparable to the profilers in terms of precision and recall. 

At the order level, the mean precision over all taxonomic binners was 0.595 (versus 

0.401 for the profilers) and the mean recall was 0.816 (versus 0.857 for the profilers). 

Two binners, MEGAN 6 and PhyloPythiaS+, had better recall than the profilers at the 

family level, with the degradation in performance past the family level being evident 

for the binners as well. However for precision at the family level, PhyloPythiaS+ was 

the fourth, after the profilers CK_v0, MetaPhlan 2.0, and the binner taxator-tk 

(Supplementary Figs P21-P22). 

Abundance estimation at higher ranks was more problematic for the binners, as the 

L1 norm error at the order level was 1.07 when averaged over all samples, while the 

profilers average was only 0.681. Overall, though, the binners delivered slightly more 

accurate abundance estimates, as the binning average Unifrac metric was 7.03, 

while the profiling average was 7.23. These performance differences may in part be 

due to the use of the gold standard contigs as input by the binners except for 

MEGAN 6, though oftentimes Kraken is also applied to raw reads, while the profilers 

used the raw reads.  

CONCLUSIONS 

Determination of program performance is essential for assessing the state of the art 

in computational metagenomics. However, a lack of consensus about benchmarking 

datasets and evaluation metrics has complicated comparisons and their 

interpretation. To tackle this problem, CAMI has engaged the global developer 

community in a benchmarking challenge, with more than 40 teams initially registering 
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for the challenge and 19 teams handing in submissions for the three different 

challenge parts. This was achieved by providing benchmark datasets of 

unprecedented complexity and degree of realism, generated exclusively from around 

700 newly sequenced microbial genomes and 600 novel viruses, plasmids and other 

circular elements. These spanned a range of evolutionary divergences from each 

other and from publicly available reference collections. We implemented commonly 

used metrics in close collaboration with the computational and applied metagenomics 

communities and agreed on the metrics most important for common research 

questions and biological use cases in microbiome research using metagenomics. To 

be of practical value to researchers, the program submissions have to be 

reproducible, which requires knowledge of reference data, parameter settings and 

program versions. In CAMI, we have taken steps to ensure reproducibility by 

development of docker-based bioboxes45 and encouraging developer submissions of 

bioboxes for the benchmarked metagenome analysis tools, enabling their 

standardized execution and format usages. The benchmark datasets, along with the 

CAMI benchmarking platform allow further result submissions and their evaluation on 

the challenge data sets, to facilitate benchmarking of further programs. Currently, we 

are extending the platform capabilities for automated benchmarking of biobox-

packaged programs on these and further data sets, as well as comparative result 

visualizations.  

The evaluation of assembly programs revealed a clear advantage for assemblers 

using a range of k-mers compared to single k-mer assemblies (Table 1). While single 

k-mer assemblies reconstructed only genomes with a certain coverage (small k-mers 

for low abundant genomes, large k-mers for high abundant genomes), using multiple 

k-mers significantly improved the fraction of recovered genomes. Two programs 

performed well in the reconstruction of high copy circular elements, although none 

detected their circularities. An unsolved challenge of metagenomic assembly for all 

programs is the reconstruction of closely related genomes. A poor assembly quality 

or lack of assembly for these genomes will negatively impact subsequent contig 

binning, as the contigs will be missing in the assembly output, further complicating 

their study. 
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In evaluation of the genome and taxonomic binners, all programs were found to 

perform surprisingly well at genome reconstruction, if no closely related strains were 

present. Taxonomic binners performed acceptably in taxon bin reconstruction down 

to the family rank (Table 1). This leaves a gap in species and genus-level 

reconstruction that is to be closed, also for taxa represented by single strains in a 

microbial community. Taxonomic binners achieved a better precision in genome 

reconstruction than in species or genus-level binning, raising the possibility that a 

part of the decrease of performance in low ranking taxon assignment is due to 

limitations of the reference taxonomy used. A sequence-derived reference phylogeny 

might represent a more suitable framework for – in that case – “phylogenetic” 

binning. When comparing the average performance of taxon binners for taxa with 

similar surroundings in the SILVA and NCBI reference taxonomies to those with less 

agreement, we observed a significant difference for taxa with discrepant 

surroundings, primarily a decreased performance for lower taxonomic ranks until 

family level (Supplementary Methods, Section 1.4.5; Supplementary Table S24). 

Thus, the use of SILVA might further improve taxon binning, though the lack of 

associated genome sequence data represents a practical hurdle46. Another challenge 

for all programs is the deconvolution of strain-level diversity, which we found to be 

substantially less effective than binning of genomes without close relatives present. 

For the typically covariance of read coverage based genome binners it may require 

substantially larger numbers of replicate samples than those analyzed here (up to 5) 

to attain a satisfactory performance. 

Despite of a large variability in performance amongst the submitted profilers, most 

profilers performed well with good recall and low errors in abundance estimates until 

the family rank, with precision being the most variable of these metrics (Table 1). The 

use of different classification algorithms, reference taxonomies, reference databases 

and information sources (marker gene versus genome wide k-mer based) are likely 

contributors to the observed performance differences. To enable more systematic 

analyses of their individual impacts, software developers could provide configurable 

options for use of databases, k-mer sizes or other specialized settings, instead of 

having these hard-coded. Similarly to taxonomic binners, performance across all 

metrics substantially decreased for the genus level and below. Also when taking 
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plasmids and viruses into consideration for abundances estimates, the performance 

of all programs decreased substantially, indicating a need for further development to 

enable a better analysis of datasets with such content, as plasmids are likely to be 

present and viral particles are not always removed by size filtration47.   

As both the sequencing technologies and the computational metagenomics programs 

continue to evolve rapidly, CAMI will provide further benchmarking challenges to the 

community. Long read technologies such as those by Oxford Nanopore, Illumina and 

PacBio48 are expected to become more common in metagenomics, which will in turn 

require other assembly methods and may allow a better resolution of closely related 

genomes from metagenomes. In the future, we also plan to tackle assessment of 

runtimes and RAM requirements, to determine program suitability for different use 

cases, such as execution on individual desktop machines or as part of computational 

metagenome pipelines provided by MG-RAST49, EMG50 or IMG/M51. We invite 

everyone interested to join and work with CAMI on providing comprehensive 

performance overviews of the computational metagenomics toolkit, to inform 

developers about current challenges in computational metagenomics and applied 

scientists of the most suitable software for their research questions.  

 

ONLINE METHODS 

Community involvement 

We organized public workshops, roundtables, hackathons and a research 

programme around CAMI at the Isaac Newton Institute for Mathematical Sciences 

(Supplementary Fig. M1), to decide on the principles realized in data set and 

challenge design. To determine the most relevant metrics for performance 

evaluation, a meeting with developers of evaluation software and of commonly used 

binning, profiling and assembly software was organized. Subsequently we created 

biobox containers implementing a range of commonly used performance metrics, 

including the ones decided as most relevant in this meeting (Supplementary Table 8). 

Computational support for challenge participants was provided by the Pittsburgh 

Supercomputing Center.  
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Standardization and reproducibility 

For performance assessment, we developed several standards: we defined output 

formats for profiling and binning tools, for which no widely accepted standard existed. 

Secondly, standards for submitting the software itself, along with parameter settings 

and required databases were defined and implemented in docker container 

templates named bioboxes45. These enable the standardized and reproducible 

execution of submitted programs from a particular category. Challenge participants 

were encouraged to submit the results together with their software in a docker 

container following the bioboxes standard. In addition to 23 bioboxes submitted by 

challenge participants, we generated 13 additional bioboxes and ran them on the 

challenge datasets (Supplementary Table 1), working with the developers to define 

the most suitable execution settings, if possible. For several submitted programs, 

bioboxes using default settings were created, to compare performance with default 

and expert chosen parameter settings.  If required, the bioboxes can be rerun on the 

challenge datasets. 

 

Genome sequencing and assembly 

Draft genomes of 310 type strain isolates were generated for the Genomic 

Encyclopedia of Type Strains at the DOE Joint Genome Institute (JGI) using Illumina 

standard shotgun libraries and the Illumina HiSeq 2000 platform. All general aspects 

of library construction and sequencing performed at the JGI can be found at 

http://www.jgi.doe.gov. Raw sequence data was passed through DUK, a filtering 

program developed at JGI, which removes known Illumina sequencing and library 

preparation artifacts [Mingkun L, Copeland A, Han J. DUK, unpublished, 2011]. The 

genome sequences of isolates from culture collections are available in the JGI 

genome portal (Supplementary Table 9). Additionally, 488 isolates from the root and 

rhizosphere of Arabidopsis thaliana were sequenced9. All sequenced environmental 

genomes were assembled using the A5 assembly pipeline (default parameters, 

version 20141120)52 and are available for download at https://data.cami-

challenge.org/participate). A quality control of all assembled genomes was performed 

based on tetranucleotide content analysis and taxonomic analyses (Supplementary 
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Methods “Taxonomic annotation”), resulting in 689 genomes that were used for the 

challenge (Supplementary Table 9). Furthermore, we generated 1.7 Mb or 598 novel 

circular sequences of plasmids, viruses and other circular elements from multiple 

microbial community samples of rat caecum (Supplementary Methods, ‘Data 

generation’).  

 

Challenge datasets 

We simulated three metagenome datasets of different organismal complexities and 

sizes by generating 150 bp paired-end reads with an Illumina HighSeq error profile 

from the genome sequences of 689 newly sequenced bacterial and archaeal isolates 

and 598 sequences of plasmids, viruses and other circular elements (Supplementary 

Methods “Metagenome simulation”; Supplementary Tables 3, 6; Supplementary Figs 

D1, D2). These datasets represent common experimental setups and specifics of 

microbial communities. They consist of a 15 Gb single sample dataset from a low 

complexity community with log normal abundance distribution (40 genomes and 20 

circular elements), a 40 Gb differential log normal abundance dataset with two 

samples of a medium complexity community (132 genomes and 100 circular 

elements) and long and short insert sizes, as well as a 75 Gb time series dataset with 

five samples from a high complexity community with correlated log normal 

abundance distributions (596 genomes and 478 circular elements).  Some important 

properties of the benchmark datasets are: All included species with strain-level 

diversity (Supplementary Fig. D1), to explore its’ effect on program performances. 

They also included viruses, plasmids and other circular elements, to assess their 

impact on program performances. All datasets furthermore included genomes at 

different evolutionary distances to those in reference databases, to explore their 

effect on taxonomic binning. For every individual metagenome sample and for the 

pooled data set samples, gold standard assemblies, genome bin and taxon bin 

assignments, as well as taxonomic profiles were generated (available at 

https://data.cami-challenge.org/participate). The data generation pipeline is available 

on GitHub and as a docker container at https://hub.docker.com/r/cami/emsep/.  
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Challenge Organization 

The first CAMI challenge benchmarked software for sequence assembly, taxonomic 

profiling and (taxonomic) binning. To allow developers to familiarize themselves with 

the data types, biobox-containers and in- and output formats, we provided simulated 

datasets from public data together with a standard of truth before the start of the 

challenge (Supplementary Figs M1, M2, https://data.cami-challenge.org/). Reference 

datasets of RefSeq, NCBI bacterial genomes, SILVA53, and the NCBI taxonomy from 

04/30/2014 were prepared for taxonomic binning and profiling tools, to allow 

performance comparisons for reference-based tools based on the same reference 

datasets. For future benchmarking of reference-based programs with the challenge 

datasets, it will be important to use these reference datasets, as the challenge data 

have subsequently become part of public reference data collections. 

 

The CAMI challenge started on 03/27/2015. Challenge participants had to register on 

the website for download of the challenge datasets, with 40 teams registered at that 

time. They could then submit their predictions for all datasets or individual samples 

thereof. Optionally, they could provide an executable biobox implementing their 

software together with specifications of parameter settings and reference databases 

used. Submissions of assembly results were accepted until 05/20/2015. 

Subsequently, a gold standard assembly was provided for all datasets and samples, 

which was suggested as input for taxonomic binning and profiling. This includes all 

genomic regions from the genome reference sequences and circular elements 

covered by at least one read in the pooled metagenome datasets or individual 

samples (Supplementary Methods, Section 1.1.3). Provision of this assembly gold 

standard allowed us to decouple the performance analyses of binning and profiling 

tools from assembly performance. Developers could submit their binning and profiling 

results until 07/18/2015. Overall, 215 submissions representing 25 different programs 

were obtained for the three challenge datasets and samples, from initially 19 external 

teams and CAMI developers, with 16 teams consenting to publish (Supplementary 

Table 1). The genome data used to generate the simulated datasets was kept 

confidential until the end of the challenge and then released9. The CAMI challenge 

and toy datasets including the gold standard are available for download and in the 
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CAMI benchmarking platform, where further predictions can be submitted and a 

range of metrics calculated for benchmarking (https://data.cami-

challenge.org/participate).  
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Software Description Performance profiles 
 
Assemblers 

  

Megahit v.0.2.2 Metagenome assembler 
using multiple k-mer sizes 
and succinct de Bruijn 
graphs 

Assembly of unique genomes 
across a broad abundance range. 

Ray Meta v2.3.2 Distributed de Bruijn 
graph metagenome 
assembler 

Assembly of abundant, unique 
genomes, dependent on k-mer 
size. 

Meraga v2.0.4 Meraculous + Megahit Assembly of unique genomes 
across a broad abundance range, 
assembly of high coverage  (>600) 
circular elements. 

Minia 2 and Minia 3 De Bruijn graph 
assembler based on a 
Bloom filter 

Assembly of unique genomes 
across a broad abundance range, 
assembly of high coverage (>200) 
circular elements. 

A* OperaMS Scaffolder 
using SOAPde novo2 on 
medium complexity and 
Ray assemblies on low 
and high complexity data 
sets 

Assembly of abundant, unique 
genomes. 

Velour De Bruijn graph genome 
assembler 

Assembly of abundant, unique 
genomes, dependent on k-mer 
size. 

Genome and 
taxonomic binners 

  

CONCOCT Genome binner using 
differential coverage, 
tetranucleotide 
frequencies, paired-end 
linkage 

Near complete (>95%) 
assignment of datasets at some 
cost for average genome purity 
and completeness. 

MaxBin 2.0 Genome binner using 
multi-sample coverage, 
tentranucleotide 
frequencies 

Largest average purity and 
completeness across entire 
abundance range. Recovery of 2nd 
most genomes with high purity 
and completeness.  

MetaBAT Genome binner using 
multi-sample coverage, 
tetranucleotide 
frequencies, paired-end 
linkage 

Assignment of a large portion 
(>88%) of datasets at some costs 
for average genome purity and 
completeness. 

MetaWatt-3.5 Genome binner using 
tetranucleotide 
frequencies  

Recovery of the most genomes 
with high purity and completeness;  
near complete assignment of 
datasets at some cost for average 
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genome purity and completeness. 
MyCC Genome binner using 

short k-mer frequencies, 
multi-sample coverage, 
and 40 universal 
phylogenetic marker 
genes 

Near complete assignment of 
datasets at some cost for average 
genome purity and completeness. 

Kraken Taxonomic binner using 
long k-mers and Lowest 
Common Ancestor (LCA) 
related assignments. Also 
returns a taxonomic 
profile. 

Good performance until family 
level; substantial decrease below. 
When removing small predicted 
bins, 2nd best sum of purity and 
completeness for taxon bins, 
completeness, overall sample 
assignment accuracy and bases 
assigned. 

Megan 6 Taxonomic binner using 
sequence similarities and 
LCA-related assignments 

Also rank-dependent performance. 
When removing small predicted 
bins, 2nd lowest misclassification 
rate (fraction of false predictions), 
mid-range performance otherwise. 

PhyloPythiaS+ Taxonomic binner using 
k-mer frequencies (4-
6mers), structural SVM 

Good performance until family 
level; substantial decrease below. 
Best sum of purity and 
completeness, completeness, 
overall sample assignment 
accuracy and bases assigned. 
Best for deep brancher binning. 

taxator-tk Taxonomic binner using 
sequence homology and 
taxon placement 
algorithm 

When removing small predicted 
bins, highest purity and lowest 
misclassification rate, but very low 
completeness. Suggested 
application: taxon labeling of 
genome bins. 

Taxonomic 
profilers 

  

MetaPhyler Phylogenetic marker 
genes 

Best inference of taxon relative 
abundances to the family level, 
moderately high recall at the cost 
of very low precision. 

mOTU Phylogenetic marker 
genes 

Neither best nor worst with any 
metric, with a slight favoring of 
precision over recall.  

Quikr/ARK/SEK k-mer based nonnegative 
least squares using 
extracted 16S rRNA 
sequences. 

Highest recall with second worst 
precision. Suitable mostly for 
higher taxonomic ranks. Relatively 
good abundance estimation for 
low complexity samples and at 
higher taxonomic ranks. 
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Table 1: Computational metagenomics programs evaluated in the CAMI challenge. 
See Supplementary Tables S16 and S17 for detailed genome and taxon binning 
performance statistics. 

 

 

 

 

Taxy-Pro Mixture model analysis of 
protein signatures 

Very good inference of taxon 
relative abundances to the family 
level, high recall and low 
precision. 

TIPP Marker genes and SATÉ 
phylogenetic placement 

Accurate inference of taxon 
relative abundances down to the 
family level, high recall and low 
precision. 

CLARK Phylogenetically 
discriminative k-mers 

High recall and decidedly worst 
precision for all ranks and 
complexity levels. 

Common 
Kmers/MetaPalette 

Long k-mer based 
nonnegative least 
squares 

Comparable to MetaPhlAn2.0 
(high precision with low recall), but 
more accurate inference of relative 
taxon abundances at the cost of 
fewer distinguished species. 

DUDes Read mapping and 
deepest uncommon 
descendant 

Tool parameters substantially 
affect tradeoff between precision 
and recall, particularly at lower 
taxonomic ranks and for high 
complexity samples.  

FOCUS k-mer based nonnegative 
least squares 

Good inference of relative 
abundances down to the family 
level, low precision and recall, 
especially for lower taxonomic 
ranks. 

MetaPhlAN 2.0 Clade specific marker 
genes 

Most precise method by far with 
ability to distinguish between a few 
species, low recall. 
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Figure 1: Boxplots representing the fraction of reference genomes assembled by 

each assembler for the high complexity data set. (a): all genomes, (b): genomes with 

ANI >=95%, (c): genomes with ANI < 95%. Coloring indicates the results from the 

same assembler incorporated in different pipelines or with other parameter settings. 

(d): genome recovery fraction versus genome sequencing depth (coverage) for the 

high complexity data set. Data were classified as unique genomes (ANI < 95%, 

brown color), genomes with related strains present (ANI >= 95%, blue color) and high 

copy circular elements (green color). The gold standard includes all genomic regions 

covered by at least one read in the metagenome dataset, therefore the genome 

fraction for low abundance genomes can be less than 100%.  
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Figure 2: Average purity (x-axis) and completeness (y-axis) and their standard errors 

(bars) for genomes reconstructed by genome binners; for genomes of unique strains 

with equal to or less than 95% ANI to others (a) and common strains with more than 

90% ANI to each other (b). For each program and complexity dataset, the 

submission with the largest sum of purity and completeness is shown 

(Supplementary Tables 1, 10, 12). In each case, small bins adding up to 1% of the 

data set size were removed. (c) Number of genomes recovered with varying 
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completeness and contamination (1-purity, Supplementary Table S17). (d) The 

Adjusted Rand Index (ARI, x-axis) in relation to fraction of the sample assigned (in 

basepairs) by the genome binners (y-axis). The ARI was calculated excluding 

unassigned sequences, thus reflects the assignment accuracy for the portion of the 

data assigned. (e,f) Taxonomic binning performance metrics across ranks for the 

medium complexity data set, with (e) results for the complete data set and (f) with 

smallest predicted bins summing up to 1% of the data set removed. Shaded areas 

indicate the standard error of the mean in precision (purity) and recall (completeness) 

across taxon bins. 
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Figure 3: (a) Relative performance of profilers for different ranks and with different 

error metrics (weighted Unifrac, L1 norm, recall, precision, and false positives), 

shown here exemplarily for the microbial portion of the first high complexity sample. 

Each error metric was divided by its maximal value to facilitate viewing on the same 

scale and relative performance comparisons. A method’s name is given in red (with 

two asterisks) if it returned no predictions at the corresponding taxonomic rank. (b) 

Best scoring profilers using different performance metrics summed over all samples 

and taxonomic ranks to the genus level. A lower score indicates that a method was 

more frequently ranked highly for a particular metric. The maximum (worst) score for 

the Unifrac metric is 38 = (18 + 11 + 9) profiling submissions for the low, medium and 

high complexity datasets respectively), while the maximum score is 190 for all other 

metrics (= 5 taxonomic ranks * (18 + 11 + 9) profiling submissions for the low, 

medium and high complexity datasets respectively). (c) Absolute recall and precision 

for each profiler on the microbial (filtered) portion of the low complexity data set 

across six taxonomic ranks. Abbreviations are FS (FOCUS), T-P (Taxy-Pro), MP2.0 
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(MetaPhlAn 2.0), MPr (Metaphyler), CK (Common Kmers) and D (DUDes). 
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