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Abstract. In [24] we studied the transitional zone between Sinoatrial cells
and Atrial cells in the Heart. The present paper study the mechanisms under-

lying the dynamics of the modeled nets in that paper.

1. Introduction

Csepe et al. [7] study the functional-structural connection of the SAN and the
atria. Their studies suggest that the microstructure of the connection paths between
A and SA cells plays a crucial role in human SAN conduction and contributes to
normal SAN pacemaking. Our paper may be considered as a local approach to
the complexity of the specialized branching myofiber tracts comprising the SA
connection paths described by Csepe et al. As an antecedent, we mention Benson
et al. paper [3], where the authors study a finite, one-dimensional strand of cells
with conduction patterns similar qualitatively to the model studied in the present
paper. In their simulations a length step of ∆x = 0.2 mm was taken. This length
corresponds to two cells of the size that we are considering, and consequently, a
bigger approximation error in the numerical approximation, in comparison to the
cell-to-cell model that we introduce in our example.

This paper is divided as follows: a) In section 5 we make a mathematical analysis
of how it is possible to compare cell-to-cell models with partial differential equations
(PDE) models. We reformulate the concept of liminal length in the context of
cell-to-cell models, and establish that our approach is not opposite to Ruston’s
liminar length concept for the cable equation, but in some sense complementary.
b) In section 6 we state in Lemma 1, that the multidimensional parameter α =
(g12, . . . , gij , . . . , gnm) is a bifurcation parameter of a net of cells composed with
n SA cells and m A cells coupled with conductance values gij , i 6= j, 1 ≤ i ≤ n,
1 ≤ j ≤ m. We show that the sum

∑
ij gij influences the behavior of the entire

net in such a way that introducing conductance values as free parameters should
lead to misleading conduction patterns in modeling nets. We give an elementary
analytical proof of Lemma 1. We provide some arguments that prove that the
geometry of a net is expressed implicitly by the non-zero conductance values and
that they determine the change of qualitative behavior of the entire net. c) In 6.2 by
using the piece-wise FitzHugh-Nagumo model we introduce elementary examples
that illustrate the phenomenon stated in (a) and in (b).
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2. General Materials and Methods

The equations used in [24] are of the form

dV

dt
= I(V ) + (g1M1 + g2M2 + g3M3 + g4M4)V (2.1)

V |t=0 = V0,

where the transposed vector V t = (VA1, . . . , VAn, VSA1, . . . , VSAm) corresponds to
the Voltage (mV) of the A (A1 to An) and SA (SA1 to SAm) cells, with n,m values
varying in different models, I(V )t = (I(VA1), . . . , I(VSAm)), is a vector representing
the currents (mV/ms) of A and SA cells, M1 is a connection matrix between A
cells, M2 is a connection matrix between A and SA cells, M3 gives the connections
between SA and A cells, and M4 is the connection matrix between SA cells; the
constants g1 = gA−A/CmA, g2 = gA−SA/CmA, g3 = gSA−A/CmSA, g4 = gSA−SA.
Here CmSA =.000032 µF; CmA =.00005 µF, and gSA−A, gA−SA, gA−A are the
conductance values between corresponding cells which values are specified in each
model. The vector V |t=0 = V0, i. e. V at time t = 0, takes values which vary
randomly with normal distributions, accordingly: for Atrial cells, mean -74.2525
mV, and for SA cells, mean -58mV, with standard variation .1 mV in both cells
types. All the initial conditions in our models were taken from their respective
papers, supplements, and codes provided by the authors when available. In tree
models we keep gSA−A = gA−SA ≈ .6 nS, with the precise value given in the
corresponding model.

The cell-to-cell approach requires: a) individual cell dynamics, modeled by
Hodgking-Huxley type equations. For SA node cells, in [24] we used the model
of Severi et al. [36], described in that paper A model of idealized two-dimensional
arrangements of cells using a similar structure can be found in [39]; b) In order
to implement better models, an approximate number of cells in SA node is re-
quired. This number may be estimated to be in the order of million, and we give
an estimation in the Conclusions section.

Considering the cytoarchitecture of SA node not only the number of cells to
which each cell is connected is important (already cited), but also the geometric
distribution of each connection. Here we should remark that due to the use of
connections matrices for the models of [24], the inherent three dimensionality of
the cytoarchitecture (see [7] where the necessity of the 3D approach in order to
understand the human SA node structure is amply discussed) does not require a
special treatment as is the case for PDE, in which a tensor is required to describe
the complex geometrical distribution of cells in the heart [11], [12], [13], [33].

Related to the integrating algorithms, we mention that stiff multi-step integra-
tion methods must be employed given the steepness of Atrial cells models. We used
the quasi-constant step of Numerical Differentiation Formulas (NDF) method [21],
in terms of backward differences, with absolute tolerance between two values x, y
given by |x− y|=1×10−12, and relative tolerance: |x− y|/min(|x|, |y|)=1×10−12.

3. Results

Upon introducing numerical difference formulas in order to solve PDE we show
that the resulting equations are equivalent to cell-to-cell ordinary differential equa-
tions systems with, of course, a corresponding approximation error. The simplest
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MATHEMATICAL MODEL 3

chessboard distribution geometry is the resultant pattern of such transformed PDE.
So that those models are not interesting when studying the real cytoarchitecture
structure of the SAN. With these transformed equations we can study the liminal
length concept in cell-to-cell models. We obtained from this point of view that not
only is a certain number of SA cells in a certain volume important when pacing
the atria, but that the geometric distribution of the cells, also is. With this cell-to-
cell view it is easy to see that our results are in some sense complementary to the
Rushton’s liminal length. We are not interested in how big the minimum number
of cells that activate a given region of the heart must be, but instead, how many
A cells are activated by a given number of SA cells, and what their geometrical
distribution should be in order to achieve conduction.

We found that the sum of conductance parameters and the geometric distribution
of the conductance values of coupled cells through a net determine their change of
qualitative behavior i.e., an entire net would be actively periodic or quiescent,
according to the variation of such parameters.

4. Cell-to-cell vs PDE modeling

The simplest net models are formed with rectangular cells forming a chessboard-
like geometric arrangement. In figure 1 the central cell is connected to two cells
vertically, and two cells horizontally. The mathematical model of this net consists
of a system of ordinary equations of the form

Cm
dVi j
dt

= I(Vi j) + gi[(Vi−1 j − Vi j) + (Vi+1 j − Vi j)]

+ gj [(Vi j−1 − Vi j) + (Vi j+1 − Vi j)]

so that

Cm
dVi j
dt

= I(Vi j) + gi(Vi−1 j − 2Vi j + Vi+1 j)

+ gj(Vi j−1 − 2Vi j + Vi j+1), (4.1)

where Cm is the cell membrane conductance of each cell and gi, gj are the coupling
conductance, which, in order to simplify, we suppose to be different constants in
the respective i, j subindex increment direction i. e., in vertical and horizontal
directions respectively. Complexity may be added to the system allowing in the net
different kinds of cells. For instance, in [45] two types of cells are included to form
a mosaic model.

Let 1 ≤ i ≤ N, 1 ≤ j ≤M and set V t = (V11, . . . , V1M , V21, . . . , V2M , . . . , VN1, . . . , VNM )
where V t is the transpose of V . So, system (5.1) can be written in matrix form as

Cm
dV

dt
= I(V ) + (giM1 + gjM2)V, (4.2)
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Figure 1. Scheme for simplest mosaic model. In this figure the
central cell Vij is connected to four other cells.

where I(V )t = (I(V11), . . . , I(VNM )), M1 has the form

M1 =



−1 1 0 . . . 0
M11

0 −1 1 0 . . . 0
M22

0 0 −1 1 0̄
M33

. . .

1 0 . . . 0 −1


, (4.3)

note that the rows containing ones correspond to the cells conforming the border of
the arrangement, 0̄ are vectors of appropriate size containing only zeros, and Mii

are tridiagonal submatrices of the form

Mii =


1 −2 1 0̄
0 1 −2 1 0̄

. . .

−2 1 0̄ . . . 1

 .

On the other hand, M2 is of the form

M2 =

−I1 I1 01

I2 −2I2 I2
03 I3 −I3

 ,

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2017. ; https://doi.org/10.1101/103259doi: bioRxiv preprint 

https://doi.org/10.1101/103259
http://creativecommons.org/licenses/by-nd/4.0/


MATHEMATICAL MODEL 5

where 0i, Ii for i = 1, 2, 3 are zero and identity matrices of appropriate sizes. In
order to introduce heterogeneity in the net by setting different types of cells dis-
tributed randomly, multiplying by a random matrix containing such information is
required. Note that in this way, the resulting system is not equivalent to equations
(2) and (3) in [45].

4.1. Mathematical Comparison between cell-to-cell and Macroscopic Mod-
els. From a mathematical point of view it is possible to convert a collection of ODE
equations of a cell-to-cell model into a PDE corresponding to a macroscopic model,
and reciprocally [21, sect. 4].To this aim to be achieved, first we recall the approx-

imation formula for second derivatives d2V (x)
dx2 = 1

h2 [V (x+h)−2V (x) +V (x−h)] +

o(h2) where o(h2)→ 0 as h→ 0. If we consider h = l of the order of cells length of
course with the notation of the last section we have

d2Vi j
dx2

= ḡ[Vi j+1 − 2Vi j + Vi j−1] + o(l2) (4.4)

and

d2Vi j
dy2

= ḡ[Vi+1 j − 2Vi j + Vi−1 j ] + o(l2), (4.5)

where ḡ is a constant with appropriate units. Of course, the term o(l2) cannot be
eliminated and hence ḡ[Vi+1 j−2Vi j +Vi−1 j ] would never be the second derivative
of Vi j since l is supposed to be a constant and may be not reduced, in assuming
that it is the minimum length of a cell. Given that the inaccuracy of equations
(5.4) and (5.5) has been established, we avoid writing down the term o(l2) in the
subsequent equations. Under these considerations we observe that mosaic model
equation (5.1) is an approximation of the PDE

Cm
dV

dt
= I(V ) + g1

d2V

dx2
+ g2

d2V

dy2
, (4.6)

where g1, g2 are diffusion constants in appropriate units.
Reciprocally, we can associate with a PDE a system of equations correspond-

ing to a certain cell-to-cell model. Actually, even the more accurate PDE’s models
(after introducing numerical schemes) lead only to elementary cell-to-cell nets archi-
tecture and cannot predict properly complex phenomena such as slow conduction,
decremental conduction, conduction block and changes in action potential duration
and refractory periods, which are characteristics recognized as conditions playing
an important role in causing reentrant arrhythmias [34]. Furthermore, those PDE
approximations cannot model phenomena as the one described in [37] where the au-
thors claim that myocardial architecture creates inhomogeneities of electrical load
at the cellular level that cause cardiac propagation which is stochastic in nature.

4.2. Rushton’s liminal length. The concept of liminal length associated with
the cable equation gives us an insight into what the minimum length of a segment
with outward current in the finite border of a semi-infinite cable is, which prevents
current to be inward. This may be interpreted as the size of a conductive tissue
which may drive the heart as in [3]. Now we introduce the concept of liminal length
in the cell-to-cell context. For instance, cable equation (16) in Noble’s paper [28]
can be written as

c
∂V

∂t
= f(V ) +

1

ra

∂2V

∂x2
, (4.7)
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6 G. LÓPEZ , N. P. CASTELLANOS, R. GODÍNEZ

where f(V ) = − 1
k

(
V − V 2 +

(
V
3

)3)
. To introduce the cell-to-cell approach we use

in (5.7) the approximation formula

∂2V

∂x2
=

1

h2
(Vi+1 − 2Vi + Vi−1), i = 1, 2, . . . .

Let Vi the i-th cell in a series arrangement of an arbitrary number of cells. According
to (5.7) each cell in the series satisfies

c
dVi
dt

= −1

k

(
Vi − V 2

i +

(
Vi
3

)3
)

+
1

rah2
(Vi+1 − 2Vi + Vi−1), i = 1, 2, . . . . (4.8)

Set g = 1/(rah2). Now, for the entire series we may write the collection of
equations (5.8) as a system of ordinary differential equations

c
dV

dt
= F (V ) + gMV (4.9)

Where for a semi-infinite cable

V = (V1; . . . , Vk, . . . )
T ,

F (V ) = (f(V1), . . . , f(Vk), . . . )T ;

where T denotes the transpose of a matrix, and

M =


−1 1

1 −2 1
0 1 −2 1 . . .

. . .


For a finite cable i = 1, 2, . . . , k we have then,

V = (V1; . . . , Vk)T ,

F (V ) = (f(V1), . . . , f(Vk))T ;

and now M is the finite matrix:

M =



−1 1
1 −2 1
0 1 −2 1

. . .

1 −2 1
1 −1


(4.10)

The most relevant point here is that system (5.9) corresponds to a cell-to-cell
one variable per cell FitzHugh-Nagumo in a series system with cubic f . Hence,
any analysis made in a semi-infinite cable equation (5.7). For instance the study in
Noble’s paper will have an equivalent in the cell-to-cell model (5.9). As an example,
formula (4, p. 575) in Noble’s paper for Rushton liminal length xLL:∫ 0

xLL

iidx =

∫ ∞
xLL

iidx,

may be written as

−
n∑
j=0

ii(Vj) =
∞∑

j=n+1

ii(Vj),
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MATHEMATICAL MODEL 7

just taking dx = ∆x = h, where h, as before, is the length of each cell, and n is,
hence, the minimal number of cells that provide inward current when the cable is
at threshold.

4.2.1. FitzHugh-Nagumo model. For the FitzHugh-Nagumo with k cells and with
two variables in each cell we have the system

c
dVi
dt

= f(Vi)− wi + Ii, (4.11)

dwi
dt

= biVi − γiwi,

where i = 1, . . . , k and f(v) = v(a − v)(v − 1), 0 < a < 1, and 0 < bi, γi con-
stants.This system can be written in a matrix form as

c
dV

dt
= F (V ) + (gM1 +M2)V + I, (4.12)

where V , F,M1,M2, whose exact form is described in the Simple example. In
comparing equation (5.12) with (5.9) we note that the most notorious difference
is the presence of matrix M2 which contains the bifurcation parameters of the
FitzHugh-Nagumo cells model. In the section Discussion an extended analysis of
some other differences is established.

With equations (5.7), (5.12) we can make an analysis of the liminal length con-
cept included in Discussion in the context of cell-to-cell models.

5. Mechanism underlying Nets Dynamics

In this section, we state and prove Lemma 1 which claims that the sum
∑
gij

acts a bifurcation parameter of an entire system of cells, this is a first mechanism
leading the net behavior. In the Simple example, we give a simple example that
may clarify our arguments. A second mechanism is obtained by different geometric
arrangements of cells that lead to a different characteristic polynomials of the net
and, therefore to different set of bifurcations. A third mechanism for the change of
behavior in the nets, focuses on bifurcation parameters of each cell, and how through
the stimulation of neighboring cells, A cells switch from quiescent to active.

5.1. First and second mechanisms. The question we want to answer in this sec-
tion is: why do different geometric configurations lead to a different net behavior?,
why is it not enough to study series of cells, but three dimensional nets? In order
to respond to these we introduce an abstract form of A and SA cells equations:

A :

{
dα

dt
= f(α, µ1) + Istim, α = (VA, wA), wA ∈ RN , (5.1)

SA :

{
dβ

dt
= g(β, µ2), β = (VSA, wSA), wSA ∈ RM , (5.2)

where µ1, µ2 are bifurcation parameters, possible multidimensional ones, each one,
characteristic of the corresponding cell model; Istim is a stimulus such that Istim ≡ 0
leads to a quiescent state of A cells, note that in vitro, Istim is usually constant
or is given for a Dirac’s delta type function; and VA, VSA ∈ R are the voltage
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of corresponding cells. Generally, N 6= M when modeling the transitional zone.
Consider the characteristic polynomials

PA(λ) = det

(
λI(N+1)×(N+1) −

∂f

∂α

∣∣∣
α∗

)
(5.3)

= λN+1 + CN (α∗, µ1)λN + · · ·+ C0(α∗, µ1)

PSA(λ) = det

(
λI(M+1)×(M+1) −

∂h

∂β

∣∣∣
β∗

)
(5.4)

= λM+1 +DM (β∗, µ2)λN + · · ·+D0(β∗, µ2),

where Il×l is the identity matrix of l× l, ∂f
∂α

∣∣∣
α∗
, ∂g∂β

∣∣∣
β∗

are the jacobians of f and g

at equilibrium points α∗, β∗ respectively. It is well-known that the change in quali-
tative behavior of the dynamical systems is given for the change in the roots of the
characteristic polynomials as the coefficients CN , CN−1, . . . , C0, DM , DM−1, . . . , D0

change when µ1, µ2 respectively vary, for instance if complex roots of the polyno-
mials change to purely imaginary ones, and so on.

In general, in coupling k, A cells with l, SA cells through gij , 1 ≤ i ≤ k(N + 1) +
l(M + 1), 1 ≤ j ≤ k(N + 1) + l(M + 1) the characteristic polynomial of the system
has the form

P (λ) = λµ +
(∑

gij +Bµ−1

)
λµ−1 + +Bµ−2λ

µ−2 + · · ·+B0,

where µ = k(N + 1) + l(M + 1). In this case, the coefficients Bj depend on the
coefficients of the characteristic polynomial of each cell and depend on each coupling
gij as well. So that the sum

∑
gij acts as a bifurcation parameter of the entire

system and can be seen as a perturbation of a polynomial of degree k(N + 1) +
l(M + 1) by a polynomial of lower degree. The affirmations of the last paragraph
can be written as a lemma based on the following definition.
Definition.We say that a system formed with n cells of the type A, SA in equations
(6.1), (6.2) is conductance coupled if in each cell i of the system, the equation for
dVi
dt

includes the sum
∑
j 6=i gij(Vj − Vi) for at least one j 6= i.

Note that in a conductance coupled system there are not isolated cells, i. e.,
each cell is connected to at least one other cell.
Lemma 1. In a conductance coupled system formed with n cells of the type A, SA
in equations (6.1), (6.2) the sum

∑
ij gij is a bifurcation parameter of the system.

The proof of the lemma is simple. Given that the system is conductance coupled,
the term tri =

∑
j,j 6=i gij appears in the mean diagonal of the jacobian matrix J.

This is simply because in each equation for
dVi
dt

, the following term does appear

∂

∂Vi

∑
j 6=i

gij(Vj − Vi) = tri.

Therefore
∑
ij gij =

∑
i tri is part of the trace of J , and consequently, the charac-

teristic polynomial of the system is of the form

P (λ) = det(λI − J) (5.5)

= λns + (
∑
ij

gij + cns−1)λns−1 + · · ·+ c1λ+ det(J), (5.6)
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MATHEMATICAL MODEL 9

where “det” denotes the determinant of a matrix, and s is the sum of the number
of variables of the SA and A cells in (6.1), (6.2).

Given that the trace of a matrix is invariant under the choice of basis and in-
variant under elementary transformations of matrices (as well as det(J)) the sum∑
ij gij is a bifurcation parameter of the conductance coupled system, as we claim,

because the coefficients (
∑
ij gij + cnk−1) and det(J) would determine the change

of the number and characteristics of the real roots of P (λ). �

5.1.1. Second mechanism: the geometry of the net. In the general case, we can
write the equation of the system in the form

d

dt
(α1, . . . , αk, β1, . . . , βl)

T = F ((α1, . . . , αk, β1, . . . , βl)
T ) (5.7)

So that the vector containing all the cells may be relabeled as

(α1, . . . , αk, β1, . . . , βl)
T = (x1, . . . , xk, xk+1, . . . , xk+l)

T

in such a way, the coupling gij 6= 0 means that the cell xi is coupled with the cell
xj . With this the jacobian of the net has the form

J =


J1 0 . . . 0
0 J2 0 . . . 0

. . .

0 . . . 0 Jk+l

+


T1 . . . G12 . . . G1,k+l

Gk1 . . . Tk . . .
. . .

Gk+l,1 . . . Gk+l,k+l−1 Tk+l

 ,

where Ji are the jacobian matrices of each cell xi, 0 is a zero block matrix, so
that the matrix containing the Ji, is block diagonal; Ti are block matrices, suited
also as block diagonal, with tr1 in the first entry and zeros otherwise; and Gij
are block matrices with gij in the entry ij of the matrix and zero otherwise. The

Ti blocks are formed as before by the derivative ∂
∂Vi

∑
j 6=i gij(Vj − Vi) = tri. The

blocks Gij are formed by the derivative ∂
∂Vj

∑
j 6=i gij(Vj − Vi) = gij , because of the

definition of the jacobian of a system. Since the coefficients cr, r = 1, . . . ns, of
polynomial (6.5) depend on gij , so do the bifurcations, as simply varying k and l
shows i. e. varying the number of SA and A cells. Furthermore, since detJ may
depend on gij (as well as all the other coefficients) the geometric distribution of cells
depends on these parameters. Since the A and SA are cylindrical and the coupling
is through cell membrane connexins, the net geometry is determined according to
which parameters gij are different from zero.

Let’s call Jmodel the block diagonal matrix with diagonal blocks Ji, and lets call
Ggeometry the matrix with Tri and Gij block so that we can write J as

J = Jmodel +Ggeometry (5.8)

We conclude, regarding equation (6.8), that the second mechanism is given by
Ggeometry, and the third mechanism that determines the nets dynamics is given by
the bifurcation parameters of each cell in a net, given by matrix Jmodel. This last
mechanism is not less important than the others, but more difficult to detect. The
so-called, global bifurcations, can be detected only by numerically integrating the
equations of the systems (see for instance [16]). Hence, the bifurcation parameters
treated in subsection 6.1 in many cases are less expensive in computational time
than global bifurcations. We think that the more important bifurcations of complete

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2017. ; https://doi.org/10.1101/103259doi: bioRxiv preprint 

https://doi.org/10.1101/103259
http://creativecommons.org/licenses/by-nd/4.0/


10 G. LÓPEZ , N. P. CASTELLANOS, R. GODÍNEZ

nets in this paper are of this type. In any case, the way in which we found them,
was by numerically integrating different geometric arrangements.

5.2. Third mechanism. In considering the jacobians of each cell in equation (6.8)
we have to study the bifurcation set of each cell in a net at equilibrium points. In [16]
just for the Hodgking-Huxley model (of four variables compared with thirty eight
of LC model) four bifurcations of codimension one and six of codimension two are
described. Thus, the number of bifurcations of codimension 1,2, et cetera in the LC
model is too big to be treated computationally, not to mention analytically. With
this in mind, we do not proceed further with such analysis. Given the set initial
conditions for A cells (CI), which are determined experimentally, we are interested
only in the bistability of such cells in a neighborhood of those CI. Consequently, we
are interested only in the way in which A cells change from a stable quiescent state,
to the active stable state through stimulation by neighboring cells. In considering
LC model, for instance, if stimulus I is given as,

I =


0, t < t0,

A, t0 ≤ t ≤ t0 + w,

0, t0 + w < t

(5.9)

where A is the amplitude of the stimulus in picoAmperes, t0 = .1 s, is the starting
time, and the duration of stimulus is w = 2 ms.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−80

−60

−40

−20

0

20

40
Lugo

time (seconds)

V
o
lt
a
g
e
(m

il
iv
o
lt
s)

 

 

A=180

A=360

A=540

A=720

A=900

A=1080

A=1260

A=1440

A=1620

Figure 2. LC model threshold with I1. With amplitude of
the stimulation of A=180 pA the cell is at subthreshold state, as
mentioned in the text, the duration of the stimulus is w = 2 ms,
but the activity in the cell (the little hump) lasts over 100ms. Note
that with values at which the cell reaches threshold A≥540 pA, the
characteristic plateau of A cells is evident.

Then in Figure 2 we can see that LC model reaches threshold with the stimulus
I taking A > 800 pA. In this way, an A cell would reach threshold if the sum of
peaks of neighboring cells SA or A cell are about this quantity. Otherwise cells
remain quiescent. When A cells model depolarizes they have a refractory period of
about 300 ms as shown in the figure.

Simple example

FitzHugh-Nagumo equations. Here we give the matrix form of a FitzHugh-
Nagumo system used in section FitzHugh-Nagumo model. In connecting in a series,
each cell in the system (5.11) with coupling conductance g, we obtain the system
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MATHEMATICAL MODEL 11

c
dV1

dt
= f(V1)− w1 + I1 + g(V2 − V1),

dw1

dt
= b1V1 − γ1w1

c
dV2

dt
= f(V2)− w2 + I2 + g(V1 − V2) + g(V3 − V2),

dw2

dt
= b2V2 − γ2w2

...

c
dVk
dt

= f(Vk)− wk + Ik + g(Vk−1 − Vk),

dwk
dt

= bkVk − γkwk.

This system can be written in a matrix form as

c
dV

dt
= F (V ) + (gM1 +M2)V + I,

where

V = (V1, w1, . . . , Vk, wk)T ,

F (V ) = (f(V1), 0, f(V2), 0, . . . , f(Vk), 0)T ,

M1 =



−1 1
01×k

0 1 −2 1
01×k

. . .

1 −2 1
1 −1

01×k


,

M2 =


M21 02×(k−2)

02×2 M23 02×(k−4)

. . .

02×(k−2) M2k

 ,

M2i =

(
0 −1
bi −γi

)
,

and I = (I1, 0, I2, 0, . . . , Ik, 0)T . With equations (5.7) and (5.12) we make an ana-
lysis of the liminal length concept in the context of cell-to-cell models, and to
compare the cable system equation with the FitzHugh-Nagumo model as in section
Rushton’s liminal length.
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12 G. LÓPEZ , N. P. CASTELLANOS, R. GODÍNEZ

A basic example. Now we give some estimations of how the sum of couplings
gij may act as bifurcation parameter causing an entire net to collapse, even in
the extreme case in which each cell in the net is periodic. Note that this case is
extreme not only because we may think that if the coupling parameters are small, a
given number of oscillators with identical dynamics could oscillate as an uncoupled
system just because everyone would act as autonomic individual, but also, because
the theory predicts that under certain conditions this kind of systems have an
stationary state of the uncoupled case for max(gij) small (see thm. 2.1 [26]).

To present the examples of this section we introduce two cell types, which car-
icaturize more complex cells models of SA and A cells. By using the piece-wise
linear FitzHugh-Nagumo model it is possible to generate periodic autonomic cell
models which we call SAFN and quiescent cells which we call AFN. For SAFN
cells we use the equation (5.11) with f(v) = 1/6v, I = 19/72, bi > 1/36 as an
heterogeneity parameter and γi = 1/6. Now we summarize well-known facts of
such a model: i) Due to Poincaré-Bendixon theorem SAFN cell posses an stable
limit cycle, ii) due to Hopf bifurcation theorem the period Ti of each cell is ap-

proximately Ti = 2π/
√
bi − 1/36, iii) the characteristic polynomial for these cells

is P (λ) = λ2 + (bi− 1/36), and hence it has two purely imaginary roots, iv) due to
Torre theorem n cells do synchronize in phase for each n ≥ 2.

Now suppose we have n oscillators. To simplify the exposition we set b1 = · · · =
bn = b and 0 < α = b − 1/36 and assume that each cell is connected with each
other. Then the complete set of oscillators satisfies

V̇1 = 1
6V1 − w1 + g12(V2 − V1) + · · ·+ g1n(Vk − V1)

ẇ1 = bV1 − 1
6w1

...

V̇n = 1
6Vn − wn + gn1(V1 − Vn) + · · ·+ gnn−1(Vn − Vn−1)

ẇn = bVn − 1
6wn.

(5.10)

Denote
∑
j,j 6=i gij := tri, so the jacobian J of the system at (V1, . . . , Vn) = 0 is

J =


1/6− tr1 −1 g12 0 · · · gk1 0

b −1/6 0 · · · 0
. . .

gn1 0 · · · 1/6− trk −1
0 · · · 0 b −1/6

 (5.11)

In this way the characteristic polynomial of the system is

p(λ) = det(λI2n×2n − J)

= (λ2 + α)n + 2
(∑

gij

)
λ2n−1 +

1

3

(∑
gij + o(g2)

)
λ2n−2

+o(g2)(λ2n−3 + · · ·+ 1),

where g = max(gij), i, j ≤ n. For weak coupling we may assume that g is small
and therefore we can drop the terms of order o(g2). We write ε =

∑
ij gij and

noticing that ε = o(g) we can see the characteristic polynomial of the system as
an ε-perturbation with a polynomial of degree 2n− 1 of the polynomial (λ2 + α)n,
and, actually, it can be shown that we can write
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MATHEMATICAL MODEL 13

P (λ) ≈ (λ2 + α)n + 2ε(λ2 + α)n−1

(
λ+

1

6

)
= (λ2 + α)n−1

(
λ2 + 2ελ+

ε

3
+ α

)
.

Now the polynomial (λ2 +α)n has only complex roots meanwhile the polynomial
with ε coefficient has one real root so for certain values of ε the polynomial P (λ)
may change the number of real roots. Therefore, in that case the system would have
a qualitative change of behavior, i.e. ε is a true bifurcation parameter of the system.
In fact, (λ2 + α)n−1

(
λ2 + 2ελ+ ε

3 + α
)

= 0 if and only if λ = −ε±
√
ε2 − ε/3− α

so that we would have real roots if ε > 1/6 +
√

1/36 + α = 1/6 +
√
b. Therefore

the entire net would have an stable fixed point if∑
i 6=j

gij >
1

6
+
√
b ≥ 2

3

In modeling is usually taken gij = g as a constant for all i, j. In this case we obtain
an estimation of the weak coupling which must be used with given n

g < 2/(3n).

Figure 3. Perturbated polynomial P (λ). A polynomial of
even degree with only complex roots is perturbed with a polyno-
mial of lower order odd degree. The perturbed polynomial can
have negative real roots and hence stable equilibrium points may
appear trough bifurcation in the correspondent dynamical system.

More strikingly for a periodic net, if the g value is given (for instance exper-
imentally) we obtain a bound for the number of cells in our net n, such that if
n ≥ 2/(3g) the piece-wise linear FitzHugh-Nagumo model may collapse for certain
set of initial conditions. Finally, we observe that in a more realistic model, many
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14 G. LÓPEZ , N. P. CASTELLANOS, R. GODÍNEZ

terms gij must be zero, otherwise each cell in the net would be connected with all
and each other cells, which is not possible with cylindrical or spheric cells. But if
one cell is connected with at least one other cell, their correspondent conductance
will appear in the sum

∑
gij , and therefore may contribute in a possible collapse.

Even though the last model is very artificial it provides some nice insights. For
instance, if the coefficients were variable then a massive heart attack could happen,
let say, if all the values are at their maximum because, for instance, nervous system
stimulation. On the other hand, introducing artificial big values of gij would make
a failing net to conduct, for instance if and odd degree polynomial is perturbed by
an even degree polynomial, introducing complex roots in the coupled polynomial
which otherwise do not exist.

We show in the following example how the characteristic polynomial of three
FitzHugh-Nagumo type cells, two of them periodic and one excitable change accord-
ing with the geometry of the net. Each arrangement has a different characteristic
polynomial and consequently a different qualitative behavior according with their
respective bifurcation parameters variation. Now we introduce piece-wise linear
FitzHugh-Nagumo model for A cells, which we call AFN model.

For AFN cells we use (5.11) with

f(v) =


−
√

3+1
12 v, −∞ < v < 1

2 −
1

2
√

3
1
6v −

1
12 ,

1
2 −

1
2
√

3
≤ v < 1

2 + 1
2
√

3
−
√

3+1
12 (v − 1), 1

2 + 1
2
√

3
≤ v,

bi = 1, γi = 1/6, Ii = Ii(ε) = 1/12 + εi. For this model it may be verified
that if εi = 0 the cell would be quiescent. The reader may agree that systems
with SAFN and AFN cells just mock any other physiologically accurate models.
Nevertheless, such systems do capture some aspects that can be generalized to
other more complex models. For instance the coupling of SAFN with AFN cells
may change the quiescent of AFN cells to a periodic one acting qualitatively as a
bifurcation parameter for AFN cells.

Lets denote the by S1 a series of two SA cells in which the AFN cell is connected
only to one SAFN cell, by S2 we denote a series in which the AFN cell is connected
to the two other cells. A ring of three cells is an arrangement in which each
cell is connected to each other. These models are illustrated in figure 4. Note
that in S1, gSA2−A = gA−SA2 = 0 and the other conductance values are different
from zero. For the ring all conductance values are not zero and for the series S2,
gSA2−SA1 = gSA1−SA2 = 0.

Therefore any geometric arrangement in our example has a different character-
istic polynomial of the form

P (λ) = λ6 + C5λ
5 + C4λ

4 + C3λ
3 + C2λ

2 + C1λ+ C0.

Coefficients C0, . . . , C5 depend on the conductance values between cells and also
depend on the parameters of each cell. In table 1 we compare the coefficients
C0, C4, C5 of the three different groups in which bi = 1 in (5.11). In every cell and
all conductance values are equal to g, just to simplify the coefficients expressions.

It is possible to proceed further with these models, and to find values of g for
which the characteristic polynomial of the net would have a pair of purely imaginary
roots, (which is a necessary condition for having Hopf bifurcations) for instance ap-
plying Guckenhaimer et al. algoritms in [15]. In fact, theorem 2.5 in that paper
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MATHEMATICAL MODEL 15

Figure 4. One AFN and two SAFN cells arrangements.
In the figure a) is series S1, c) is S2, and b) is the ring. These
are the simplest geometric arrangements with three cells with one
A and two SA. The systems could have a very different dynami-
cal behavior between each other according with given conductance
values and according with the geometry of the net.

Table 1. Comparing coefficients of characteristic polynomials

Net C0 C4 C5

Ring 0.9 + 0.30g − 0.08g2 2.90 + 0.58g + 9g2 0.06 + 6g

series S1 0.9 + 0.30g − 0.02g2 2.90 + 0.52g + 3g2 0.06 + 4g

series S2 0.9− 0.003g − 0.02g2 2.90 + 0.12g + 3g2 0.06 + 4g

gives necessary conditions which we can impose in g in order that the characteristic
polynomial of a net to have exactly one pair of purely imaginary roots, which is a
necessary condition in order to have Hopf bifurcations and hence, a probable peri-
odic behavior in a net. Though, since this condition is necessary but not sufficient,
after all the calculations in the mentioned theorem, in many cases in the net we
cannot have the expected behavior.

6. Discussion

6.1. Comparison of cable equation with FitzHugh-Nagumo model. When
thinking that equation cable (5.9) represents the partial differential cable equation
and FitzHugh-Nagumo equation (5.12) a minimal two variables cell-to-cell in a
series system, we summarize some differences besides the obvious ones: i) Even
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16 G. LÓPEZ , N. P. CASTELLANOS, R. GODÍNEZ

that both equations can model a finite or infinite cable, we can add heterogeneity in
(5.12) by simply choosing different bi, γi. Moreover, this heterogeneity is dynamic;
in fact, in choosing different parameters, it is possible to allow some cells to be
active and some others to be quiescent. To say it in a picturesque way: cable
(5.9) does not metabolize, whereas cable (5.12) at least captures, to some extent,
periodic and quiescent behavior of A and SA cells. ii) Notice that the refractory
period in cells may prevent outward or inward currents propagation, which cannot
be modeled with the standard cable equation. Propagation may fail according to
bifurcation parameters of individual cells, not only according to Rushton’s liminal
length. For instance, V1(0) (the first cell V at t = 0) may be as big as anyone
decides and current will propagate in (5.9), but for certain parameters bk, γk, k > 1
within biological observations we may prevent propagation, regardless of the value
of V1(0). So we may model a massive heart attack in this cable-heart with equation
(5.12) but not with the standard cable equation. iii) We cannot use the steady state

cable equation
∂V

∂t
= 0 as t → ∞, since due to the periodicity of V in each cell,

small scales of time are relevant in cell-to-cell modeling. iv) In comparing Benson
et al. results [3] vs. our results, we remark the following: Benson et al. found that
in a one-dimensional finite cable equation, conduction fails or succeeds according
to: certain liminal length value, bifurcation parameters of the cells modeled with
the paper’s equation, and certain change of transition parameters between cells. In
order to compare the number of cells implicit in their numerical simulations from
our standpoint, we note that the length step that they used (.2 mm) corresponds to
one cell (which is not the observed size of SA or A cells, their approach is numerical
not cell-to-cell) so that the 15 mm of one dimensional strand that they consider (p.
1320), corresponds to 75 cells in the cell to cell model. Authors used Lou & Rudy
model with blocked INaK to simulate SA cells. Among other results, they conclude
that the liminal length reduces from 17 cells to 15 cells (p. 1321 3.4 to 3 mm) with
a linear change of parameters when the transitional zone es increased from 0 to 15
cells (0 to 3.0 mm). Some of their results coincide qualitatively with our analysis
in one dimension, in the sense that they found that propagation may fail according
to the bifurcation parameters of the cells. In other aspects, our analysis differs
from theirs, given that we do not consider as necessary any transitional parameters
between different kinds of cells. Moreover, we conclude that are a number of SA cells
necessary to achieve conduction, but also, that certain geometrical arrangements
are too, so that their 1D approach is not enough to obtain proper simulations.

6.2. Cell-to-cell vs PDE. Comparing modeling cell-to-cell vs. PDE we proved
that introducing difference formulas in order to approximate PDE leads to very
simple chessboard geometrical structures of ordinary differential equations (ODE)
with only one variable, and sometimes with an approximation error bigger than
individual cells’ dimensions. One advantage of using the equivalence of ODE sys-
tems with PDE, is that it does facilitate the interpretation of Rushton’s liminal
length.Our approach is in a sense a complementary of Rushton’s liminal length; we
are not interested in how many SA cells are required to activate a volume of A
cells, but in how many A cells are activated by a certain arrangement of a small
number of SA cells. Given the complexity of these systems, our analytical tools
are not sufficiently powerful to determine this number. Analytic approach becomes
very complicated even though the decomposition of the jacobian matrix J in (6.8)
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MATHEMATICAL MODEL 17

is very easy to obtain. From the dynamical systems point of view, this multipara-
metric matrix is very complex. Note that the matrix with Jmodel blocks depends
on the cell models chosen, but Ggeometry gives the relative position between cells
independently of the models. So that if real structure of transitional zone were
known Matrix Ggeometry would remain fixed when certain accuracy of individual
cell models would be achieved. We are not aware if nowadays this is the actual
state-of-the-art in cell modeling. Accordingly, one may question how precise our
geometric cells distribution is and how it depends on the A, SA models chosen.
In deed, the characteristic polynomial of a system depends strongly on the models
chosen and the exact one-to-one cell correspondence of our models compared with
nature’s real heart could seem to be trivial. Although not as trivial as chessboard
geometries included implicitly when difference derivatives formulas are introduced
to solve PDE, and used even in an overwhelming number of papers using cell-to-cell
modeling. For instance, we recall that the observed number of cells interconnected
is 9.1±2.2 cells [17],but this number cannot be achieved in planar chessboard ge-
ometries extensively used in 1D and 2D models, nor in three dimensional blocks
with a maximum of 6 cell connected to each other. More observational and exper-
imental information is required on the specific transition zone in order to establish
a correspondence between a big number of modeled cells and heart cells. More-
over, if the exact geometry of the SAN boundary would be known, it would provide
us a criterion to compare models and to decide if they truly reflect observations,
according whether their local nets nets collapse or not.

6.3. Local vs global approach. Another point that can be under discussion is
how a local approach in the geometry may contribute to real modeling when consid-
ering that the sum of all the net conductances determines the behavior of the net.
Here we think that groups of local nets with appropriate behavior can be consid-
ered as a computational syncytium (i. e. syncytium at least from a modeling stand
point) and then, we may proceed by uniting different syncytium to form a mega-net,
and so on. Upon regarding this question we have to estimate the complete number
of cells in the atrium. The Orthof’s (1998) review [32] the author reports data
sizes of SA nodes in some mammalians including humans. In there were reported
humans’ SA node lengths of 15mm,7.3mm, and 9mm and corresponding widths
of 5mm, 1.6mm, and 5 mm. More recently and with more refined techniques, in
Chandler et al. [8] authors report 29.5 mm in length, 18 mm in height, and 6.4
mm in width which is the largest extension of SA node published, to the best of
our knowledge. In Boyett et al. [4] for the rabbit, the authors estimate that there
are approximately 5000 cells in 0.1mm2 of the center of SA node. With similar
arguments and assuming roughly that the SA node and cells within the node are
boxes, we can calculate the approximate number of cells in the entire human SA
node with the data in [8], i. e. we obtain a SA node volume of 339.84 mm3, and
assuming that 90% of this volume is connective tissue (as in the cat, see references
within Boyett et al.), we get 33.98 mm3 of approximate total cell volume in the
SA node. On the other hand, assuming that each cell has a volume of approxi-
mately 1000 µm3 (37±3 and 5±0.2 µm in length and width [10] we obtain a rough
estimation of the number of cells in SA node is 34 million. Even if we consider
only the so-called center of the SA node which is estimated as only 1% of the total
of the SA node area [4], we obtain a gigantic number of calculations that surpass
the computational capacity available technology today. This fact explains why the
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macroscopic PDE approach is still today the subject of major study. Apart from
the number of cells, we need to improve our knowledge of the fine structure of the
transitional SAN zone. In Chandler et al. [8] fantastic DTMRI/microCT data of
the SAN are available, but the scales that they study are quite large to allow us to
see the interdigitations in the transitional zone. Histology observations are known,
for instance in Shimada et al. [37], and Hoyt et al. [17], which provide fantastic
information of interconnections between cells, but not enough to make a one-to-one
cell correspondence between a real heart and net models of big number of cells’
structures.

Another question which we can formulate is: how valid are models that consider
only two types of cells? An improvement would be, as a first step, to introduce
fibroblast dynamics [22] and their contribution within SAN and transitional zone
geometry. After this, other observed cells types dynamics, for instance in [41] may
be included. This is part of a future project which also may include nervous system
stimuli simulations.

7. Conclusions

In order to extend the concept of liminal Length to 3D to the cell-to-cell ap-
proach, we found that not only are a number of cells necessary for conduction,
but that the geometric arrangement is also relevant. Not only must the concept
of liminal length be extended to, say, a liminal volume or a number of cells in a
volume, but this concept must include an appropriate geometric distribution of SA
and A cells.

In the literature some models of the transitional zone between SA and A cells
require non-experimental conductance values in order to obtain propagation of the
AP generated in the SA node. On the contrary, in [24] we obtained models which do
not require artificial parameter values to achieve propagation. Moreover, according
to our results, oversimplified 1D, 2D, 3D arrangements of cells, would make it pos-
sible to obtain conducting patterns that do not occur in real world by introducing
conductance values as free parameters.

Our models mimic locally the strand structure (interdigitations) observed and
studied in classical papers such as [44], and in recent papers such as [7]. Mathe-
matically, our successfully conducting AP models may be explained by a change of
qualitative behavior due to the change in bifurcation parameters associated with
a correct source-sink relationship in the transitional zone. Remarkably, the bifur-
cation parameters give a geometrical distribution between A and SA cells which is
compatible with interdigitating bundles structure of the transitional zone. We con-
clude that in modeling the cytoarchitecture of the transitional zone between SAN
and Atrial zone it is essential for smooth propagation of AP to include geometrical
arrangements, accordingly with some bifurcation parameters studied by dynamical
systems theory.
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E-mail address: gabl@xanum.uam.mx

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2017. ; https://doi.org/10.1101/103259doi: bioRxiv preprint 

https://doi.org/10.1101/103259
http://creativecommons.org/licenses/by-nd/4.0/

	1. Inter-phase between Atrial and Sinoatrial cells
	2. Introduction
	3. General Materials and Methods
	4. Results
	5. Cell-to-cell vs PDE modeling
	5.1. Mathematical Comparison between cell-to-cell and Macroscopic Models
	5.2. Rushton's liminal length.

	6. Mechanism underlying Nets Dynamics
	6.1. First and second mechanisms
	6.2. Third mechanism

	Simple example
	FitzHugh-Nagumo equations
	A basic example.

	7. Discussion
	7.1. Comparison of cable equation with FitzHugh-Nagumo model
	7.2. Cell-to-cell vs PDE
	7.3. Local vs global approach

	8. Conclusions
	References

