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Abstract

Fitness is typically represented in heavily simplified terms in evolutionary genetics, often us-
ing constant selection coefficients, to make it easier to infer or predict how type frequencies
change over time. This excludes fundamental ecological factors such as dynamic popula-
tion size or density-dependence from the most genetically-realistic treatments of evolution,
a problem that inspired MacArthur’s influential but problematic r/K theory. Following
the spirit of r/K-selection as a general-purpose theory of density-dependent selection, we
develop a new model of density-dependent selection by generalizing the fixed-density clas-
sic lottery model of territorial acquisition to accommodate arbitrary population densities.
We show that, with density dependence, co-existence is possible in the lottery model in a
stable environment. Inspired by natural Drosophila populations, we consider co-existence
under strong, seasonally-fluctuating selection coupled to large cycles in population density,
and show that co-existence (stable polymorphism) is promoted via a combination of the
classic storage effect and density-regulated population growth. We also show that the only
significant bias introduced by selection at the different environmental extremes of Grime’s
triangle is the relative importance of competitive ability at different densities, confirming an
important role for phenotypic constraints in shaping “primary strategies”.
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“...the concept of fitness is probably too complex to allow of a useful mathematical
development. Since it enters fundamentally into many population genetics considerations, it
is remarkable how little attention has been paid to it.” — Warren J. Ewens, Mathematical
Population Genetics I, 2004, pp. 276

Introduction

Evolutionary models differ greatly in their treatment of fitness. In models of genetic evolu-
tion, genotypes are typically assigned constant (or occasionally frequency-dependent) selec-
tion coefficients describing the change in their relative frequencies over time. This simplified
treatment of selection facilitates explicit time-dependent treatment of genotype frequencies,
and can be justified over sufficiently short time intervals (Ewens, 2004, p. 276). The empha-
sis of population genetics is to infer past selection, migration and demographic change given
a sample of nucleotide sequences, or to predict how allele frequencies change over time based
on their relative fitness effects together with population structure, genetic drift and linkage.
The resulting picture of evolution excludes basic elements of the ecological underpinnings of
selection, including density dependence, and how selection affects population size. This com-
plicates the inference of past selection, because demographic changes can look genealogically
very similar to selective frequency changes (Barton, 1998).

By contrast, models of phenotypic trait evolution use absolute fitness functions to de-
scribe how some traits of interest affect survival and reproduction in particular ecological
scenarios (Metz et al., 1992; Diekmann et al., 2004). These fitness functions can be quite
problem-specific and often only account for a few traits at a time. The emphasis here is on
the conditions for invasion from low frequencies and co-existence, rather than frequency or
abundance trajectories over time. For instance, adaptive dynamics uses “invasion fitness” to
explore the consequences of eco-evolutionary feedbacks (Diekmann et al., 2004).

It is challenging to generalize beyond particular traits or ecological scenarios to model
fundamentally different forms of selection. Perhaps this is not surprising given that fitness
is such a complex quantity, dependent on all of a phenotype’s functional traits (Violle et al.,
2007) and its environment. A detailed, trait-based, predictive model of fitness would be
enormously complicated and situation-specific. It is therefore easy to doubt the feasibility of
a simplified, general mathematical treatment of fitness (Ewens, 2004, p. 276). For example,
MacArthur’s famous r/K scheme (MacArthur, 1962; MacArthur and Wilson, 1967) is now
almost exclusively known as a framework for understanding life-history traits, and judged
on its failure in that role (Pianka, 1970; Stearns, 1977; Boyce, 1984; Reznick et al., 2002).
However, the r/K scheme’s original purpose was to extend the existing population-genetic
treatment of selection to account for population density (MacArthur, 1962). Few attempts
have been made to develop it further along these lines.

However, empirical trait classification studies have suggested the existence of a few “pri-
mary strategies”, reflecting broadly distinct responses to selection (Winemiller et al., 2015).
Grime famously considered (Grime, 1974, 1977, 1988; Westoby, 1998) two broad determi-
nants of population density: stress (persistent hardship e.g. due to resource scarcity or
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Figure 1: Schematic of Grime’s triangle and the associated direction of selection in our model.
The two axes show increasing levels of environmental stress and disturbance. Population
persistence is not possible if the combination of stress and disturbance is too large (below
dashed line). This creates a triangle, each corner of which corresponds to an environmental
extreme and associated “primary strategy”. The high-density (HD) interpretation of stress
is shown as a rotation of the triangle with respect to density. The strength of selection
on c depends on density L, but b and d experience the same selective force in all three
environmental extremes in both versions of the triangle.

unfavorable temperatures) and disturbance (intermittent destruction of vegetation e.g. due
to trampling, herbivory, pathogens, extreme weather or fire). The extremes of these two
factors define three primary strategies denoted by C/S/R respectively (Fig. 1): competi-
tors “C” excel in low stress, low disturbance environments; stress tolerators “S” excel in
high stress, low disturbance environments; and ruderals “R” excel in low stress, high distur-
bance environments. Population persistence is not possible in high-stress, high-disturbance
environments. Grime showed that measures of C, S and R across a wide range of plant
species are anti-correlated, so that strong C-strategists are weak S and R strategists, and
so on, creating a triangular C/S/R ternary plot (Grime, 1974). Similar schemes were pro-
posed for insects (Southwood, 1977), fishes (Winemiller and Rose, 1992), and zooplankton
(Allan, 1976). More recently, modern hierarchical clustering techniques have also revealed,
with greater statistical rigor, distinct trait clusters in corals analogous to Grime’s primary
strategies (Darling et al., 2012). These empirical findings suggest that functional traits con-
tribute to fitness predominantly via a few key factors such as intrinsic reproductive rate or
stress-tolerance.

Here we explore the interplay between some “key factors” of fitness in a simplified, ter-
ritorial model of growth, dispersal and competition. This broadly follows the original spirit
of MacArthur’s r/K scheme. More specifically, our aim is to begin merging some ecological
realism into population genetics’ time-dependent, genetically-focused view of evolution. We
revisit the classic lottery model of Chesson and Warner (1981), which has two features that
make it well suited for this role, but one critical flaw that we rectify here.

The first feature is that the lottery representation of competition is particularly concise.
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Mature individuals (“adults”) each require their own territory, whereas newborn individu-
als (“propagules”) disperse to, and subsequently compete for, territories made available by
the death of adults. Territorial contest among propagules leaves a single victorious adult
per territory, the victor chosen at random from the propagules present, with probabilities
weighted by a coefficient for each type representing competitive ability, akin to a lottery
(Sale, 1977). By comparison, coefficients for the pairwise effects of types on each other (e.g.
the α coefficients in the generalized Lotka-Volterra equations and the associated concept
of “α-selection”; Gill 1974; Case and Gilpin 1974; Joshi et al. 2001), or explicit resource
consumption (Tilman, 1982), are much more complicated. The second feature is the close
connection between the lottery model and one of the foundational models of population
genetics, the Wright-Fisher model of genetic drift, which we discuss further below.

The critical flaw of the classic lottery model is that it breaks down at low densities (few
propagules dispersing to each territory), precluding density-dependent behaviour. Our first
task is to analytically extend the classic lottery model to correctly account for low density
behavior (sections “Model” and “Mean field approximation”).

Using our extended lottery model, we then revisit Grime’s C/S/R scheme, and evaluate
the extent to which selection favors fecundity, competitive ability or lower mortality under
Grime’s environments (section “Primary strategies and Grime’s triangle”). This represents a
simple “sanity check” on the invasion behavior of our extended lottery model under different
extremes.

We then explore some time-dependent behavior of our extended lottery model. Taking
an example inspired by recent studies of rapid, seasonal evolution in Drosophila (Bergland
et al., 2014), we discuss how environmental fluctuations might stabilize polymorphisms when
population density is cyclical.

Model

We assume that reproductively mature individuals (“adults”) each require their own territory
to survive and reproduce (Fig. 2). All territories are identical, and the total number of
territories is T . Time t advances in discrete iterations, each representing the time from birth
to reproductive maturity. In iteration t, the number of adults of the i’th genotype is ni(t),
the total number of adults is N(t) =

∑
i ni(t), and the number of unoccupied territories is

U(t) = T −N(t).
We assume that the ni and T are large enough that stochastic fluctuations in the ni

(“drift”) can be ignored. We derive deterministic equations for the expected change in the ni

over time, leaving the evaluation of drift for future work. This is an excellent approximation
when the ni are all large. However, we also do not evaluate the initial stochastic behaviour of
adaptive mutant lineages while they are at low abundance. When considering new mutations,
we therefore restrict our attention to begin with the earliest (lowest ni) deterministic behavior
of mutant lineages (the transition to deterministic growth occurs at an abundance ni of order
equal to their inverse expected absolute growth rate; Uecker and Hermisson 2011).

Each iteration, adults produce new offspring (“propagules”), mi of which disperse to
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Figure 2: Each iteration of our lottery model has three main elements. First, propagules
are produced by adults and are dispersed at random over the unoccupied territories (only
propagules landing on unoccupied territories are shown). Lottery competition then occurs
in each unoccupied territory (competition in only one territory is illustrated): each genotype
has a probability proportional to binici of securing the territory. Then occupied territories
are freed up by adult mortality. In Eq. (3) and most of the paper, only adults can die (red
crosses), but we will also consider the case where juveniles die (blue cross; section “Primary
strategies and Grime’s triangle”).
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unoccupied territories. We assume that adults cannot be ousted from their territories, so
that mi only includes propagules landing on unoccupied territories. Propagules disperse
at random over the unoccupied territories, regardless of distance from their parents, and
independently of each other. There is no interaction between propagules (e.g. avoidance of
territories crowded with propagules). Loss of propagules during dispersal is subsumed into
mi.

In general, mi will increase with ni, and will depend on population density N . For
example, if bi is the number of successfully dispersing propagules produced per genotype
i adult, then the loss of propagules due to dispersal to occupied territories implies mi =
bi(1 − N/T )ni, akin to Levins’ competition-colonization model (Levins and Culver, 1971;
Tilman, 1994). In section “Cyclical birth and death rates” we evaluate Eq. (4) numerically
using this functional form for mi, with bi assumed to be constant.

In the sections “Invasion of rare genotypes and coexistence” and “Primary strategies and
Grime’s triangle”, we assume the simpler form mi = bini, with constant bi, meaning that
all propagules land on unoccupied territories (a form of directed dispersal). This simplifies
the mathematics without affecting the results of those sections, which only depend on the
low-frequency invasion behavior of Eq. (4). Note that due to our assumption of uniform
dispersal, the parameter bi can be thought of as a measure of “colonization ability”, which
combines fecundity and dispersal ability (Levins and Culver, 1971; Tilman, 1994; Bolker and
Pacala, 1999).

The number of individuals of the i’th genotype landing in any particular territory is
denoted xi. We assume that xi follows a Poisson distribution pi(xi) = lxi

i e
−li/xi!, where

li = mi/U is the mean territorial propagule density. This is approximation becomes exact
when the ni are large enough that drift in ni can be ignored (Appendix A).

When multiple propagules land on the same territory, the victor is determined by lottery
competition: genotype i wins a territory with probability cixi/

∑
j cjxj, where ci is a constant

representing relative competitive ability (Fig. 2).
In the classic lottery model (Chesson and Warner, 1981), unoccupied territories are as-

sumed to be saturated with propagules from every genotype li � 1. From the law of
large numbers, the composition of propagules in each territory will then not deviate ap-
preciably from the mean composition l1, l2, . . . , lG (G is the number of genotypes present),
and so the probability that genotype i wins any particular unoccupied territory is approx-
imately cili/

∑
j cjlj. Let ∆+ni denote the number of territories won by genotype i. Then

∆+n1,∆+n2, . . . ,∆+nG follow a multinomial distribution with U trials and success proba-
bilities c1l1∑

j cj lj
, c2l2∑

j cj lj
, . . . , cGlG∑

j cj lj
, respectively. Genotype i is expected to win cili/

∑
j cjlj of

the U available territories, and deviations from this expected outcome are small (since T is
large by assumption), giving

∆+ni(t) =
cili∑
j cjlj

U(t) = bini
1

L

ci
c
, (1)

where c =
∑

j cjmj/M is the mean propagule competitive ability for a randomly selected
propagule, L = M/U is the total propagule density and M =

∑
j mj is the total number of

propagules.
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There is a close connection between the classic lottery model and the Wright-Fisher
model of genetic drift (Svardal et al., 2015). In the Wright-Fisher model, genotype abun-
dances are sampled each generation from a multinomial distribution with success probabil-
ities wini/

∑
j wjnj, where w is relative fitness and the ni are genotype abundances in the

preceding generation. Population size N remains constant. This is mathematically equiv-
alent to the classic lottery model with non-overlapping generations (di = 1 for all i) and
wi = bici. Thus, the classic lottery model allows us to replace the abstract Wright-Fisher
relative fitnesses wi with more ecologically-grounded fecundity, competitive ability and mor-
tality parameters bi, ci and di, respectively. Since birth and death rates affect absolute
abundances, this allows us to evaluate selection at different densities (after appropriate ex-
tensions are made), in an otherwise very similar model to the canonical Wright-Fisher. We
therefore expect that drift in realized values of ni in our extended lottery model should be
similar to that in the Wright-Fisher model, but we leave this for future work.

In our extension of the classic lottery model, we do not restrict ourselves to high propagule
densities. Eq. (1) is nonsensical if even a single type has low propagule density (li � 1):
genotype i can win at most mi territories, yet Eq. (1) demands cili/

∑
j cjlj of the U

unoccupied territories, for any value of U . Intuitively, the cause of this discrepancy is that
individuals are discrete. Genotypes with few propagules depend on the outcome of contests
in territories where they have at least one propagule present, not some small fraction of
a propagule as would be implied by small li in the classic lottery model. In other words,
deviations from the mean propagule composition l1, l2, . . . , lG are important at low density.

We expect that a fraction p1(x1) . . . pG(xG) of the U unoccupied territories will have the
propagule composition x1, . . . , xG. Genotype i is expected to win cixi/

∑
j cjxj of these.

Ignoring fluctuations about these two expectations (due to our no-drift, large T , large ni

approximation), genotype i’s territorial acquisition is given by

∆+ni(t) = U(t)
∑

x1,...,xG

cixi∑
j cjxj

p1(x1) . . . pG(xG), (2)

in our extended lottery model, where the sum only includes territories with at least one
propagule present. Note that unlike the classic lottery model, not all unoccupied territories
are claimed each iteration, since under Poisson dispersal a fraction e−L remain unoccupied.

For the majority of this manuscript we assume that mortality only occurs in adults (Fig 2;
setting aside the juvenile deaths implicit in territorial contest), and at a constant, genotype-
specific per-capita rate 0 ≤ di ≤ 1, so that the overall change in genotype abundances
is

∆ni(t) = ∆+ni(t)− dini(t). (3)

This seems reasonable in the absence of disturbances; when we come to consider the effects
of disturbances (Section “Primary strategies and Grime’s triangle”), we will incorporate
disturbance-induced mortality in competing juveniles.
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Results

Mean Field Approximation

Eq. (2) involves an expectation over the time-dependent dispersal distributions pi, and
is thus too complicated to give intuition about the dynamics of density-dependent lottery
competition. We now evaluate this expectation using a “mean field” approximation.

Similarly to the high-li approximation of classic lottery model, we replace the xi with
appropriate mean values, although we cannot simply replace xi with li. For a genotype with
low propagule density li � 1, we have xi = 1 in the territories where its propagules land, and
so its growth comes entirely from territories which deviate appreciably from li. To account
for this, we separate Eq. (2) into xi = 1 and xi > 1 parts. Our more general mean field
approximation only requires that there are no large discrepancies in competitive ability (i.e.
we do not have ci/cj � 1 for any two genotypes). We obtain (details in Appendix B)

∆+ni(t) ≈ bini

[
e−L + (Ri + Ai)

ci
c

]
, (4)

where

Ri =
ce−li(1− e−(L−li))

ci + L−1+e−L

1−(1+L)e−L
cL−cili
L−li

, (5)

and

Ai =
c(1− e−li)

1−e−li

1−(1+li)e−li
cili + 1

L−li

(
L 1−e−L

1−(1+L)e−L − li 1−e−li

1−(1+li)e−li

)∑
j 6=i cjlj

. (6)

To supplement our analytical mean field derivation, we did numerical simulations of our
exact our density-dependent lottery model, and verified that Eq. (4) is a good approximation
(Appendix B). Thus, Eq. (4) describes how type abundances change over time in a lottery
model where population density can itself vary with time.

Comparing Eq. (4) to Eq. (1), the classic lottery per-propagule success rate ci/cL has
been replaced by three separate terms. The first, e−L, accounts for propagules which land
alone on unoccupied territories; these territories are won without contest. The second, Rici/c
represents competitive victories when the i genotype is a rare invader in a high density
population: from Eq. (5), Ri → 0 when the i genotype is abundant (li � 1), or other
genotypes are collectively rare (L− li � 1). The third term, Aici/c, represents competitive
victories when the i genotype is abundant: Ai → 0 if li � 1. The relative importance of
these three terms varies with both the overall propagule density L and the relative propagule
frequencies mi/M . If li � 1 for all genotypes, we recover the classic lottery model (only the
Aici/c term remains, and Ai → 1/L).

Primary strategies and Grime’s triangle

Here we describe how Grime’s “disturbed”, “stressful” and “ideal” environments can be
captured mathematically in our model, and evaluate the role of selection in shaping the
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Ideal Disturbance* Stress (G) Stress (HD)
Constraints d� 1 d ≈ 1 b� 1 b� 1
Other parameters b/d� 1 (1− d)b ≈ d b ≈ d b/d� 1
Propagule density L � 1 � 1 � 1 � 1

Figure 3: The mathematical representation of Grime’s three environmental extremes in our
model, as well as the high-density (HD) variant of the stressful environment. *Mortality
affects both adults and juveniles in the disturbed environment, with ∆+ni replaced by (1−
di)∆+ni.

corresponding “primary strategies”. To proceed, we map these verbally-defined environments
to quantitative parameter regimes in our model, summarized in Fig. 3.

Ideal environments are characterized by the near-absence of stress and disturbance, so
that survival is easy (d � 1) and growth and reproduction can be rapid (b � d). The
propagule density is determined by the magnitude of b/d, and hence L� 1 (Appendix C).

Disturbed environments are characterized by short bursts of high extrinsic mortality
d caused by physical destruction. We assume that disturbances are equally damaging to
adults and juveniles, so that only (1 − di)∆+ni (rather than ∆+ni) territories are secured
by type i each iteration. In the heavily disturbed extreme of Grime’s triangle, many such
bursts (which could each be spatially localized) will occur each iteration (i.e. over the time
required for a propagule to reach reproductive maturity), which we approximate as a high
constant mortality rate d ≈ 1. Population persistence requires b > d/(1− d), which implies
b � 1 (severe disturbance comes with a high fecundity/dispersal requirement). We assume
this requirement can just be met, so that b ≈ d/(1− d) and L� 1 (Appendix C).

Stressful environments are more ambiguous, and have been the subject of an extensive
debate in the plant ecology literature (the “Grime-Tilman” debate; Aerts 1999 and refer-
ences therein). Severe stress inhibits growth and reproduction, so that b � 1. In Grime’s
view, this means that the rate at which propagules successfully develop to adulthood can-
not appreciably exceed the mortality rate (b/d ≈ 1); it is just possible to cope with the
environmental stress (Grime, 1974, 1977). In our model, this implies L� 1.

The alternative view is that stressed environments are highly competitive. In spite of
inhibited growth and reproduction, density is actually high relative to carrying capacity of
the stressful environment (Taylor et al., 1990). For example, if consumable resources are
scarce, we expect intense resource competition (Davis et al., 1998). Thus, even though
b� 1, we still have b/d� 1 and L� 1.

The expected direction of evolution is determined by three factors. First, there may
be pleiotropy between b, c, and d, which could be due to physiological trade-offs between
them. Second, adaptive mutations in one trait may occur more frequently than in others
(Yampolsky and Stoltzfus, 2001). Third, selection favors some trait changes over others: b,
c and d will tend to evolve in the direction of greatest fitness increase because the proba-
bility that an adaptive mutant survives its initial low abundance phase and begins to grow
deterministically rather than be lost to drift is proportional to its expected absolute growth
rate (Haldane, 1927; Uecker and Hermisson, 2011).
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Accounting for the first two factors is beyond the scope of this article. We only consider
how selection shapes the direction of evolution for b, c and d, assuming that mutations
affect them independently and with comparable distributions of beneficial fitness effects.
Specifically, we consider the effect of mutations that change b, c, or d by a fixed proportion
bj = (1 + ε)bi, cj = (1 + ε)ci or dj = (1 − ε)di, where j is is a novel mutant (Appendix C).
Mutations with magnitude ε are assumed to occur with the same frequency for all traits.

Not surprisingly, mutations which increase c are effectively neutral when L � 1 and
adaptive when L � 1. However, selection in our density-dependent lottery model does not
favor improvement in b versus d. The same is true for proportional c-mutations cj = (1+ε)ci
when L� 1 in ideal and stressed (HD) environments.

In disturbed environments, where ∆+ni is replaced by (1 − di)∆+ni, the argument for
equal selection on b and d is more subtle and contingent. The bulk of the high mortality
d ≈ 1 is environmental and unavoidable. This implies that ε mutations in the remaining
genetic part of mortality have a reduced impact on total d, suggesting the primacy of b
under disturbance. However, this effect is easily matched by the fact that di ≈ 1 and that
disturbance mortality affects both juvenile recruitment and adult mortality. In Appendix C,
we argue that b and d mutations should contrive to have comparable effects on fitness in the
disturbance case (assuming that d can evolve at all) because the fitness benefit of improving
d declines as d improves.

Coexistence in constant and cyclical environments

In the previous section we only considered how b, c and d should respond to selection in
Grime’s environmental extremes, based on invasion fitness. Here we further explore the
low frequency behavior of Eq. (4) to determine which types can coexist in a constant
environment, and then consider the full time-dependent behaviour of Eq. (4) in a cyclical
environment.

In a constant environment, stable coexistence is possible in our extended lottery model. A
b-specialist i and c-specialist j (bi > bj, cj > ci) can co-exist because then propagule density
L is frequency-dependent, and so is the importance of competitive ability (Appendix D).
This is a version of the classic competition-colonization trade-off (Tilman, 1994; Levins and
Culver, 1971); the competitor (c-specialist) leaves many territories unoccupied (low L) due
to its poor colonization ability (low b), which the colonizer (b-specialist) can then exploit. A
similar situation holds for coexistence between high-c and low-d specialists; a “competition-
longevity” trade-off (Tilman, 1994). These forms of co-existence require density dependence
(being mediated by L), and are not present in the classic lottery model. Coexistence is not
possible between b- and d-specialists in a constant environment (Appendix D).

Now suppose that birth and death rates vary periodically with amplitude sufficent to
cause large changes in population density. This example is inspired by natural Drosophila
populations, which expand rapidly in the warmer months when fruit is abundant, but largely
die off in the colder months. Within this seasonal population density cycle, hundreds of
polymorphisms also cycle in frequency (Bergland et al., 2014). Some of these polymorphisms
may be adaptive and potentially millions of years old, suggesting stable coexistence (Bergland
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et al., 2014; Messer et al., 2016). Selection on allele frequencies thus occurs on the same time
scale as population demography, a situation vastly more complicated than classical sweeps
in demographically stable populations (Messer et al., 2016).

The classical population genetic treatment of fluctuating selection suggests that environ-
mental fluctuations do not promote coexistence. Allele frequencies are successively multiplied
by relative fitness values for each environmental iteration, and so two alleles favored in dif-
ferent enviroments can only stably coexist if the product of fitnesses for one type exactly
equals the product for the other (Dempster, 1955). Thus, stable coexistence still requires
frequency-dependent selection or heterozygote advantage (as is required in a constant envi-
ronment).

This classical argument overlooks two general effects that promote coexistence in fluctu-
ating environments. The first is the storage effect, which occurs when part of the population
is protected from selection (due to overlapping generations in the lottery model; Chesson
and Warner 1981). The second is the bounded population size effect of Yi and Dean (2013),
which occurs when each environmental cycle involves growth from low to high density, with
the time spent growing each cycle dependent on the fitness of the types present.

Fig. 4a-c shows the behavior of Eq. (4) for an example where b and d cycle between
zero and positive values (“summers” with rapid growth and no mortality, and “winters”
with mortality and no growth). Both the storage effect (adults are sheltered from selection
during the summer growth phase) and the bounded density effect (expansion to high density
occurs every cycle) are operating. Two types are present, a b-specialist, which is better at
rapidly growing in the summer (higher b), and a d-specialist which is better at surviving
the winter (lower d). Neither type has an advantage over a full environmental cycle, and
they stably coexist. This is due to a combination of the storage and bounded density effects
(recall that stable coexistence between b and d specialists was not possible in a constant
environment).

The classic lottery model (Eq. 1) fails to give co-existence for these parameters because
expansion to carrying capacity occurs immediately at the start of the summer (Fig. 4d-f). As
a result, coexistence requires that the winter survivor’s b must be about 5 times smaller than
required when we properly account for the growth in the abundance of each type using Eq.
(4) (keeping the other parameters the same; Fig. 4g-i). Previous models of the promotion of
genetic variation via the storage effect (Ellner and Hairston Jr, 1994) similarly assume that
the total number of offspring per iteration is constant, and would produce a similar error.

Discussion

It is interesting to compare the predictions of the extended lottery model with earlier ap-
proaches, such as the r/K scheme, where r = b − d is the maximal, low-density growth
rate (Pianka, 1972). Confusingly, the term “K-selection” sometimes refers generally to se-
lection at high density (Pianka, 1972), encompassing both selection for higher saturation
density (MacArthur and Wilson, 1967) and competitive ability (Gill, 1974). Contrary to
predictions of an r/K trade-off, empirical studies have shown that maximal growth rate at
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Figure 4: Stable coexistence between b and d specialists in a fluctuating environment requires
a much greater b advantage in the classic lottery model compared to our density-dependent
extension of it when population density is seasonally cyclical. (a) Birth and death rates
seasonally alternate being nonzero (white for winter, green for summer). The b-specialist
(black) has higher b and d (b = 0.5, d = 0.2) than the d-specialist (b = 0.217, d = 0.1) (blue).
(b) Both types grow during the positive b phase, and decline during the positive d phase,
but the d-specialist does so at a lower rate. Total height (blue+black) is population density
N/T . (c) Summer favors the b specialist, winter the d-specialist, and they stably coexist.
(d-f) Same as (a-c) for the classic lottery model; the types no longer coexist. (g-i) Same
as (d-f) where now b = 0.0421 for the d specialist and the types coexist. For illustration,
the propagule abundances are assumed to have the form mi = bi(1 − N/T )ni, reflecting
non-directed dispersal.
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low density and the high density at which saturation occurs (measured by abundance) are
positively correlated, both between species/strains (Luckinbill, 1979; Kuno, 1991; Hendriks
et al., 2005; Fitzsimmons et al., 2010), and as a result of experimental evolution (Luckinbill,
1978, 1979). From the perspective of our model, this positive correlation is not surprising
since the saturation density, which is determined by a balance between births and deaths,
increases with b.

There is support for a negative relationship between competitive success at high den-
sity and maximal growth rate (Luckinbill, 1979), consistent with a tradeoff between r and
the competitive aspect of K. This could be driven by a tradeoff between individual size
and reproductive rate. To avoid confusion with other forms of ”K-selection”, selection for
competitive ability has been called “α-selection” after the competition coefficients in the
Lotka-Volterra equation (Gill, 1974; Case and Gilpin, 1974; Joshi et al., 2001). However,
competitive success as measured by α (i.e. the per-capita effect of one genotype on another
genotype’s growth rate) is only partly determined by individual competitive ability — in the
presence of age-structured competition and territoriality, it also includes the ability of each
genotype to produce contestants i.e. b in our model. Our c is strictly competitive ability
only — as such, changes in c do not directly affect population density (the total number of
territories occupied per iteration is ∆+N = U(1− e−L), which does not depend directly on
the ci). The clean separation of a strictly-relative c parameter is particularly useful from
an evolutionary genetics perspective, essentially embedding a zero-sum relative fitness trait
within a non-zero-sum fitness model. This could have interesting applications for modeling
the impacts of intra-specific competition on species extinction, for example due to clonal
interference (Gerrish and Lenski, 1998; Desai and Fisher, 2007) between c-strategists on the
one hand, and b- and d- strategists on the other.

K-selection in the narrow logistic sense of selection for a greater environmental carrying
capacity for given r, sometimes referred to as “efficiency” (MacArthur and Wilson, 1967),
could be represented in our model by smaller individual territorial requirements. To a first
approximation, two co-occurring genotypes which differ by a small amount in their territorial
requirements only should have the same fitness, since the costs or benefits of a change in
the amount of unocupied territory is shared equally among genotypes via the propagule
density per territory L. The situation is more complicated when the differences in territorial
requirements become large enough that territorial contests can occur on different scales for
different genotypes. We leave these complications for future work.

Our realization of Grime’s triangle (Fig. 1) differs from approaches which identify pri-
mary strategies as trait combinations that can stably co-exist (Bolker and Pacala, 1999),
referring instead to the direction and rate of ongoing adaptive trait evolution under different
regimes of stress and disturbance, which is closer in spirit to Grime’s arguments (Grime,
1974, 1977). Moreover, our formulation is mathematical, in contrast to Grime’s original ver-
bal and descriptive approach, which is a recognized hindrance to the evaluation or broader
application of the C/S/R scheme (e.g. Tilman 2007). However, section “Primary strategies
and Grime’s triangle” suggests that, apart from the obvious irrelevance of territorial con-
tests at low density, selection alone has no preference for fecundity, competitive ability or
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longevity. One or both of the factors we set aside — pleiotropy/trade-offs and mutation bias
— are needed to get true “primary strategy” trait differentiation.

Nevertheless, it is interesting to note that ruderals, which are typically thought of as high
fecundity dispersers (b-specialists), may also be strongly d-selected, which while unintuitive,
is consistent with our findings. An effective way to reduce d in the face of unavoidable
physical destruction is to shorten the time to reproductive maturity — short life cycles are a
characteristically ruderal trait. Moreover, a recent hierarchical cluster analysis of coral traits
did find a distinct “ruderal” cluster, but high fecundity was not its distinguishing feature.
Rather, ruderals used brood- (as opposed to broadcast-) spawning, which could plausibly
be a mechanism for improving propagule survivorship in disturbed environments (Darling
et al., 2012).

One potential limitation of our model as a general-purpose model of density-dependent
selection is its restriction to interference competition between juveniles for durable resources
(lottery recruitment to adulthood), analogous to the ubiquitous assumption of viability selec-
tion in population genetics (Ewens, 2004, p. 45). In some respects this is the complement of
consumable resource competition models, which restrict their attention to indirect exploita-
tion competition, typically without age structure (Tilman, 1982). In the particular case
that consumable resources are spatially localized (e.g. due to restricted movement through
soils), resource competition and territorial acquisition effectively coincide, and in principle
resource competition could be represented by a competitive ability c (or conversely, c should
be derivable from resource competition). The situation is more complicated if the resources
are well-mixed, since, in general, resource levels then need to be explicitly tracked. It seems
plausible that explicit resource tracking may not be necessary when the focus is on the evo-
lution of similar genotypes that use identical resources rather than the stable co-existence
of widely differing species with different resource preferences (Ram et al., 2016). We are
not aware of any attempts to delineate conditions under which explicit resource tracking
is unnecessary even if it is assumed that community structure is ultimately determined by
competition for consumable resources. More work is needed connecting resource competition
models to the density-dependent selection literature, since most of the former has to date
been focused on narrower issues of the role of competition at low resource availability and in
the absence of direct interactions between organisms at the same trophic level (Aerts, 1999;
Davis et al., 1998; Tilman, 2007).

While our model can be applied to species rather than genotypes (e.g. ecological inva-
sions), our focus is genotype evolution i.e. the change in allele frequencies over time. Our
assumption that there are no large c discrepancies (section “Mean field approximation”)
amounts to a restriction on the amount of genetic variation in c in the population. Since
beneficial mutation effect sizes will typically not be much larger than a few percent, large c
discrepancies can only arise if the mutation rate is extremely large, and so the assumption
will not be violated in most cases. However, this restriction could become important when
looking at species interactions rather than genotype evolution.

In the introduction we mentioned the recurring difficulties with confounding selection
and demography in population genetic inference. It seems that Eq. (4) or something similar
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(and hopefully more analytically tractable) is unavoidable for the analysis of time-course
genetic data because, fundamentally, selective births and deaths affect both abundances and
frequencies, not one or the other in isolation. Moreover, some aspects of allele frequency
change are intrinsically density-dependent. In the classic lottery model, which as we have
seen is essentially the Wright-Fisher model with overlapping generations, bi and ci are equiv-
alent in the sense that the number of territorial victories only depends on the product bici
(see “Model”). This is no longer the case in our extension, where b and c specialists can
co-exist. This “colonization-competition trade-off” is well known in the co-existence litera-
ture (Tilman, 1994). It and similar forms of “spatial co-existence” in stable environments
have previously been modeled either with Levin’s qualitative representation of competition
(Levins and Culver, 1971; Tilman, 1994), as opposed to the quantitative c of lottery com-
petition, or with a more sophisticated treatment of space (non-uniform dispersal; Shmida
and Ellner 1984; Bolker and Pacala 1999). In cyclical environments, polymorphisms can
be stabilized by the bounded density effect, which is completely lost if there is an exclusive
focus on allele frequencies (Yi and Dean, 2013). We leave the details of how our model might
be applied to inference problems, including the crucial issue of its genetic drift predictions
(providing a null model for neutral sites), for future work.
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Appendix A: Poisson approximation

For simplicity of presentation, we have assumed a Poisson distribution for the xi as our
model of dispersal. Strictly speaking, the total number of i propagules

∑
xi (summed over

unoccupied territories) is then no longer a constant mi, but fluctuates between generations
for a given mean mi, which is more biologically realistic. Nevertheless, since we do not
consider the random fluctuations in type abundances here, and for ease of comparison with
the classic lottery model, we ignore the fluctuations in mi. Instead we focus, on Poisson
fluctuations in propagule composition in each territory.

In the exact model of random dispersal, the counts of a genotype’s propagules across
unnocupied territories follows a multinomial distribution with dimension U , total number of
trials equal to mi, and equal probabilities 1/U for a propagule to land in a given territory.
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Thus, the xi in different territories are not independent random variables. However, for
sufficiently large U and mi, this multinomial distribution for the xi across territories is closely
approximated by a product of independent Poisson distributions for each territory, each with
rate parameter li (Arenbaev, 1977, Theorem 1). Since we are ignoring finite population size
effects, we effectively have T →∞, in which case U can be only be small enough to violate
the Poisson approximation if there is vanishing population turnover, and then the dispersal
distribution is irrelevant anyway. Likewise, in ignoring stochastic finite population size for
the ni, we have effectively already assumed that mi is large enough to justify the Poisson
approximation (the error scales as 1/

√
mi; Arenbaev 1977).

Appendix B: Derivation of growth equation

We separate the right hand side of Eq. (2) into three components ∆+ni = ∆uni+∆rni+∆ani

which vary in relative magnitude depending on the propagule densities li. Following the
notation in the main text, the Poisson distributions for the xi (or some subset of the xi)
will be denoted p, and we use P as a general shorthand for the probability of particular
outcomes.

Growth without competition

The first component, ∆uni, accounts for territories where only one focal propagule is present
xi = 1 and xj = 0 for j 6= i (u stands for “uncontested”). The proportion of territories where
this occurs is lie

−L, and so
∆uni = Ulie

−L = mie
−L. (7)

Competition when rare

The second component, ∆rni, accounts for territories where a single focal propagule is present
along with at least one non-focal propagule (r stands for “rare”) i.e. xi = 1 and Xi ≥ 1
where Xi =

∑
j 6=i xj is the number of nonfocal propagules. The number of territories where

this occurs is Upi(1)P (Xi ≥ 1) = binie
−li(1− e−(L−li)). Thus

∆rni = mie
−li(1− e−(L−li))

〈
ci

ci +
∑

j 6=i cjxj

〉
p̃

, (8)

where 〈〉p̃ denotes the expectation with respect to p̃, and p̃ is the probability distribution
of nonfocal propagule abundances xj after dispersal, in those territories where exactly one
focal propagule, and at least one non-focal propagule, landed.

Our “mean field” approximation is to replace xj with its mean in the last term in Eq. (8),〈
ci

ci +
∑

j 6=i cjxj

〉
p̃

≈ ci
ci +

∑
j 6=i cj〈xj〉p̃

. (9)
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Below we justify this replacement by arguing that the standard deviation σp̃(
∑

j 6=i cjxj) (with
respect to p̃), is much smaller than 〈

∑
j 6=i cjxj〉p̃.

We first calculate 〈xj〉p̃. Let X =
∑

j xj denote the total number of propagules in a
territory and xi = (x1, . . . , xi−1, xi+1 . . . , xG) denote the vector of non-focal abundances, so
that p(xi) = p1(x1) . . . pi−1(xi−1)pi+1(xi+1) . . . pG(xG). Then, p̃ can be written as

p̃(xi) = p(xi|X ≥ 2, xi = 1)

=
P (xi, X ≥ 2|xi = 1)

P (X ≥ 2)

=
1

1− (1 + L)e−L

∞∑
X=2

P (X)p(xi|Xi = X − 1), (10)

and so

〈xj〉p̃ =
∑
xi

p̃(xi)xj

=
1

1− (1 + L)e−L

∞∑
X=2

P (X)
∑
xi

p(xi|Xi = X − 1)xj. (11)

The inner sum over xi is the mean number of propagules of a given nonfocal type j that will
be found in a territory which received X − 1 nonfocal propagules in total, which is equal to
lj

L−li (X − 1). Thus,

〈xj〉p̃ =
lj

1− (1 + L)e−L
1

L− li

∞∑
k=2

P (X)(X − 1)

=
lj

1− (1 + L)e−L
L− 1 + e−L

L− li
, (12)

where the last line follows from
∑∞

X=2 P (X)(X−1) =
∑∞

X=1 P (X)(X−1) =
∑∞

X=1 P (X)X−∑∞
X=1 P (X).
The exact analysis of the fluctuations in

∑
j 6=i cjxj is complicated because the xj are not

independent with respect to p̃. These fluctuations are part of the “drift” in type abundances
which we leave for future work. Here we use the following approximation to give some insight
into the magnitude of these fluctuations and also the nature of the correlations between the
xj. We replace p̃ with q̃, defined as the xi Poisson dispersal probabilities conditional on
Xi ≥ 1 (which are independent). The distinction between p̃ with q̃ will be discussed further
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below. The q̃ approximation gives 〈xj〉q̃ = 〈xj〉p/C = lj/C,

σ2
q̃ (xj) = 〈x2j〉q̃ − 〈xj〉2q̃

=
1

C
〈x2j〉p −

l2j
C2

=
1

C
(l2j + lj)−

l2j
C2

=
l2j
C

(
1− 1

C

)
+
lj
C
, (13)

and

σq̃(xj, xk) = 〈xjxk〉q̃ − 〈xj〉q̃〈xk〉q̃

=
1

C
〈xjxk〉p −

ljlk
C2

=
ljlk
C

(
1− 1

C

)
, (14)

where C = 1− e−(L−li) and j 6= k.
The exact distribution p̃ assumes that exactly one of the propagules present in a given

site after dispersal belongs to the focal type, whereas q̃ assumes that there is a focal propag-
ule present before non-focal dispersal commences. As a result, q̃ predicts that the mean
propagule density is greater than L (in sites with only one focal propagule is present) when
the focal type is rare and the propagule density is high. This is erroneous, because the
mean number of propagules in every site is L by definition. Specifically, if L− li ≈ L � 1,
then the mean propagule density predicted by q̃ is approximately L + 1. The discrepancy
causes rare invaders to have an intrinsic rarity disadvantage (territorial contests under q̃ are
more intense than they should be). In contrast, Eq. (12) correctly predicts that there are
on average

∑
j 6=i〈xj〉p̃ ≈ L− 1 nonfocal propagules because p̃ accounts for potentially large

negative covariances between the xj “after dispersal”. By neglecting the latter covariences, q̃
overestimates the fluctuations in

∑
j 6=i cjxj; thus q̃ gives an upper bound on the fluctuations.

The discrepancy between q̃ and p̃ will be largest when L is of order 1 or smaller, because
then the propagule assumed to already be present under q̃ is comparable to, or greater than,
the entire propgaule density.

Decomposing the variance in
∑

j 6=i cjxj,

σ2
q̃ (
∑
j 6=i

cjxj) =
∑
j 6=i

[
c2jσ

2
q̃ (xj) + 2

∑
k>j,k 6=i

cjckσq̃(xj, xk)

]
, (15)

and using the fact that σq̃(xj, xk) and the first term in Eq. (13) are negative because C < 1,
we obtain an upper bound on the relative fluctuations in

∑
j 6=i cjxj,

σ(
∑

j 6=i cjxj)

〈
∑

j 6=i cjxj〉
= C1/2

(∑
j 6=i c

2
j lj + (1− 1/C)

(∑
j 6=i cjlj

)2)1/2

∑
j 6=i cjlj

< C1/2

(∑
j 6=i c

2
j lj

)1/2∑
j 6=i cjlj

. (16)
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Suppose that the cj are all of similar magnitude (their ratios are of order one). Then
Eq. (16) is� 1 for the case when L− li � 1 (due to the factor of C1/2), and also for the case
when at least some of the nonfocal propagule densities are large lj � 1 (since it is then of
order 1/

√
L− li). The worst case scenario occurs when L− li is of order one. Then Eq. (16)

gives a relative error of approximately 50%, which from our earlier discussion we know to
be a substantial overestimate when L is of order 1. Our numerical results (Fig. 5) confirm
that the relative errors are indeed small.

However, the relative fluctuations in
∑

j 6=i cjxj can be large if some of the cj are much
larger than the others. Specifically, in the presence of a rare, extremely strong competitor
(cjlj � cj′lj′ for all other nonfocal genotypes j′, and lj � 1), then the RHS of Eq. (16) can
be large and we cannot make the replacement Eq. (9).

Substituting Eqs. (9) and (12) into Eq. (8), we obtain

∆rni ≈ miRi
ci
c
, (17)

where Ri is defined in Eq. (5).

Competition when abundant

The final contribution, ∆ani, accounts for territories where two or more focal propagules are
present (a stands for “abundant”). Similarly to Eq. (8), we have

∆ani = U(1− (1 + li)e
li)

〈
cixi∑
j cjxj

〉
p̂

(18)

where p̂ is the probability distribution of both focal and nonfocal propagaule abundances
after dispersal in those territories where at least two focal propagules landed.

Again, we argue that the relative fluctuations in
∑
cjxj are much smaller than 1 (with

respect to p̂), so that, 〈
cixi∑
j cjxj

〉
p̂

≈ ci〈xi〉p̂∑
j cj〈xj〉p̂

. (19)

Following a similar procedure as for ∆rni, where the vector of propagule abundances is
denoted x, the mean focal genotype abundance is,

〈xi〉p̂ =
∑
x

xip(x|xi ≥ 2)

=
∑
xi

xip(xi|xi ≥ 2)

=
1

1− (1 + li)e−li

∑
xi≥2

p(xi)xi

= li
1− e−li

1− (1 + li)e−li
. (20)
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For nonfocal genotypes j 6= i, we have

〈xj〉p̂ =
∑
x

xjp(x|xi ≥ 2)

=
∑
X

P (X|xi ≥ 2)
∑
x

xjp(x|xi ≥ 2, X)

=
∑
X

P (X|xi ≥ 2)
∑
xi

p(xi|xi ≥ 2, X)
∑
xi

xjp(xi|Xi = X − xi)

=
∑
X

P (X|xi ≥ 2)
∑
xi

p(xi|xi ≥ 2, X)
lj(X − xi)
L− li

=
lj

L− li

[∑
X

P (X|xi ≥ 2)X −
∑
xi

p(xi|xi ≥ 2)xi

]

=
lj

L− li

(
L

1− e−L

1− (1 + L)e−L
− li

1− e−li
1− (1 + li)e−li

)
. (21)

To calculate the relative fluctuations in
∑

j 6=i cjxj, we use a similar approximation as
for ∆rni: p̂ is approximated by q̂, defined as the x dispersal probabilities in a territory
conditional on xi > 2 (that is, treating the xj as indepenent). All covariances between
nonfocal genotypes are now zero, so that σ2

q̂ (
∑
cjxj) =

∑
c2jσ

2
q̂ (xj), where σ2

q̂ (xj) = lj for
j 6= i, and

σ2
q̂ (xi) =

li
D

(
li + 1− e−li − li

D

(
1− e−li

)2)
, (22)

where D = 1− (1 + li)e
−li , and

σq̂(
∑
cjxj)

〈
∑
cjxj〉

=

(∑
j 6=i c

2
j lj + c2iσ

2
q̂ (xi)

)1/2∑
j 6=i cjlj + cili(1− e−li)/D

. (23)

Similarly to Eq. (16), the RHS of Eq. (23) is � 1 for the case that L � 1 (due to a
factor of D1/2), and also for the case when at least some of the propagule densities (focal
or nonfocal) are large — provided that ci and the cj are all of similar magnitude. Again,
the worst case scenario occurs when li and L − li are of order 1, in which case Eq. (23) is
around 35%, which is again where the q̂ approximation produces the biggest overestimate of
the fluctuations in x. Similarly to Eq. (16), the RHS of (23) will not be� 1 in the presence
of a rare, extremely strong competitor.

Combining Eqs. (18) and (19), we obtain

∆ani = miAi
ci
c
, (24)

where Ai is defined in Eq. (6).
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Figure 5: The change in genotype abundances in a density dependent lottery model is closely
approximated by Eq. (4). ∆+ni/mi from Eq. (4) (and its separate components) are shown,
along with direct simulations of random dispersal and lottery competition over one iteration
over a range of propagule densities (U is varied between 5× 103 and 106 with m1 = 104 and
m2 = 9 × 104). Two genotypes are present. (a) and (b) show the low-frequency genotype
with c-advantage (c1 = 1.5), (c) and (d) show the high-frequency predominant genotype
(c2 = 1). Simulation points are almost invisible in (c) and (d) due to near exact agreement
with Eq. (4). Dashed lines in (a) and (c) show the breakdown of the classic lottery model.

Comparison with simulations

Fig. 5 shows that Eq. (4) and its components closely approximate our density-dependent
lottery model over a wide range of propagule densities (the latter is evaluated by direct sim-
ulations of uniform random dispersal and lottery competition). Two genotypes are present,
one of which is at low frequency. The growth of the low-frequency genotype relies crucially
on the low-density competition term Rici/c, and also to a lesser extent on the high density
competition term Aici/c if l1 is large enough (Fig. 5b). On the other hand, Rici/c is negligible
for the high-frequency genotype, which depends instead on high density territorial victories
(Fig. 5d). Fig. 3 also shows the breakdown of the classic lottery model at low propagule
densities.
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Appendix C: Mutant invasion under different environ-

ments

In this Appendix we evaluate the invasion of novel mutants in a population with a single
resident type i (such that N = ni), which is in equilibrium.

For a single type i in equilibrium (∆ni = 0), we have Ri = 0, c = ci, Ai = (1 − (1 +
L)e−L)/L, and Eq. (4) becomes

bi(1− e−L)/L− di = 0. (25)

(Alternatively, Eq. (25) can be deduced directly from Eq. (2)). This implies L ≈ bi/di when
bi/di � 1 and L� 1 when bi/di ≈ 1. Now suppose that a novel mutant j, which is initially
rare, appears in the population. Then Aj/Rj � 0, lj ≈ 0 and c ≈ ci, and so, from Eq. (4),
the mutant lineage’s fitness is

∆nj/nj ≈ bj

(
e−L +Rj

cj
ci

)
− dj (26)

where Rj ≈ (1− e−L)/
(

cj
ci

+ L−1+e−L

1−(1+L)e−L

)
since lj � 1.

We now consider mutant invasion under the different environments from section “Primary
strategies and Grime’s triangle”. In our representation of Grime’s stressful environment,
b � 1, d ≈ b and L � 1, and so Eq. (26) becomes ∆nj/nj ≈ bj − dj. Mutations which
improve b or d by the same fraction ε, such that bj = (1+ε)bi or dj = (1−ε)di, yield identical
fitness benefits.

In our representation of Grime’s ideal environment, d� 1, bi/di � 1 and L� 1, and so
Eq. (26) becomes

∆nj/nj ≈
bj

cj/ci + L− 1

cj
ci
− dj ≈

bj
L

cj
ci
− dj, (27)

where the last approximation follows from the fact that cj will be of similar magnitude
to ci (ignoring mutations with very large effect sizes; incidentally, Eq. (1) yields the same
expression by assuming L→∞ even though this assumption is unrealistic for a rare mutant).
Similarly to Grime’s stressful environment, improving b, c, or d by a fraction ε yields identical
fitness benefits, even though they may have very different absolute magnitudes, because the
ancestral resident type’s density-regulated birth rate bici/L exactly balances its mortality di
in equilibrium. Biases in the direction of evolution of b, c or d must again follow from biases
in mutation availability or trade-offs/pleiotropy. The same argument applies for the high-L
interpretation of the stress regime.

To represent Grime’s disturbed environment, ∆+ni is replaced with (1 − di)∆+ni, and
a single type reaches equilibrium when L/(1 − e−L) = (1− di)bi/di (population persistence
now requires (1− di)bi > di rather than bi > di). We assumed di ≈ 1 and (1− di)bi ≈ di, so
that L� 1. A mutant’s invasion fitness is then given by

∆nj/nj ≈ (1− dj)bj − dj. (28)
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Another distinct feature of disturbed environments is that the bulk of mortality is environ-
mental and unavoidable. That is, di = die + dig, where the environmental part die does not
evolve, and the genetic part dig is affected proportionally by mutations djg = (1− ε)dig.

The effects of improving b and d are now no longer identical for given values of die and
dig. A b-mutation bj = (1 + ε)bi gives ∆nj/nj = ε(1− di)bi ≈ εdi ≈ ε, whereas a d-mutation
djg = (1− ε)dig gives ∆nj/nj = εdig/(1− di). Since overall mortality is high (di ≈ 1), dg can
be small compared to de and yet still make a greater contribution to invasion fitness than b.
The case where dig is so small that dig � 1 − di (i.e. dig is an order of magnitude smaller
than 1− di which itself an order of magnitude smaller than die) effectively represents a hard
constraint that d cannot evolve. We do not deny this possibility, but this brings us back
to issues of mutational bias and constraint (the first two factors controlling the direction of
evolution in section “Primary strategies and Grime’s triangle”), which we do not address in
this manuscript.

Thus, assuming that d can evolve in this sense, dig is either comparable to or greater
than 1 − di. Yet dig cannot be appreciably greater than 1 − di for long, because selection
will then strongly favor reductions in dg over increases in b, thereby bringing dig closer to
1 − di. Thus, if b and d are subject to long-term evolution subject to external degradation
at comparable rates (Bertram et al., 2017), then we expect selection on b and d to be of
comparable strength in disturbed environments as well.

Appendix D: Coexistence in a stable environment

To determine whether coexistence is possible in a constant environment, we check for “mutual
invasion”, that is, we check that j will invade an i-dominated population, but i will also
invade a j-dominated population.

We consider the case of coexistence between a b-specialist i and a c-specialist j (bi > bj,
cj > ci and di = dj). Suppose that bi is so large that L � 1 when i is dominant, and bj
is so small that L � 1 when j is dominant. Then, when j is dominant, we have ∆ni/ni =
bi− di = bi− dj = bi− bj > 0. When i is dominant, Eq. (27) applies, where Eq. (25) implies
dj = di = bi(1− e−L)/L ≈ bi/L, and so

∆nj/nj ≈
bj
L

cj
ci
− bi
L
. (29)

Therefore, coexistence occurs if cj/ci is sufficiently large. The analogous argument for d- and
c-specialists (di < dj with L� 1 when i dominates, L� 1 when j dominates, and bi = bj)
gives ∆nj/nj ≈ di

cj
ci
− dj, which again implies coexistence if cj/ci is sufficiently large.

For b-and d-specialists (ci = cj), we have ∆nj/nj ≈ bjdi/bi − dj when i dominates and
∆ni/ni ≈ bidj/bj − di when j dominates. Thus, either i or j grows when rare, but not both,
and stable coexistence is not possible in a constant environment.
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