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 21 

 22 
ABSTRACT 23 
 24 

Behavioral individuality arises even in isogenic populations under identical environments, 25 

but its underlying mechanisms remain elusive. We found that inbred and isogenic zebrafish 26 

(Danio rerio) larvae showed consistent behavioral individuality when swimming freely in 27 

identical wells or in reaction to stimuli. We also found that behavioral individuality 28 

depends on the histone acetylation levels. Individuals with high levels of histone 4 29 

acetylation behaved similar to the average of the population, but those with low levels 30 

deviated and showed behavioral individuality. More precisely, we found behavioral 31 

individuality to be related to individuality in histone 4 acetylation of a set of genomic 32 

regions related to neurodevelopment. We found evidence that this modulation depends on a 33 

complex of Yin Yang 1 (YY1) and histone deacetylase 1 (HDAC1). We suggest, using 34 

stochastic modelling, that this complex is part of the molecular machinery giving 35 

individuality in histone acetylation in neurodevelopmental genes ultimately responsible for 36 

behavioral individuality. 37 

  38 
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INTRODUCTION 39 

Classically, the phenotypic diversity of a population is considered to be generated by the 40 

genetic differences between its members and the disparity of their environmental influences1. A 41 

simple prediction from this view alone would then be that isogenic populations would not show 42 

variability when the environment is constant. Nevertheless, a pioneering study showed that there 43 

was variability independent of genetic differences in some morphological traits in mice raised in 44 

identical environments2. In recent years, similar results have been obtained for behavioral 45 

variability in mice and flies3,4. There are several mechanisms that might contribute to this effect, 46 

including developmental noise5, maternal and paternal effects6, or the different experiences the 47 

individuals obtain by interacting with the environment or other animals4, among others. 48 

Our knowledge about behavioral variability independent of genetic differences has 49 

increased substantially, but its underlying mechanisms remain unclear. Neuronal mechanisms 50 

such as neurogenesis, or serotonin signaling have been shown to be final targets of behavioral 51 

individuality3,4, but the molecular mechanisms remain elusive. Chromatin modifications could be 52 

a promising  mechanism to encode stable differences among individuals and they have been 53 

hypothesized as a potential mechanism for the generation of experience-dependent behavioral 54 

individuality4. DNA methylation differences have been associated to behavioral castes in 55 

honeybees7, and they are necessary and sufficient to mediate social defeat stress8. Histone 56 

acetylation is another of the main epigenetic modifications9 and it has been shown to regulate 57 

different behaviors such as mating preference in prairie voles10 or cast-mediated division of labor 58 

in ants11. We thus reasoned that molecular mechanisms linked to epigenetic modifications could 59 

lead to behavioral individuality. 60 
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We used zebrafish from 5 to 8 days post fertilization (dpf) to dissect the molecular 61 

substrates of behavioral individuality. Laboratory zebrafish larvae show individuality in 62 

behavior12 and they present some advantages such as its wide genomic information, the 63 

simplicity of its pharmacological treatments and the possibility to do large-scale behavioral 64 

analysis. Additionally, it is relevant to use a species in which we can observe directly 65 

developmental changes, as some of the mechanisms responsible for behavioral individuality are 66 

likely accumulated during development13. Here we established zebrafish larvae as a model for 67 

the analysis of behavioral individuality to study individuality in free-swimming behavior. We 68 

found that in our experimental tests behavioral individuality of zebrafish larvae is independent of 69 

the genetic variability of the population but it is linked to histone acetylation differences. 70 

 71 

RESULTS 72 

Behavioral individuality in larval zebrafish is stable for days 73 

We used three steps to establish zebrafish larvae as a model to study behavioral 74 

individuality using a high-throughput setup (see Methods and Extended Data Figure 1a-k for 75 

the custom-built video tracking software, downloadable from www.multiwelltracker.es. We 76 

first obtained that each larvae showed differences in their spontaneous behavior. Simple eye 77 

inspection of trajectories reveals this behavioral individuality (Figure 1a-b, left, 7-8 dpf, 78 

respectively; Extended Data Figure 2a-b, left, 5-6 dpf). This can be quantified using two 79 

parameters: overall activity (percentage of time in movement) and radial index (average relative 80 

distance from the border towards the center of the well). These two parameters were chosen 81 

because they are independent of each other (Figure 1c, P=0.98), while others like speed, 82 

bursting or tortuosity correlated with activity (Methods, Extended Data Figure 1l, P<0.006). 83 

We performed several control experiments to show that the observed individuality was not 84 
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affected by potential artifacts in the set-up (Methods, Extended Data Figure 2c-e). Also, we 85 

tested that these behavioral parameters describe individuality also in response to stimuli like light 86 

flashes, mechanical perturbation or at a novel tank (Methods, Extended Data Figure 2f). 87 

In a second step, we showed that individual differences were robust along several days 88 

(Figure 1d, R=0.69 and R=0.58, P<0.001 for linear correlation of activity and radial index, 89 

respectively, 7 vs. 8 dpf; Extended Data Figure 2g, R=0.48 and R=0.41, P<0.01, 5 vs. 6 dpf). 90 

The third step consisted in showing that inter-individual variability is larger than intra-individual 91 

variability. In the two-dimensional phenotypic space defined by activity and radial index, it can 92 

be directly seen that the area covered by the behavior of one individual is smaller than the area of 93 

the whole population (Figure 1e-f, left, 7-8 dpf; Extended Data Figure 2a-b right, 5-6 dpf, see 94 

Methods). Measuring variability by the Coefficient of Variation (CV), we found this difference 95 

to be significant (Methods, Figure 1g, 8 dpf; Extended Data Figure 2h-j, 5-7 dpf respectively; 96 

P<0.001 in all cases). Intra-individual and inter-individual variability levels remained stable 97 

from 5 to 8 dpf (Extended Data Figure 2k, P<0.01 in all comparisons). 98 

The degree of individuality may be measured by variability in the population. This can be 99 

visualized using the probability density of finding an individual in a population with a given 100 

mean activity and radial index (Methods, Figure 1e-f, right, 7-8 dpf; Extended Data Figure 2a-101 

b, right, 5-6 dpf). It can be quantified using generalized variance14, a single parameter that 102 

summarizes this two-dimensional variability, that we used to compare two populations 103 

(Methods; Extended Data Table 1 for summary of all results; other variability measures in 104 

Extended Data Table 2). 105 

 106 

Sources of behavioral variability in zebrafish 107 
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Our setup allowed us to perform high-throughput tests to study the possible origins of 108 

behavioral individuality. Behavioral individuality could in principle depend on environmental 109 

manipulations and the genetic differences across the population. Our experiments minimized 110 

environmental influences by isolating eggs in plates at pharyngula stage (24 hpf) and by keeping 111 

them at a controlled temperature (27-28ºC). Manual changes in water (24 hours before the 112 

experiment) or feeding did not affect individuality (Figure 2a, P=0.42 and Figure 2b, P=0.38, 113 

respectively). 114 

We found that behavioral variability of a population did not depend on the genetic 115 

variability of its individuals. Our control inbred WIK zebrafish population (F1) resulted from a 116 

single batch of eggs retrieved from two adults with at least three cycles of inbreeding. We 117 

obtained the same behavioral variability after two more inbreeding cycles (WIK F3, Figure 2c, 118 

P=0.33) and in an isogenic population15 (CG2, Figure 2c, P=0.44). Also, we did not find 119 

changes in the behavioral variability using groups of siblings from genetically diverse outbred 120 

parents (LPS line, Figure 2c, P=0.38). 121 

 122 

Changes in chromatin acetylation alter behavioral variability 123 

The absence of effects from genetic variability prompted us to test whether behavioral 124 

individuality could be modified by different epigenetic factors. To test the contribution of DNA 125 

methylation we used 5-azacytidine (AZA), an inhibitor of DNA-methyltransferases. We found 126 

that AZA added to the water did not alter the behavioral individuality of a population (15 mM 127 

AZA, Figure 3a, P=0.44) even if it reduced 3-methyl DNA in larval zebrafish (Extended Data 128 

Figure 3a). We then studied the role of histone deacetylation, a reversible molecular process in 129 

which an acetyl functional group is removed from specific residues of Histone 3 and 49. This 130 
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system is regulated by a group of enzymes called Histone Deacetylases (HDACs). To test the 131 

effect of HDACs on behavioral individuality, we used sodium butyrate (NaBu, a class I HDAC 132 

inhibitor) at the standard concentration of 2 mM16. We first confirmed that NaBu increases the 133 

level of total acetyl-histone 4 in larval zebrafish (Extended Data Figure 3b). We then found that 134 

this treatment reduced the behavioral variability of a WIK F3 sibling population after 24 hours (2 135 

mM NaBu, Figure 3b) compared to control PBS-treated larvae (PBS, Figure 3b, P<0.001). 136 

Note that this treatment only altered variability and not the mean of the population parameters 137 

(P=0.63). When we retired the treatment, behavioral variability was recovered after additional 138 

24h (Extended Data Figure 3c, P=0.71). Similarly to the behavior, the total levels of acetyl-139 

histone 4 increased with the treatment and were recovered 24 hours after retiring the treatment 140 

(Extended Data Figure 3b). We also studied transgenic larvae with alterations in the 141 

deacetylation pathway as an alternative more specific than the use of drugs. We found that 142 

heterozygotic mutant populations of the histone deacetylase hdac1 (hdac1 +/-) showed a reduced 143 

behavioral variability compared to their AB controls, mirroring the results obtained with the 144 

drugs (Figure 3c, P=0.008). Our results suggest that histone deacetylation pathway modulates 145 

the behavior of zebrafish larvae without affecting its average behavior. 146 

 147 

High acetylation levels result in a behavior close to the population average  148 

We have shown that the degree of behavioral variability of a population depends on its 149 

average acetylation levels. Since an increment in the global acetylation decreased the behavioral 150 

variability without changing the average behavior, we reasoned that the individuals with higher 151 

mean acetylation should be placed near the average population behavior in the phenotypic space. 152 

To test this hypothesis, we performed an experiment with 90 individuals to obtain their 153 

acetylation state depending on their distance to the average behavior of the population. As we 154 
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needed at least five larvae in order to get enough tissue for the experiment, we pooled 5 larvae 155 

with very similar behavior and measured their acetylation state. We found that larvae whose 156 

behavior was placed near the average of the population had higher mean acetylation values 157 

(Figure 4a, left). To quantify the dependence between the average acetylation and the position in 158 

the phenotypic space of the individuals, we first defined a coordinate system (centered on the 159 

average behavior of the population) and then obtained two magnitudes for each pool of fish: their 160 

distance to the center (r) and their angle with the horizontal axis (�), Figure 4a, right. We found 161 

that the acetylation levels of the individuals highly correlated with their phenotypic distance to 162 

the average, while we found no correlation with their angular position (see Figure 4b, blue dots, 163 

P<0.001, P=0.53, respectively). We found similar correlations when we analyzed the distance to 164 

the mean of each behavioral parameter separately (Extended Data Figure 4a, P<0.001).  165 

We have seen that individuals with higher acetylation levels display a behavior similar to 166 

the average of the population, while the variability of the population behavior increases at lower 167 

acetylation levels. This is compatible with our previous experiments that reduced the behavioral 168 

variability of a population by increasing its acetylation levels. In fact, if we use fish treated with 169 

NaBu to perform the same analysis, we find that the individuals not only have a behavior similar 170 

to the average of the non-treated population, but also that their acetylation is at the same level of 171 

the non-treated individuals with more acetylation (Figure 4b, red dots). This shows that the 172 

treated animals present acetylation levels within the physiological range of the animals, 173 

consistent with NaBu having the global effect of increasing the acetylation levels of the 174 

population by bringing them close to the animals with more acetylation.  175 

 176 

Differences in the acetylation of a set of genes are linked to behavioral variability 177 
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Our results link acetylation level of the individuals and their behavioral individuality. 178 

However, fish with similar (low) acetylation levels also can show very different behavior, so 179 

there must be other factors contributing to behavioral variability. We hypothesized that these 180 

factors could be the acetylation differences in specific genomic regions associated to behavior. 181 

To explore this possibility, we compared the acetylation variability between two groups of WIK 182 

zebrafish, one with high and the other with low behavioral variability. For the first population, 183 

we built four clusters of five sibling fish with low intra-cluster behavioral variability and high 184 

inter-cluster variability, so that they covered the complete phenotypic space of the population 185 

(clusters c1-c4 in Extended Data Figure 4b, see Methods for details). For the second 186 

population, we built four behavioral clusters each made of up of five individuals selected at 187 

random from the phenotypic space. This process eliminates any systematic difference in 188 

behavior across clusters. We then retrieved the acH4 epigenomic profiles of the clusters in each 189 

group using chIP-seq and computed the acetylation variability of each genomic region across 190 

behavioral clusters using techniques adopted from gene expression analysis (see Methods for 191 

details). 192 

We found that there were more genomic regions with higher variability in acetylation 193 

across clusters in the first population, suggesting that acetylation variability in the regions 194 

correlated with behavioral variability (Figure 5a, P<0.0001). We then identified the epigenomic 195 

regions with high variability in histone acetylation as they are potentially related to behavioral 196 

variability (Methods, Extended Data Table 3, P<0.01). We found that genes located near these 197 

regions are enriched in different Gene Ontology (GO) terms (P<0.001) mainly related to 198 

neurobiological processes (Figure 5b). This chIP-seq analysis predicts that acetylation 199 

variability in specific regions can be associated to behavioral differences. In order to assess the 200 
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specificity of these hypervariable regions in behavioral individuality, we checked that our 201 

previous relation between histone acetylation levels and average behavior (Figure 4b) was 202 

maintained in the hypervariable regions but not in the rest (see Figure 5c). To find if these 203 

regions could have a causal action in behavioral individuality, we decided to affect them by 204 

impairing DNA-interacting proteins that significantly bind near these regions. We found that 205 

several DNA motifs that were enriched near the hypervariable regions were Yin-Yang binding 206 

sites (P<0.0001, Extended Data Figure 5c). Yin-Yang 1 (YY1) is a transcription factor that can 207 

activate or repress the same target gene depending on recruited co-factors17, like HDAC118. To 208 

study the impact of YY1 on hypervariable regions, we selected eight of these regions. We first 209 

confirmed that the acetylation variability seen in the chIP-seq experiment was maintained in 210 

these regions using conventional chIP (Extended Data Figure 5d). Remarkably, the mRNA 211 

expression of the genes located near these regions also showed a high variability (Extended 212 

Data Figure 5d). Then, we studied the interaction between YY1 and these eight regions, and we 213 

found that YY1 is significantly bound to them (Figure 5d). This is consistent with YY1 affecting 214 

our hypervariable regions, so we decided to analyze their acetylation variability in a yy1 +/- 215 

mutant population. We found that yy1 +/- fish showed a significant reduction in the acetylation 216 

variability (Figures 5e, P<0.001). In addition, mRNA expression variability in near genes was 217 

also reduced in yy1 +/- fish compared to controls (Figure 5f, P<0.001). This reduction in 218 

molecular variability led us to analyze the behavioral variability of the yy1 +/- population, and 219 

we found that the individuality was significantly reduced (Figure 5g, P=0.003). We thus 220 

confirmed that hypervariable genes are related to behavioral and acetylation individuality by 221 

using YY1 impairment as a method to alter the regulation of hypervariable regions. 222 

 223 

YY1 and HDAC1 regulate histone acetylation individuality 224 
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We investigated further how YY1 acts on the hypervariable regions in search of a 225 

possible mechanism for molecular variability.  HDAC1 is a known partner of YY118 and we thus 226 

tested how this partnership can be related to hypervariable regions. We first confirmed that 227 

HDAC1 binds to the eight selected regions (Figure 6a). We then tested, using rechIP 228 

experiments, that YY1 and HDAC1 bind together to these regions (Figure 6b), suggesting that 229 

these two proteins form a complex that interacts with the hypervariable regions. As YY1 is 230 

known to be regulated through deacetylation by HDAC118 , we assessed the effect of sodium 231 

butyrate (NaBu) on YY1 acetylation in zebrafish larvae. Using co-immunoprecipitation, we 232 

found that YY1 was acetylated in control conditions and that this acetylation was impaired after 233 

NaBu treatment (Figure 6c). Furthermore, YY1 binding to the selected hypervariable regions 234 

was decreased in NaBu-treated larvae (Figure 6d), suggesting that a functional YY1 is needed to 235 

bind the hypervariable regions. A potential mechanism for the acetylation modulation consists in 236 

YY1 guiding the YY1/HDAC1 complex to the hypervariable regions, which would then be 237 

deacetylated by HDAC. Using a simple model that simulates stochastic binding of this complex 238 

to the hypervariable regions (see Figure 6e and Methods for the details of the model), we found 239 

that the stochasticity of the interactions is sufficient to generate variability in a population 240 

composed by identical individuals. The model gives individuality at the level of mean acetylation 241 

level and also in the concrete patterns of acetylation, here measured simply by the acetylation 242 

variability of the genome of each individual. Specifically, there is not only individuality at the 243 

average acetylation level but also at the acetylation variability level, considering it as a proxy of 244 

the differences between individual acetylation profiles (Figure 6f).  245 

 246 

  247 
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DISCUSSION 248 

In this paper, we have found that a histone acetylation pathway modulates individual 249 

behavior in a genetic-independent manner without affecting the global average behavior of the 250 

population. Histone acetylation levels of an individual correlated with and its individual behavior 251 

compared to the average of the population. Therefore, while the average behavior might depend 252 

more strongly on genetic background (as seen for different strains in Figure 2) or environmental 253 

changes (as seen for different responses in Extended Data Figure 2f), behavioral individuality 254 

could result from histone acetylation. 255 

Several stochastic mechanisms can underlie behavioral individuality, such as paternal and 256 

maternal effects, differences in the experience received by individuals, developmental noise or 257 

stochastic DNA binding, among others. We propose the stochastic action of the complex formed 258 

by YY1 and HDAC1 as part of the molecular machinery that translates these factors into 259 

acetylation differences. 260 

Another open question is how acetylation variability could lead to behavioral variability. 261 

A possibility is that histone acetylation is functionally transformed into changes in gene 262 

expression, as we have shown for eight of the hypervariable regions. Genes located near the 263 

hypervariable regions are significantly related to several neurodevelopmental processes, so 264 

differences in their expression might result in differences in brain development and then 265 

ultimately in behavior. 266 

 267 

  268 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 13, 2017. ; https://doi.org/10.1101/100230doi: bioRxiv preprint 

https://doi.org/10.1101/100230


13 
 

METHODS 269 

Zebrafish lines and care 270 

Zebrafish (Danio rerio) WIK strain19 was kindly provided by Dr. Bovolenta (CBM-271 

UAM) and inbred in our laboratory for at least three generations before the experiments. 272 

Afterwards, WIK F1 population was generated from a single batch of embryos from a single 273 

couple of adult fish. Two additional cycles of inbreeding were carried out, crossing a couple of 274 

siblings from the former generation. CG2 clone population, generated by double gymnogenetic 275 

heat-shock, and characterized by being pure isogenic zebrafish was kindly provided by Dr. 276 

Revskoy (Univ Northwestern) as a control of reduced genetic differences between siblings. The 277 

outbred LPS (Local Pet Store) strain was recently described20, and used as a model of genetic 278 

heterogeneity. Heterozygotic hdac1 and yy1 mutant strains with wild-type counterparts were 279 

obtained from ZIRC.  280 

Care and breeding of the zebrafish strains were as described20, with specific additional 281 

details. Eggs were isolated after 24 hours post-fertilization, and maintained in custom multiwell 282 

plates until 10 days post-fertilization (dpf). They were fed (JBL NovoBaby) from 6 dpf and 283 

water was changed daily if it is not indicated specifically in the experiment. 284 

All the experiments using animals were approved and performed following the guidelines 285 

of the CSIC (Spain) and the Fundaçao Champalimaud (Portugal) for animal bioethics.  286 

 287 

Free-swimming setup and recording 288 

The setup consists of a monochrome camera located over the wells at a distance of 70 cm 289 

and pointing downwards. The camera used was a 1.2 MPixel camera (Basler A622f, with a 290 

Pentax objective of focal length 16 mm). The wells are circular, carved on transparent PMMA 291 

(24 wells per plate, and typically two plates are recorded simultaneously), and have their walls 292 
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tilted so that even in the most lateral wells the wall never hides the larva from the camera. Each 293 

well is 15 mm deep, and has a diameter of 1.8 mm at the bottom and a diameter of 30 mm at the 294 

top (Extended Data Figure 1a). For the experiments, each well is filled with a volume of 3 ml. 295 

The dishes are supported by a white PMMA surface that is only partially opaque. Behind this 296 

white surface we place two infrared led arrays (830nm, TSHG8400 Vishay Semiconductors) 297 

pointing outwards (Extended Data Figure 1a). Two paper sheets stand between the lights and 298 

the central space that lies directly under the wells. With this disposition we ensure that only 299 

diffuse indirect light reaches the wells, so that the illumination is roughly uniform (most of the 300 

light comes from below the wells through the white surface). All the set-up is surrounded by 301 

white curtains. Video camera recorded at a 25 fps rate (Extended Data Figure 1b-c for 302 

examples of a single frame and final trajectories). 303 

A larval population (5-8 dpf) consisted of at least 24 fish siblings from the same batch of 304 

embryos. After five minutes of acclimation to the new environment, the larvae were recorded for 305 

20 minutes. Water temperature was maintained in a strict range (27-28 ºC) during each 306 

experiment.  307 

 308 

Custom-built software tracking larvae 309 

We developed multiwellTracker, a software to automatically track zebrafish larva in 310 

wells. The software is available at http://www.multiwelltracker.es. 311 

Detection of wells 312 

The program is prepared to auto-detect circular wells, regardless of their spatial 313 

arrangement. To detect the wells we use the circular Hough transform (we have modified the 314 

code of Tao Peng distributed by Matlab Central under BSD license). In order to estimate the 315 

diameter of the wells, it computes the image’s Hough transform for 100 radii different in 5 pixels 316 
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and a rough estimate of the largest possible radius (length of the longer side of the image divided 317 

by the square root of the number of wells) (Extended Data Figure 1d). The system selects the 318 

highest point of this measure as an estimate of the radius of the wells (rest). It is possible to skip 319 

this first step and instead specify manually a value for rest. This may be advisable when many 320 

videos are recorded with the same set-up and the same wells. 321 

In the second step the system locates the centers of the wells. To do this it performs a 322 

Hough transform of the original image, this time with radii only in the range between 0.8rest and 323 

1.2rest. The transformed image usually has clear peaks in the centers of the wells. Then it filters 324 

the transformed image with a Gaussian filter to increase its smoothness (the resulting 325 

transformed image is shown in Extended Data Figure 1e). Then, it selects the maximum of the 326 

transformed image as the center of the first well. To prevent selecting the same well twice, the 327 

system discards all the pixels of the transformed image that are within radius rest of the selected 328 

center (Extended Data Figure 1f). It selects the new maximum as the center of the second well, 329 

and repeats the procedure until all wells have been found (Extended Data Figure 1g). The 330 

experimenter can correct the result by manually clicking on the center of the wells that have not 331 

been correctly located (<1% of cases). 332 

Pre-processing of images 333 

In order to control for fluctuations in illumination, each frame is normalized by dividing 334 

the intensity of each pixel by the average intensity across all pixels of the frame. After 335 

normalizing the frame, a 2D Gaussian filter is used to smooth the image (Extended Data Figure 336 

1h shows the image before and Extended Data Figure 1i after filtering). 337 

Background subtraction and detection of the larva 338 
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In order to extract the image of the larva from the background, the system finds the 339 

average of 1,000 frames equi-spaced along the whole video. This average image is what we will 340 

call “static background”. By subtracting each frame by the static background, we obtain an 341 

image in which the larvae correspond to dark regions (Extended Data Figure 1j). However, 342 

because of relatively slow changes in the set-up over time, the system uses the static background 343 

in combination with a dynamic background, which is computed as the average of the previous 5 344 

frames. The difference between the current frame and the dynamic background will only show 345 

larvae that are moving in that precise moment (Extended Data Figure 1k). 346 

The specific algorithm to detect the larva is as follows. First, the difference between the 347 

current frame and the static background is thresholded keeping only pixels for which the 348 

difference is below -0.5. We then find connected components (“blobs”) in this thresholded 349 

image, keeping those that are larger than 1 pixel. Because these blobs come from the difference 350 

with the static background, both static and moving larvae will be detected. But at this stage some 351 

blobs come simply from noise. In order to filter out noisy blobs, the system accepts a blob if it 352 

fulfills at least one of these two conditions: (a) It contains at least one pixel that was identified as 353 

part of the larva in the previous frame or (b) it contains at least one pixel for which the difference 354 

between the current frame minus the dynamic background is below the same threshold as before 355 

(-0.5). 356 

Removal of reflections 357 

In most cases only one blob is obtained after the process described in previous sections. 358 

But when the larva is close to the wall of the well, its reflection on the wall may also be selected. 359 

The system considers that a blob A is a reflection of blob B when all of the following conditions 360 

are met: (a) Blob B is bigger than blob A, (b) blob B is closer to the center of the well than blob 361 
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A and (c) the lines between the center of the well and the two blobs form an angle < 10°. When 362 

these three conditions are met, the system removes blob A. 363 

Acquisition of the position of the larvae 364 

If more than one blob remains in the same well after the previous steps, the system 365 

selects the one with highest contrast. For the selected blob, the system takes the position of its 366 

most contrasted pixel, and adds this position to the trajectory of the larva. If in a well no blob 367 

remains after the previous steps, the trajectory is left with a gap. When this happens, the program 368 

will not re-track the larva until it moves. 369 

 370 

Behavioral Parameters 371 

Different parameters reflecting the behavior of individual larvae were measured, and 372 

finally two of them were used through the paper: (i) activity (percentage of time in movement) 373 

and (ii) radial index (average position from the border towards the center of the well). We also 374 

studied three additional parameters: (i) Tortuosity in the trajectory was calculated as the scalar 375 

product of the velocity vectors between two consecutive frames and the value in Extended Data 376 

Figure 1l was obtained by averaging this parameter through the whole video, excluding the 377 

frames where the animal was immobile. (ii) Speed was calculated as the average distance (in 378 

pixels) travelled per frame, in those frames where the fish was active. (iii) Bursting was obtained 379 

as the total number of frames where fish changed from immobility to motion. We found that 380 

these three parameters correlated with activity. 381 

The average of each individual parameter was tested from 5 to 8 days post-fertilization 382 

(dpf) to assess if individual behavior was significantly stable along the days using Pearson 383 

coefficient of correlation.  384 

 385 
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Additional validation of the experimental setup 386 

Several controls were performed for possible experimental artifacts affecting wells 387 

differently. Behavioral parameters were robust to 90 degrees counterclockwise rotations of the 388 

multi-well plate (Extended Data Figure 2c, left, R=0.73, P<0.001, and R=0.68, P<0.001; for 389 

linear correlation tests of individual behavior) or to interchanging the larvae between outer and 390 

inner wells (Extended Data Figure 2c, right, R=0.65, P<0.001, and R=0.61, P<0.001; using the 391 

same correlation test). Also, we found no correlation between the small differences in 392 

illumination across wells and behavior (Extended Data Figure 2d). We further corroborated 393 

using a significance test that the differences in behavior did not have an origin in systematic 394 

differences across wells. For this, we found that the average behavioral parameters obtained in 395 

fifteen individual experiments were not different between wells (Extended Data Figure 2e, 396 

typically P=0.4 and always P>0.19 for both parameters). 397 

 398 

Stimulus response tests 399 

We studied the influence that our free-swimming behavioral parameters could have on 400 

the performance of the individuals when they respond to three different stimuli. 401 

Response to mechanical disturbance 402 

We applied mechanical perturbations to each larva by pipetting up and down the water 403 

content of the well for four times. Perturbations were applied at 6 dpf to previously recorded 404 

animals, and the 20-minute recording was done at 7 dpf. The recording was performed in the 405 

usual setup. 406 

Response to strong Light Pulse 407 
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In complete darkness, we applied three different light flashes to the larvae and study their 408 

behavior in the 90 subsequent seconds. The flashes and the recording were performed in the 409 

usual setup. Pre-recording behavioral parameters were obtained the day before. 410 

Novel tank with light/dark preference 411 

In order to study the effect that a novel setup could have on the behavior of larvae we 412 

built a rectangular setup, which changed the geometry of the previous circular wells. The setup 413 

dimensions were 84 mm x 21 mm and it was built in transparent acrylic. To try to see if our 414 

parameters had any effect on the light-dark preference, half of the floor of the setup (42 mm x 21 415 

mm) was white while the other half was black.  The height of the setup was 5 mm. Larvae were 416 

placed in the center of the white part and recorded for 10 minutes. Activity was calculated as 417 

previously described and distance to the wall was represented by the average distance to the 418 

longest walls, normalized to 1 in the middle point of both walls and to 0 in the exact position of 419 

the walls. 420 

The effect of our behavioral tests resulted in a decrease (increase) in mean activity (radial 421 

index), but maintaining the same individuality of the pre-recorded free-swimming experiments 422 

(Figure S2f; P<0.04 for changes in mean activity and radial index compared to control larvae of 423 

the same age; P<0.02 for linear correlation of activity and radial index. In the case of novel tank, 424 

radial index cannot be applied because the wells are elongated and was then replaced by the 425 

minimum distance to the longer walls. We note, however, that this parameter showed no 426 

correlation with the radial index of pre-recorded experiments in the same animals.  427 

 428 

Inter-individual vs. Intra-individual differences 429 
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The behavioral parameters (activity and radial index) were also obtained from430 

consecutive fragments of 30 seconds for each 20-minute experiment for each larva. This was431 

fitted to a two-dimensional Gaussian, but for clarity when representing many animals (like in432 

Figure 1e-f, left) an isocontour of the Gaussian for each animal was used. An isocontour is an433 

ellipse with principal axes given by the eigenvectors of the covariance matrix. We chose the434 

isocontour with length of each semiaxis given by the square root of the eigenvalue of the435 

covariance matrix, as this reduces to the standard deviation in each direction for cases with no436 

correlation between the two variables. Intra-individual variation distribution was obtained using437 

the coefficients of variations (CVs) for activity and radial index separately. Inter-individual438 

variation was calculated the same way but using fragments from different fish. 439 

 440 

Comparing the behavioral variability between two animal groups 441 

A simple visual method to characterize the variability in a population is to plot the bi-442 

dimensional distribution of the activity and radial index of individuals (like in Figure 1e-f,443 

right). To do so, we used Gaussian kernel smoothing that consists in adding up Gaussians444 

centered at the data points as 445 

 446 

with xi and yi the mean activity and radial index values of individual i of a total of N members of447 

the population. An optimal smoothing uses standard deviations of each Gaussian given by448 

 with the standard deviation in the xi data values, and similarly for using the449 

yi values (see B.E. Hansen, unpublished manuscript,450 

http://www.ssc.wisc.edu/~bhansen/718/NonParametrics1.pdf). The volume under the probability451 
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surface has a value of 1, even when the values of the probability density are already up to 90. 452 

The probability surface sits on an area on the x-y plane of approximately 0.4x0.4, making the 453 

total volume under the surface to be 1. 454 

While this distribution gives a visual and intuitive characterization of behavioral 455 

variability, an even simpler characterization is achieved using, for each group, a single parameter 456 

summarizing its two-dimensional variability. We used generalized variance as this single 457 

parameter, measured as the determinant of the covariance matrix (Extended Data Table 1), 458 

while other parameters like the standard deviation for each parameter gave similar statistical 459 

results (Extended Data Table 2). 460 

 461 

ChIP-seq, conventional chIP, and rechIP analyses 462 

Clusters of four fish were built for studying the molecular variability of a population, as 463 

the amount of tissue in a single larva was not sufficient to measure histone acetylation levels. In 464 

addition, the clustering also reduced the noise that could arise from the molecular analysis of a 465 

single larva. In the first (behavioral) cluster, a Hierarchical Clustering analysis using Euclidean 466 

distance as the metric and the average linkage clustering as the linkage criteria was used the 467 

clustering in the chIP-seq, as the total population consisted of 72 larvae. The selection in the 468 

NaBu experiment used the same algorithm. In the random experiment, fish were randomly 469 

selected from the population.  470 

The samples were crosslinked with 1.8% formaldehyde for 30' and then quenched with 471 

1% glycine for 5'. Extracts were lysed using a SDS Lysis buffer (50 mM Tris-HCl pH 8.1, 1% 472 

SDS, 10 mM EDTA) for 30' at 4ºC, and then diluted with a Dilution buffer (6.7 mM Tris-HCl 473 

pH 8.1, 0.01% SDS, 1.2 mM EDTA, 1.1% Triton X-100, 167 mM NaCl). 2 mM sodium butyrate 474 
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was added to avoid histone deacetylation activity during the preparation. Then, the fish were 475 

sonicated with two pulses (30'' ON / 30'' OFF) of 15' each with the Diagenode Bioruptor. Before 476 

pre-clearing the samples with protein A/G beads, an input sample was obtained. Then, the 477 

extracts were immunoprecipitated overnight using 1 μg of the anti- acetyl-Histone 4, anti-478 

GAPDH, anti-HDAC1 or anti-YY1 antibodies. Bound DNA was recovered with protein A/G 479 

beads, then washed with Low-Salt (120 mM Tris-HCl pH 8, 0.1% SDS, 2 mM EDTA, 1% Triton 480 

X-100, 150 mM NaCl), High-Salt (120 mM Tris-HCl pH8, 0.1% SDS, 2 mM EDTA, 1% Triton 481 

X-100, 500 mM NaCl), LiCl (10 mM Tris-HCl pH 10, 1 mM EDTA, 0.25 M LiCl, 1% NP40, 482 

1% sodium deoxycholate) and two times with 1X TE (10 mM Tris-HCl pH 8, 1 mM EDTA) 483 

buffers, and recovered with Elution (1% SDS, 0.1 M NaHCO3). DNA purified samples were de-484 

crosslinked using sodium chloride, and cleared with Qiagen spin columns. In the case of rechIP, 485 

the samples were reincubated with the second antibody after elution, and another round of 486 

washes were performed. 487 

The final samples were processed at the Genomics Unit at the Scientific Park of Madrid 488 

in the case of chIP-seq experiments. Libraries were built, and the samples were sequenced using 489 

an Illumina GAII. Raw data of the experiment can be obtained in the NCBI GEO repository 490 

(GSE IDXXX). Reads were aligned to Danio rerio genome sequence (Zv7) with BWA, and final 491 

reads in a 25-bp window were mapped to the reference genome using custom Perl scripts. The 492 

repetitive regions were removed from the analysis and the results were also normalized using the 493 

average number of reads in each sample. The standard deviation of every 25 bp region for each 494 

experiment (Behavior, Random and NaBu) was calculated, and then we quantified the 495 

probability for each region of being more variable than in the Random experiment. We selected 496 

the regions with P<0.01 and with the highest standard deviation (top 25%). Nearest genes were 497 
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retrieved, and their human orthologs were analyzed for Gene Ontology. In the case of 498 

conventional chIP or rechIP, qPCR analyses for amplification differences using specific primers 499 

were performed. In addition, hypervariable acetylated regions with their flanking sequences (300 500 

bp) were used to predict enriched DNA motifs and their potential biological activity with MEME 501 

suite21. 502 

 503 

Reagents and antibodies 504 

Sodium butyrate and AZA (Sigma-Aldrich) was dissolved in Phosphate-buffered saline 505 

(PBS), and used in a final 2 mM and 15 mM concentration of fish water, respectively. PBS alone 506 

was used as vehicle control. The pharmacological treatment lasted for 24 hours from 7 dpf to 507 

8dpf. Acetyl-Histone 4 antibody was obtained from Promega, anti-HDAC1 from Epigentek, anti-508 

YY1 antibody from SantaCruz, anti-GAPDH from Sigma-Aldrich, and McrBC enzyme from 509 

New England Biolabs.  510 

 511 

Western Immunoblotting 512 

Treated and untreated groups of fish (5-10) were frozen at different times, and then 513 

protein extracts were isolated from tissue using an extraction buffer (80 mM Tris-HCl pH 7.5, 2 514 

mM EDTA, 2 mM EGTA, 0.27 M Saccharose, 10 mM β-glycerolphosphate, 5 mM Sodium 515 

pyrophosphate, 50 mM Sodium Fluoride, 1% Triton X-100, 0.1 mM Sodium vanadate, 0.1% β-516 

Mercaptoethanol, 1X Complete protease inhibitor cocktail) during 30' at 4ºC with vortexing. 517 

After centrifugation, debris was removed, and the protein content was measured with Coomasie 518 

reagent (Pierce). Anti- acetyl-Histone 4, anti- ß-Actin and secondary antibodies were used 519 

following manufacturer recommendations. 520 
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 521 

RNA isolation and qPCR quantification 522 

Total RNA was isolated using homogenized extracts from three fish per sample by Trizol 523 

(Life Technologies) extraction and RNAeasy (Qiagen) purification. Retrotranscription was done 524 

with iScript (Bio-Rad) following manufacturer recommendations. Finally, quantification of the 525 

target genes was measured using qPCR with specific primers, and p-values obtained by using 526 

Student's T-test. 527 

 528 

Quantification of Histone 4 acetylation levels 529 

 Eighteen clusters of five fish from a total population of 90 were obtained from the 530 

behavioral space (activity/radial index) using an ad hoc algorithm. First, 18 centroids were 531 

randomly chosen, and 5 individuals were assigned to the nearest (not occupied) centroid. Then, 532 

centroids were redefined using the average values of the new clusters, and a new round of 533 

assignment of the fish to the centroids was done. This iteration was repeated until the centroids 534 

were stable. Then, acetyl-H4 levels were quantified using Epigentek kit and following 535 

manufacturer recommendations. 536 

 537 

Quantification of methylated DNA 538 

 DNA methylation was quantified using larval DNA digested by MCrBC enzyme as 539 

previously done22 following kit instructions. 540 

 541 

Simulation of YY1/HDAC1 complex activity 542 
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We simulated how the YY1/HDAC1 complex could stochastically deacetylate 543 

epigenomic regions. Regions can be considered as transcription factor binding sites (we used 544 

Nreg=1,000 regions Figure 6f). Each region starts with an initial acetylation value given by a 545 

Gaussian distribution with a fixed mean acetylation and a standard deviation. The value of the 546 

mean µ is arbitrary as long as the relation of the rest of the parameters with this one is fixed and 547 

the value of the standard deviation is µ/10 (in Figure 6f we used µ=10). We fixed the number 548 

molecules of the complex to be the same for each fish (Complex molecules=3,000). The complex 549 

binds to randomly selected regions and, once bound, the complex decreases the acetylation of 550 

each region by an amount of 0.3·µ. We allowed several complexes to bind at each region. The 551 

complex has an error rate of 10% so, once bound, the probability of deacetylating is 0.9. This 552 

error rate has the final consequence of generating different mean and variance acetylation values 553 

for the individuals of a population (Figure 6f). The minimum acetylation value for each region is 554 

0 and, once reached, the complex cannot select that region for further binding. We repeated the 555 

whole process for 100 fish, each one representing a point in Figure 6f.  556 

 557 

 558 

The pseudocode of the simulation would be as follows: 559 

 while  Complex molecules > 0 560 

Complex binds to a region r, p(binding)=1/Nregions 561 

Complex deacetylates region r by an amount of 0.3·µ, with a probability p=0.9  562 

YY1 molecules=YY1 molecules-1 563 

endwhile 564 

 565 
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Statistical analysis 566 

All statistical tests to compare the differences between two distributions were conducted 567 

by calculating the value of their representative parameter, shuffling randomly the data of both 568 

distributions for 1,000 - 10,000 times and computing a P-value given by the proportion of times 569 

in which the difference in the representative parameter of the random distributions was higher 570 

than their original value. All the experiments were done at least three times with different 571 

biological datasets, and P-values were calculated using the three replicas. Figures show a 572 

representative experiment of the triplicate. MATLAB was used for all the computations and the 573 

statistical analysis. 574 
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FIGURES AND FIGURE CAPTIONS 651 

 652 
 653 
Figure 1. Behavioral individuality in a population of 48 larval zebrafish. (a) Example 20-654 

minute trajectories for the group at 7 dpf (left), zoomed in for four fish (right). (b) The same 655 

group at 8 dpf. (c) Radial index vs. activity at 7 dpf. (d) Correlation of activity (blue) and radial 656 

index (red) between 7 dpf and 8 dpf for the same group. (e) Left: Population variability in 657 

activity and radial index of the same group at 7 dpf. Each ellipse represents the behavioral 658 

variability for each single fish as described in Methods. Colors as in a. Right: Probability 659 

density of finding an individual with a given mean activity and radial index. (f) Same as e but at 660 

8 dpf. (g) Smoothed histogram of the intra-individual variability (red) and inter-individual 661 
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variability (blue) of the same group at 8 dpf, measured as CV of activity (left) and radial index 662 

(right).  663 

  664 
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 665 

Figure 2. Environmental changes and genetic background do not have an impact on 666 

behavioral variability. (a) Probability density of finding an individual with a given mean 667 

activity and radial index for additional larval groups with and without daily water changes, at 7 668 

dpf. (b) Same as a, but for additional daily fed and non-fed groups. (c) Same as a for additional 669 

groups with different genetic backgrounds: WIK F1 (three inbreeding cycles), WIK F3 (five 670 

inbreeding cycles), CG2 (gymnozygotic fish clones) and LPS (outbred parents). 671 

 672 

  673 
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 674 

Figure 3. Histone acetylation modulates behavioral variability. (a) Probability density map 675 

for fish treated with a PBS solution as control and AZA. (b) The same for PBS and NaBu. (c) 676 

Probability density map for hdac1 +/+ and hdac1 +/- larvae. 677 

 678 

  679 
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 680 

Figure 4. Relation between acetylation levels and behavior. (a) Average acetylation levels of 681 

fish depending on their behavior (left). Schematic representation of the two parameters used to 682 

analyze the dependence between acetylation and behavior (right). (b) Relation between the 683 

values of histone 4 acetylation and the two parameters of the coordinate system centered on the 684 

average behavior of the population: the distance to the average (left) and the angle with the 685 

horizontal axis (right).  686 
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 689 

Figure 5. Hypervariable acetylation regions related to behavioral individuality. (a) 690 

Probability distribution of the variability (SD) in the acetylation of the behavioral (blue) and 691 

random control (red) clusters, obtained with chIP-seq. Horizontal line, P<10-4. (b) Gene ontology 692 

of the hypervariably acetylated regions. (c) Relation between normalized number of reads in 693 

each cluster of the chIP-seq experiment and their distance to average behavior, as in Figure 4b. 694 

Blue dots represent the average of the hypervariable regions and red dots represent the average 695 

of the rest of the regions. (d) YY1 and GAPDH binding to eight selected hypervariable regions. 696 
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(e) Comparison between acH4 variability of the eight regions in yy1 +/+ and yy1 +/- 697 

populations. (f) The same as e, but for mRNA expression variability of genes located near the 698 

regions. (g) Probability density map for yy1 +/+ and yy1 +/- larvae. 699 

 700 
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 705 

Figure 6. YY1 and HDAC1 regulate acetylation individuality. (a) YY1 and GAPDH binding 706 

to eight selected hypervariable regions. (b) RechIP binding of YY1/HDAC1 and YY1/GAPDH 707 

to the same regions. (c) Co-immunoprecipitation of acetyl-lysine and YY1 in larvae treated with 708 

PBS and NaBu, respectively. (d) YY1 binding to the eight regions in larvae treated with PBS and 709 

NaBu. (e) Schematic model of the stochastic action of YY1/HDAC1 complex on a set of 710 

epigenomic regions. All regions have the same binding probability, given by p(b)=1/nr, where nr 711 

is the total number of regions .(f) Correlation between the acetylation variability (measured as 712 

the coefficient of variation of the acetylation across all regions) and the average acetylation of 713 

the individuals of a population.  714 
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