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Abstract 17	

• Human colour vision differs from the vision of other animals.  The most obvious 18	

differences are the number and type of photoreceptors in the retina. E.g., while humans are 19	

insensitive to ultraviolet (UV) light, most non-mammal vertebrates and insects have a colour 20	

vision that spans into the UV. The development of colour vision models allowed appraisals of 21	

colour vision independent of the human experience. These models are now widespread in 22	

ecology and evolution fields. Here I present a guide to colour vision modelling, run a series of 23	

simulations, and provide a R package – colourvision –  to facilitate the use of colour vision 24	

models. 25	

• I present the mathematical steps for calculation of the most commonly used colour vision 26	

models: Chittka (1992) colour hexagon, Endler & Mielke (2005) model, and Vorobyev & Osorio 27	

(1998) linear and log-linear receptor noise limited models (RNL). These models are then tested 28	

using identical simulated and real data. These comprise of reflectance spectra generated by a 29	

logistic function against an achromatic background, achromatic reflectance against an 30	
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achromatic background, achromatic reflectance against a chromatic background, and real flower 31	

reflectance data against a natural background reflectance. 32	

• When the specific requirements of each model are met, between model results are, 33	

overall, qualitatively and quantitatively similar. However, under many common scenarios of 34	

colour measurements, models may generate spurious values and/or considerably different 35	

predictions. Models that log-transform data and use relative photoreceptor outputs are prone to 36	

generate unrealistic results when the stimulus photon catch is smaller than the background 37	

photon catch. Moreover, models may generate unrealistic results when the background is 38	

chromatic (e.g. leaf reflectance) and the stimulus is an achromatic low reflectance spectrum. 39	

• Colour vision models are a valuable tool in several ecology and evolution subfields. 40	

Nonetheless, knowledge of model assumptions, careful analysis of model outputs, and basic 41	

knowledge of calculation behind each model are crucial for appropriate model application, and 42	

generation of meaningful and reproducible results. Other aspects of vision not incorporated into 43	

these models should be considered when drawing conclusion from model results. 44	

 45	

 46	

Introduction 47	

Animals respond to their surroundings via processing of data acquired by sensory organs (Stevens 48	

2013). The senses can evolve in response to selective pressures from the environment as the 49	

senses can exert selective pressures into other organism morphology and behaviour. E.g. the peak 50	

of sensitivity of marine mammal photoreceptors correlates to the environmental light conditions 51	

(Fasick & Robinson 2000), and flower colours parameters may have evolved in response to the 52	

visual abilities of pollinators (Chittka & Menzel 1992; Dyer et al. 2012). 53	

 54	

There are several differences in the vision of animals – between and sometimes within species –  55	

such as density and distribution of receptors in the retina, visual acuity, and presence of oil-56	

droplets in photoreceptors cells (Cronin et al., 2014). In terms of colour vision, the most obvious 57	

differences are the type of photoreceptors present in the retina (Kelber et al. 2003; Osorio & 58	

Vorobyev 2008). Old world primates, including humans, are trichromats (have three cones 59	

types), with sensitivity peaks in blue, green and red regions of the light spectrum, whereas other 60	

mammals are usually dichromats (Kelber et al. 2003; Osorio & Vorobyev 2008; Jacobs 2009). 61	
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Most non-mammal vertebrates are tetrachromats, most insects are trichromats, and both have a 62	

colour perception that spans into the ultraviolet (Bowmaker 1998; Briscoe & Chittka 2001; 63	

Osorio & Vorobyev 2008). A fascinating illustration of how photoreceptor sensitivity may affect 64	

colour perception comes from human subjects that had gone through cataract treatment. The 65	

sensitivity curve of human blue photoreceptor actually spans into the ultraviolet (UV), but 66	

humans are UV-insensitive because pigments in the eye crystalline filters-out wavelengths below 67	

400nm. Cataract surgery occasionally replaces the crystalline with an UV-transmitting lens, and 68	

those individuals are suddenly able to see the world differently: new patterns appear in flower 69	

petals, some garments originally perceived as black become purple, and black light are turned 70	

into blue light (Stark & Tan 1982; Cornell 2011). 71	

 72	

Therefore, human colour perception is, in most cases, only a crude approximation of other 73	

species colour vision. Thus, studies of animal colouration can clearly benefit from appraisals of 74	

how colour patches are perceived by non-human observers. Moreover, the same colour patch 75	

may be perceived differently not only depending on the observer, but also on the context that this 76	

colour patch is exposed (e.g. background colour and environmental light conditions; (Endler 77	

1978). 78	

 79	

Colour vision models where firstly developed in an attempt to understand the proximate causes 80	

of human colour vision, and emulate some of human visual perceptual phenomena (Kemp et al. 81	

2015). More recently, with the advent of affordable spectrometers for reflectance measurements, 82	

application of colour vision models became common place in ecology and evolution subfields. 83	

Together, some of the most important colour vision papers have been cited over 2800 times 84	

(Endler 1990 (919); Vorobyev & Osorio 1998 (601), Vorobyev et al. 1998 (460); Chittka 1992 85	

(324); Chittka et al. 1992 (128); Endler & Mielke 2005 (445); Google Scholar search on October 86	

31th 2016). A few examples of use of colour vision models include studies of plant-pollinator 87	

interactions (Whitney et al. 2009), evolution of avian plumage (Stoddard & Prum 2008), sexual 88	

selection	(Amy et al. 2008), visual prey lures (Heiling et al. 2003), speciation (Carleton et al. 2005), 89	

mimicry (Stoddard & Stevens 2011), camouflage (Thery & Casas 2002) and aposematism (Siddiqi 90	

2004). 91	

      92	
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As any model, colour vision models are based on certain assumptions. Knowledge of model 93	

strength and limitations are crucial to assure reproducible and meaningful results from model 94	

applications. Thus, the motivation of this paper is twofold: first to facilitate the use of colour 95	

vision models by evolutionary biologists and ecologists; secondly, to compare the consistency of 96	

between model results and how they behave in common scenarios of colour measurements. I did 97	

not aim to give an in depth analysis of the physiology of colour vision, but to provide a practical 98	

guide to the use of colour vision models, and demonstrate their limitations and strengths. 99	

Guidance on other aspects of colour vision models can be found elsewhere (Kelber et al. 2003; 100	

Endler & Mielke 2005; Osorio & Vorobyev 2008; Kemp et al. 2015; Renoult et al. 2017). I begin 101	

with a mathematical description of the steps for calculation of the most common colour vision 102	

models used in ecology and evolution; then I run a series of simulations using colour vision 103	

models. Both the description and the simulations serve as presentation of the accompanying R 104	

package colourvision. 105	

 106	

Colour vision models 107	

In general, colour vision is achieved by neural opponency mechanisms (Kelber et al. 2003; Kemp 108	

et al. 2015), although exceptions to this rule do exist (Thoen et al. 2014). In humans, two colour 109	

opponency mechanisms appear to dominate: yellow-blue and red-green opponency channels 110	

(Kelber et al. 2003). Although colour vision in most other animals studied so far also seem to be 111	

based on opponency mechanisms, the exact opponency channels are usually not known (Kelber 112	

et al. 2003; Kemp et al. 2015). Nonetheless, empirical studies suggest that the exact opponency 113	

channels do not need to be known for a good prediction of behavioural responses by colour 114	

vision models (Chittka et al. 1992; Vorobyev & Osorio 1998; Spaethe et al. 2001; Cazetta et al. 115	

2009).  116	

 117	

Here I present and test four generalist colour vision models used in ecology and evolution: 118	

Chittka (1992) colour hexagon, Endler & Mielke (2005) model, and linear and log-linear versions 119	

of the Receptor Noise Limited model (Vorobyev & Osorio 1998, Vorobyev et al. 1998). Human 120	

colour perception can be divided into two components: chromatic (hue and saturation) and 121	

achromatic (brightness) dimentions. These models are representations of the chromatic 122	

component of colour vision only (Renoult et al. 201). 123	
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 124	

Colour vision models require a minimum of four parameters for calculations: (1) photoreceptor 125	

sensitivity curves, (2) background reflectance spectrum, (3) illuminant spectrum, and (4) the 126	

observed object reflectance spectrum (stimulus). In addition, receptor noise limited models 127	

require photoreceptor noise for each photoreceptor type. Photoreceptor sensitivity curves are 128	

available for several animal taxa. If not available, the sensitivity curves can be estimated using 129	

formula based on wavelength at photoreceptor maximum sensitivity (𝜆"#$; Govardovskii et al. 130	

2000). Background reflectance can be calculated by measuring the reflectance of materials found 131	

in the environment, such as leaves, twigs and tree bark. Alternatively, the background reflectance 132	

can be an achromatic spectrum of low reflectance value. The illuminant can be a reference 133	

spectrum (e.g. CIE standards), or, ideally, measured directly in the field using an irradiance 134	

measurement procedure (Endler 1990; 1993). Reflectance spectra are usually measured using a 135	

spectrometer (see Anderson & Prager 2006 for measurement procedures), but it can also be 136	

collected using photographic and hyperspectral cameras (Stevens et al. 2007; Chiao et al. 2011). 137	

All data must cover the same wavelength range as the photoreceptor sensitivity curves (300-700 138	

nm for most cases). 139	

 140	

I begin with Equations 1-5, which are common to all colour vision models presented here. Then 141	

calculation for each model is presented in a subtopic. I show formulae used to model 142	

trichromatic vision only. Formulae for tetrachromatic vision are available in the supplementary 143	

material. Photoreceptors are grouped by their maximum sensitivity value (𝜆"#$), from shortest to 144	

longest 𝜆"#$. Honeybees workers (Apis mellifera), for instance, have three photoreceptor types 145	

with 𝜆"#$ at ca. 344nm, 436nm and 544nm (Figure 1a; Peitsch et al. 1992). 146	

 147	

The first step is to calculate the total photon capture (𝑄&) of each photoreceptor type (𝑖): 148	

 
𝑄& 𝜆 = 𝐼 𝜆 𝑅 𝜆 𝐶& 𝜆 𝑑𝜆

-..

/..
 (Eq. 1) 

where 𝐼 is the illuminant spectrum reaching the observed object, 𝑅 is the reflectance of the 149	

observed object, 𝐶& is the photoreceptor sensitivity curve of photoreceptor i. The integration is 150	

usually done from 300 to 700nm, but this range can be changed depending on the animal of 151	

interest. Most mammals, for instance, do not capture photons below 400 nm. The second step is 152	
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to calculate the photon catch by each photoreceptor (i) arising from the background reflectance: 153	

 
𝑄0& 𝜆 = 𝐼 𝜆 𝑅0 𝜆 𝐶& 𝜆 𝑑𝜆

-..

/..
 (Eq. 2) 

where 𝐼 and 𝐶& are the same values in equation (1), and 𝑅0 is the background reflectance. In 154	

practice photon catches are done by summation 𝑄& 𝜆 = 𝑘 𝐼 𝜆 ×𝑅0 𝜆 ×𝐶& 𝜆-..
/.. , where k is 155	

the constant representing the interval between measurements, usually 1 nm. The relative 156	

photoreceptor photon catch (𝑞&) is then calculated by: 157	

 
𝑞& =

𝑄&
𝑄0&

 (Eq. 3) 

The rationale behind equation (3), referred as the von Kries transformation, is that 158	

photoreceptors are physiologically adapted to the light coming from the background, and that 159	

animals exhibit colour constancy (Chittka et al. 2014). So that if the environment is rich in 160	

wavelengths at the green region of the light spectrum, photoreceptors sensitive to this wavelength 161	

region will be less responsive. 162	

 163	

Colour hexagon model 164	

The colour hexagon model (Chittka 1992) was formulated for hymenopteran vision. However, 165	

due its general form it can, and has been, applied for other taxa. Photoreceptor output (𝐸) is 166	

given by: 167	

 𝐸& =
𝑞&

𝑞& + 1
 (Eq. 4) 

This means that photoreceptors output (𝐸) will vary from 0 to 1, and its value will increase 168	

asymptotically to the limit of 1. This is done because the relationship between photoreceptor 169	

input-output is non-linear. E-values are then depicted into three vectors evenly distributed (120° 170	

between them). The resultant of receptor outputs is projected into a plan (chromaticity diagram) 171	

using the following formula: 172	

 𝑥 = sin 60° 𝐸/ − 𝐸?  (Eq. 5) 

 173	

 
𝑦 = 𝐸A −

1
2 𝐸? + 𝐸/  (Eq. 6) 

 174	

Endler & Mielke (2005) model 175	
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The model is originally the first step for a statistical approach to study bird colouration as whole, 176	

not as individual colour patches (Endler & Mielke 2005). The model was adapted from 177	

tetrachromatic to trichromatic vision by Gomez (2006).  The first step is to log-transform relative 178	

photon catches: 179	

 𝑓& = ln 𝑞&  (Eq. 7) 

Then,  𝑆& is transformed so that photoreceptor outputs 𝑢 + 𝑠 +𝑚 = 1: 180	

 
𝑢 =

𝑓?
𝑓? + 𝑓A + 𝑓/

 (Eq. 8) 

 181	

 
𝑠 =

𝑓A
𝑓? + 𝑓A + 𝑓/

 (Eq. 9) 

 182	

 
𝑚 =

𝑓/
𝑓? + 𝑓A + 𝑓/

 (Eq. 10) 

 183	

Rationale between equations 8-10 is that only the relative differences in photoreceptor outputs 184	

are used in a colour opponency mechanism. Photoreceptor outputs are projected into a 185	

triangular chromaticity diagram by the following formula (Gomez 2006): 186	

 
𝑥 =

2
3×

3
2 𝑚 − 𝑢  (Eq. 11) 

 187	

 
𝑦 =

2
3 𝑠 −

1
2 𝑢 +𝑚  (Eq. 12) 

 188	

Receptor noise limited models: linear and log-linear versions 189	

The receptor noise limited model was developed to predict thresholds of colour vision. One of 190	

the assumption is that thresholds are given by noise arising at the receptor channels (Vorobyev & 191	

Osorio 1998). The first receptor noise limited model uses a linear relationship between 192	

photoreceptor input (𝑞&) and output (𝑓&) so that (linear version of the receptor noise limited 193	

model; Vorobyev & Osorio 1998): 194	

 𝑓& = 𝑞& (Eq. 13) 

The log-linear version of receptor noise limited model assumes a log-linear relationship between 195	
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photoreceptor input and output (log-linear version of the receptor noise limited model; 196	

(Vorobyev et al. 1998): 197	

 𝑓& = log 𝑞&  (Eq. 14) 

Equation (13) can be used when comparing colours that are very similar, otherwise equation (14) 198	

should be used. Then 𝑓& values are used to find the colour locus (x, y) in a chromaticity diagram 199	

(Hempel de Ibarra et al. 2014):   200	

 201	

 
𝐴 =

1
𝑒AA + 𝑒/A

 (Eq. 15) 

 202	

 
𝐵 =

𝑒AA + 𝑒/A

𝑒?𝑒A A + 𝑒?𝑒/ A + 𝑒A𝑒/ A (Eq. 16) 

 203	

 
𝑎 =

𝑒AA

𝑒AA + 𝑒/A
 (Eq. 17) 

 204	

 
𝑏 =

𝑒/A

𝑒AA + 𝑒/A
 (Eq. 18) 

 205	

 𝑥 = 𝐴 𝑓/ − 𝑓A  (Eq. 19) 

 206	

 𝑦 = 𝐵 𝑓? − 𝑎𝑓/ + 𝑏𝑓A  (Eq. 20) 

 207	

where 𝑒& is the receptor noise of each photoreceptor, from shortest to longest wavelength. To 208	

date few species had their receptor noise (𝑒&) measured directly (Vorobyev & Osorio 1998). In 209	

lack of a direct measurement, 𝑒& can be estimated by the relative abundance of photoreceptor 210	

types in the retina and a measurement of a single photoreceptor noise-to-signal ratio: 211	

 𝑒& =
𝜈
𝜂&

 (Eq. 21) 

Where 𝜈 is the noise-to-signal ratio of a single photoreceptor, and 𝜂& is the relative abundance of 212	

photoreceptor 𝑖 in the retina. Alternatively, 𝑒& may be intensity depend (Renoult et al. 2017): 213	
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𝑒& =

𝜈A

𝜂&
+
1
𝑄&

 (Eq. 22) 

where 𝑄& is the photon catch given by equation (1). Equation (20) is usually valid in high light 214	

intensities, whereas equation (21) usually holds for dim light conditions (Vorobyev et al. 1998; 215	

Vorobyev & Osorio 1998). 216	

  217	

Distance between colour loci in chromaticity diagrams 218	

Distances in chromaticity diagrams represent chromaticity similarities between two colours. The 219	

assumption is that the longest the distance, the more dissimilar two colours are perceived. 220	

Chromaticity distance between pair of reflectance spectra (𝑎 and 𝑏) are found by calculating the 221	

Euclidian distance between their colour loci (𝑥, 𝑦) in the colour space: 222	

 Δ𝑆 = 𝑥# − 𝑥U A + 𝑦# − 𝑦U A (Eq. 23) 

By definition, background reflectance lays at the centre of the background (𝑥 = 0, 𝑦 = 0). 223	

Therefore, the distance of the observed object against the background is given by: 224	

 Δ𝑆 = 𝑥A + 𝑦A (Eq. 24) 

In the receptor noise models, Δ𝑆 between pair of reflectance spectra (𝑎 and 𝑏) can be calculated 225	

directly, without finding colour loci in the colour space (Vorobyev & Osorio 1998): 226	

 
Δ𝑆 =

𝑒?A Δ𝑓/ − Δ𝑓A A + 𝑒AA Δ𝑓/ − Δ𝑓? A + 𝑒/A Δ𝑓? − Δ𝑓A A

𝑒?𝑒A A + 𝑒?𝑒/ A + 𝑒A𝑒/ A  (Eq. 25) 

Where Δ𝑓& is the difference between photoreceptor i output for the reflectance spectrum 𝑎 and 𝑏 227	

(∆𝑓& = 𝑓#X − 𝑓UX ). Using equation (24) will give the same value as calculating Δ𝑆 using equations 228	

(14-19) and then equation (23). In RNL models, Δ𝑆 = 1 equals one unit of just noticeable 229	

difference (JND). That means that, given the experimental conditions (large static object against a 230	

grey homogenous background), JND = 1 is the threshold for object detection; i.e. the minimum 231	

behaviourally discriminable difference between the object and the background. 232	

 233	

Simulations 234	

I modelled the perception of the honeybee (Apis mellifera) using the colour vision models presented 235	

above: Chittka (1992) colour hexagon model (hereafter CH model), Endler & Milke (2005) model 236	

(hereafter EM model), and linear and log-linear versions of the receptor noise model (hereafter 237	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 27, 2017. ; https://doi.org/10.1101/103754doi: bioRxiv preprint 

https://doi.org/10.1101/103754
http://creativecommons.org/licenses/by-nc-nd/4.0/


linear-RNL and log-RNL models (Vorobyev et al. 1998; Vorobyev & Osorio 1998). My aim was 238	

to compare between model results and analyse and illustrate how models behave in different 239	

scenarios. I begin with a basic model setup with simulated data. Then a make a series of changes 240	

to this basic model to investigate how models behave with typical input data used in ecology and 241	

evolution papers. At the end I use real flower reflectance data to compare model results. 242	

 243	

Simulation 01: Basic model setup 244	

I used honeybee worker (Apis mellifera) photoreceptor sensitivity curves (data from Peitsch et al. 245	

1992) available in Chittka & Kevan 2005); Figure 1a). As the background reflectance spectrum I 246	

created a theoretical achromatic reflectance with a constant 7% reflectance across 300 to 700nm 247	

(Figure 1b). As illuminant I used the CIE D65, a reference illuminant that correspond to midday 248	

open-air conditions (Figure 1c). For the receptor noise models I used measurements of honeybee 249	

photoreceptor noise (0.13, 0.06 and 0.12 for short, medium and long-wavelength photoreceptors; 250	

data from Peitsch 1992 available in Vorobyev & Brandt 1997). As the stimulus reflectance 251	

spectra I generated reflectance curves using a logistic function: 252	

 
𝑅 𝜆 =

𝐿
1 + 𝑒Z[ \Z\]X^

 (Eq. 26) 

Where 𝑅 is the reflectance value at wavelength 𝜆,  𝐿 gives the curve maximum reflectance value 253	

(%), 𝑘 gives the steepness of the curve, and 𝜆"&_ is the wavelength (nm) of midpoint. The logistic 254	

curve is a typical reflectance curve of many animal colour patches. I used a maximum value of 255	

𝐿 = 50% reflectance and a steepness of 𝑘 = 0.04. I generated curves with midpoints varying 256	

from 300 to 700 nm with 5 nm intervals, in a total of 81 reflectance spectra (Figure 1d). For each 257	

model I calculated photoreceptor outputs, colour loci (𝑥 and 𝑦), and the chromatic distance to 258	

the background (Δ𝑆) of each reflectance spectra using equations (1-24). In addition, as a 259	

supplementary material, I ran the same simulations with a tetrachromatic vision, and using a 260	

Gaussian function to generate the stimulus reflectance spectra (see Electronic Supplementary 261	

Material).  262	

 263	

Simulation 02: 10 percent point added to reflectance values. 264	

In the second simulation I added 10 percent point to the stimulus reflectance spectra (Figure 2a). 265	

My aim was to analyse how a relatively small change in reflectance curves affect model results. 266	
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An increase in overall reflectance value can be an artefact of spectrometric measurement error 267	

(for guidance on spectrometric reflectance measurements see Anderson & Prager 2006). 268	

 269	

Simulation 03: achromatic reflectance spectra 270	

Colour vision models are designed to deal with chromatic spectra (reflectance spectra that 271	

produces differences in photoreceptor outputs). However, some animal colours have reflectance 272	

spectra with a relatively constant reflectance value from 300 to 700nm, which we perceive as 273	

white, grey and black patches (achromatic variation). These type of spectra are sometimes 274	

modelled into colour vision models. In this simulation I generated a series of achromatic spectra 275	

with constant reflectance values from 300-700nm. I generated 10 reflectance spectra with 276	

reflectance values from 5% to 95%, with 10 percentage point intervals (Figure 2b).  277	

 278	

Simulation 04: Achromatic reflectance spectra and chromatic background reflectance spectrum. 279	

In the basic model I used an achromatic reflectance spectrum (7% reflectance from 300 to 280	

700nm). In practice, however, most studies that apply colour vision models use chromatic 281	

reflectance backgrounds, such as leaf (e.g. Vorobyev et al. 1998), or an average of background 282	

material reflectance spectrum (e.g. Gawryszewski & Motta 2012). Models are constructed so that 283	

the background reflectance spectrum lie at the centre of the colour space. Vorobyev and Osorio 284	

(1998) specifically state that their linear receptor noise model is designed to predict perception of 285	

large targets, in bright light conditions and against an achromatic background. Despite of that, 286	

given that photoreceptors adapt to the light environment condition, usage of chromatic 287	

background is probably reasonable. Therefore, in this simulation I used the same achromatic 288	

reflectance spectra from simulation 03, but instead of having an achromatic background I used a 289	

chromatic background. The background is the average reflectance of leafs, leaf litter, tree bark 290	

and twigs collected in an area of savanna vegetation in Brazil (data from Gawryszewski & Motta 291	

2012). 292	

 293	

Real reflectance data: comparison between models 294	

In this setup my aim was to compare model results using real reflectance data. I used 858 295	

reflectance spectra from flower parts collected worldwide and deposited in the Flower 296	

Reflectance Database (FReD; Arnold et al. 2010). I used only spectrum data that had a 297	
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wavelength range from 300nm to 700nm. Data were then interpolated to 1nm intervals and 298	

negative values converted to zero. I used the same reflectance background from simulation 04, 299	

and other model parameters identical to the basic model setup. I compared models results 300	

visually, and by testing the pairwise correlation between model’s Δ𝑆 values. I used the Spearman 301	

correlation coefficient because data did not fulfil assumptions for a parametric test. 302	

 303	

Colourvision: R package for colour vision models and related functions 304	

All calculation and figures presented here were performed using the colourvision R package. The 305	

package has functions for dichromatic, trichromatic and tetrachromatic linear and log-linear 306	

versions of the receptor noise limited model (Vorobyev et al. 1998; Vorobyev & Osorio 1998); 307	

and trichromatic and tetrachromatic versions of Chittka (1992) colour hexagon and Endler and 308	

Mielke (2005) models. Results from these models can be easily projected into their chromaticity 309	

diagrams for trichromatic and tetrachromatic vision. The colourvision package complements and 310	

can be used together with pavo R package for colour analyses (Maia et al. 2013), although it does 311	

not depend on it. 312	

 313	

Results 314	

Simulation 01: Basic model 315	

Basic model results projected into chromaticity diagrams show differences between model 316	

predictions of colour perception for the same reflectance spectrum (Figure 3). CH model and the 317	

the linear-RNL model follow a similar path: data points follow a circular path that begins and 318	

ends near the centre of the colour diagram (Figure 3a and 3c). In the EM model, points follow 319	

two lines increasing in opposite directions, with data points reaching values outside colour space 320	

limits (Figure 3b). In the log-RNL model, points begin at the centre of the colour space and 321	

follow a curve increasing in distance from the centre of the colour space (Figure 3d). 322	

 323	

CH model estimates a bell shaped Δ𝑆 curve against midpoint wavelength, with maximum ΔS for 324	

the reflectance curve with midpoint at 535nm (Figure 4a). Individual photoreceptors follow a 325	

sigmoid curve, with maximum values at short midpoint wavelengths and minimum values at long 326	

midpoint wavelengths (Figure 4a). EM model estimates unrealistic ΔS-values for reflectance 327	

curves with midpoints between 450-550nm (Figure 4b). A maximum Δ𝑆 = 116 is reached at 328	
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490nm midpoint wavelength (Figure 4b). Photoreceptor output also reach unrealistic negative 329	

values, and values above 1 (Figure 4b). This is consequence of equations 7-10: when 𝑞& is below 330	

1, the ln-transformation generates negative values. Consequently, the denominator in equations 331	

8-10 may reach values close to zero, which causes photoreceptor outputs to tend to infinity. Log-332	

RNL model predicts a sigmoid ΔS curve, increasing from short to long midpoint wavelengths, 333	

reaching a maximum ΔS at at 700 nm (Figure 4d). Comparably to the EM model, the log-RNL 334	

model generates unrealistic negative photoreceptor excitation values (Figure 4d). Again, this 335	

happens because when 𝑞& is below 1 the log-transformation generates negative values (eq. 14). 336	

The linear-RNL version estimates a bell shaped ΔS curve, with a maximum Δ𝑆 at 470nm 337	

midpoint wavelength (Figure 4c). Photoreceptors present a sigmoid excitation curve, with 338	

maximum values at short midpoint wavelengths (Figure 4c). 339	

 340	

Simulation 02: 10 percent point added to reflectance values. 341	

In this setup, models are more congruent in their results. Their chromaticity diagram indicates 342	

similar relative position of reflectance spectra between models (Figure 5). All of them estimate a 343	

bell shaped Δ𝑆 curve, with maximum values around 500 nm midpoint wavelength (Figure 6). CH 344	

model predicts a bell shaped ΔS curve with maximum Δ𝑆 peaking at 510nm (25 nm difference to 345	

the original model; Figure 6a). However, in comparison to the basic model there is an overall 346	

decrease in Δ𝑆 (Figure 3a and 6a). This happens because eq. 4 makes E-values non-linear as 𝑞& 347	

increases. Therefore, the relative differences between photoreceptors decreases and, as a 348	

consequence, ΔS decreases. Contrary to the basic model, EM model now estimates realistic ΔS 349	

and photoreceptor excitation values, with a peak at 540nm (Figure 6b). With a 10 percentage 350	

point increase in the reflectance, eq. 3 does not produce values below 1. As a consequence, eqs. 351	

7-10 do not generate negative values and the denominator cannot reach near zero values. The 352	

same pattern occurs in the log-RNL model: no negative values are generated by eq. 14. Model 353	

estimates a bell shaped curve peaking at 505 nm (Figure 6d). The linear RNL model generates 354	

identical ΔS and colour loci values to the basic model. The 10 percentage point increase causes 355	

an increases in photoreceptor excitation values (Figure 6c). However, because the relative 356	

differences between photoreceptors remain the same, and the relationship between 𝑞&  and 𝑓 is 357	

linear (no transformation of 𝑞&) there is no difference in ΔS between the original and this model 358	

setup (Figures 4c and 6c). 359	
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 360	

Simulation 03: Achromatic reflectance spectra. 361	

With achromatic reflectance spectra all datapoints are in the centre of the colour diagram. 362	

Consequently, ΔS for all models and all reflectance values equals zero. This happens because all 363	

three photoreceptors respond equally to the achromatic reflectance spectra. Nonetheless, the type 364	

of response varies between models. In the CH model, photoreceptor output increases 365	

asymptotically as reflectance increases, which is result of eq. 4. In the EM model, photoreceptor 366	

outputs are not affected by variation in reflectance values. This happens because EM model 367	

considers only the relative differences between photoreceptors response (eqs. 8-10). In the RNL 368	

models, photoreceptor output increases linearly in the linear version, and asymptotically in the 369	

log version.  370	

 371	

Simulation 04: Achromatic reflectance spectra and chromatic background reflectance spectrum. 372	

Model results of achromatic reflectance spectra against a chromatic background differ to the 373	

model predictions when the background is achromatic (Figure 7 and Figure 8). The chromatic 374	

background causes differences in photoreceptor outputs. Consequently, achromatic reflectance 375	

spectra do not lay at the centre of the colour spaces. The CH model shows a maximum ΔS 376	

values of 0.31 at 5% reflectance achromatic spectrum (Figure 8a). ΔS values then decrease as the 377	

reflectance value of achromatic spectra increases (Figure 8a). Photoreceptor output values 378	

converge to the asymptote as the reflectance value of achromatic spectra increases (Figure 8a). 379	

EM model produce spurious values at 5% reflectance achromatic spectrum because it generates 380	

negative photoreceptor output values (Figure 8b). From 15% beyond, ΔS values then decrease as 381	

the reflectance value of achromatic spectra increases (Figure 8b). The linear-RNL model shows a 382	

linear increase in ΔS values as the reflectance value of achromatic spectra increases (Figure 8c). 383	

Similarly, photoreceptor outputs also increase linearly as as the reflectance value of achromatic 384	

spectra increases, but with different slopes for each photoreceptor type (Figure 8c). Contrary to 385	

other models, ΔS-values in the log-RNL model do not change with varying reflectance value of 386	

achromatic spectra (Figure 8d). Although photoreceptor outputs increase as reflectance value of 387	

achromatic spectra increases (Figure 8d), the difference between photoreceptor outputs remains 388	

the same. Consequently, ΔS-values do not change. 389	

 390	
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Simulation 05: Real reflectance data. 391	

When real flower reflectance spectra are used, models also give different relative perception for 392	

the same reflectance spectrum. The results of the CH model and the log-RNL model are similar 393	

both qualitatively and quantitatively: colour loci projected into the colour space (Figure 9) show 394	

similar relative position of reflectance spectra; and there is a high correlation score between Δ𝑆 395	

values (Figures 9a and 9d; ρ=0.884; N=858; S=12165000; p<0.001). Even though many EM 396	

points lay outside the chromaticity, results suggest a high agreement between CH and EM 397	

models (Figure 9a and 9b; ρ=0.889; N=858; S=11718000; p<0.001). There was a moderate 398	

agreement between the linear and log version of the RNL model (Figures 9c and 9d; ρ=0.434; 399	

N=858; S=59623000; p<0.001, P<0.001), and between EM and log-RNL models (Figure 9b 400	

and 9d; ρ=0.662; N=858; S=35572000; p<0.001). There was a poor agreement between the 401	

linear-RNL and both EM models (Figure 9b and 9c; (ρ=-0.264; N=858; S=133060000; 402	

p<0.001), and CH models (Figure 9a and 9c; ρ=0.037; N=858;  S=101370000; p=0.278) 403	

 404	

 405	

Discussion 406	

Application of colour vision models are now widespread in several fields of ecology and 407	

evolutionary biology. However, simulations presented here show that under certain conditions 408	

these models do not agree, and can produce spurious results. As any model, colour vision models 409	

have been developed based on a set of assumptions. Knowledge of model strength and limitation 410	

are crucial to the correct application and interpretation of colour vision model results.  411	

 412	

Colour vision models, in special models that are log-transformed (eqs. 7 and 14) and convert 413	

photoreceptor output to relative values (eqs. 8-10) are prone to produce unrealistic results when 414	

the observed reflectance generates a lower response than the background (i.e. 𝑄& < 	𝑄0&). The 415	

log-transformation (and the transformation in the CH model) is behaviourally justified due to the 416	

Weber–Fechner law of psychophysics (Renoult et al. 2017). The law states that the perceived 417	

difference between a pair of stimuli has a non-linear relationship with their absolute difference. 418	

I.e., humans perceive 150g and 100g weights as more dissimilar than 1150g and 1100g weights. 419	

This is illustrated by the photoreceptor outputs in Figure 7. In this simulation the achromatic 420	

reflectance spectrum increases from 10% to 90% by 10 percept point steps. In the linear-RNL 421	
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model, photoreceptor outputs respond linearly to the 10% increase, so that the difference in 422	

receptor outputs is the same between the 10% vs 20% reflectance spectra as between the 80% vs 423	

90% reflectance spectra. In the log-RNL model, however, the difference between 10% vs. 20% is 424	

greater than the difference between 80% vs 90%. 425	

 426	

In addition, low reflectance achromatic spectra (i.e. dark colour patches) may also produce 427	

spurious values when the background is chromatic (Figure 8), because at small reflectance values, 428	

small differences between photoreceptor outputs may be large in proportion to photoreceptor 429	

outputs, and consequently generate large Δ𝑆 values. Interpretation of model results depends on 430	

detailed knowledge of how models are calculated. Inspection of individual photoreceptor outputs 431	

can give insights into colour loci (𝑥, 𝑦) and chromaticity distance (∆𝑆) values. 432	

 433	

Comprehension of the physiology of vision of the animal observing the scene is also imperative. 434	

Honeybees, for instance, use colour vision only when the observed object subtend a visual angle 435	

larger than ca. 15° (Giurfa et al. 1996). Moreover, bees appear to completely ignore brightness 436	

when using the chromatic channel (Giurfa et al. 1997), so that equation (20) holds even in low 437	

light conditions (Vorobyev & Osorio 1998). In humans, on the other hand, the achromatic 438	

dimension appears to dominate in dim light conditions (King-Smith & Carden 1976; Vorobyev 439	

& Osorio 1998). These models also do not incorporate higher order cognition abilities that may 440	

affect how colour are perceived (Dyer 2012). In bees, for instance, previous experience, learning 441	

and experimental conditions may affect their behavioural discriminability thresholds (Chittka et 442	

al. 2003; Dyer & Chittka 2004; Giurfa 2004; Dyer et al. 2011; Dyer 2012); and in humans the 443	

ability to discriminate between colours is affected by the existence of linguistic differences for 444	

colours (Winawer et al. 2007). 445	

 446	

A common misconception arises from the use of detectability/discriminability thresholds. The 447	

RNL model for instance, predicts well the detectability of monochromatic light against a grey 448	

background. For this model, and given the experimental condition, a Δ𝑆 = 1 equals one unit of 449	

just noticeable difference (JND; Vorobyev & Osorio 1998). Stimuli with values equal or above 1 450	

can be detectable against the background, under the experimental condition. However, this 451	

threshold is not fixed. It can vary depending on the background, on the chromatic difference 452	
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between the object and the background, and on the subject previous experience. For zebra 453	

finches, for instance, the same pair of similar red object have a discriminability threshold of ca. 1 454	

JND when the background is red, but much higher when the background is green (Lind 2016). 455	

The same study emphasises the difference between detecting one object against the background 456	

and discriminating two similar objects: detection thresholds are usually higher than 457	

discrimination thresholds (as measured by the RNL model; Lind 2016). Given the variation in 458	

thresholds, it is misleading to interpret Δ𝑆 values as binary variable: i.e. above the threshold, 459	

detectable; below threshold, not detectable. Instead, use of Δ𝑆 values as they are, a continuum, 460	

makes the interpretation more realistic. E.g., a stimulus with JND = 2 is likely chromatically 461	

similar to the background, and is possibly more often not detected than a stimulus with JND = 5. 462	

 463	

In addition, models presented here are pairwise comparison between colour patches, which do 464	

not incorporate the complexity of an animal colour pattern composed by a mosaic of colour 465	

patches of variable sizes. Endler and Mielke (2005) provide a methodological and statistical tool 466	

that can deal with a cloud of points representing an organism colour patches. Use of 467	

hyperspectral cameras or adapted DSLR cameras may facilitate the analysis of animal 468	

colouration as a whole (Stevens et al. 2007; Chiao et al. 2011). Other aspects that may be 469	

important when detecting a target, such as size, movement, and light polarization (Cronin et al. 470	

2014), are also not incorporated into those models. 471	

 472	

In conclusion, colour vision models are extremely useful and can provide insightful results on 473	

ecological and evolutionary aspects of colour in nature. Nonetheless, they should be regarded as 474	

an approximation of the perceived differences between pairs colours by a particular organism. 475	

Good application of colour vision models depends on the inspection of photoreceptor output 476	

values, knowledge of model assumptions, comprehension of the mathematical formula behind 477	

each model and familiarity with mechanisms of colour vision of the animal being modelled. 478	

Comparison of model results with field and laboratory based behavioural experiments are also 479	

crucial to complement and validate model results. 480	

 481	
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 622	

Figures 623	

 624	
 625	

Figure 1. Basic setup used for colour vision model simulations. (a) Honeybee (Apis mellifera) 626	

photoreceptor sensitivity curves (data from Peitsch et al. 1992 available in Chittka & Kevan 627	

2005); (b) Achromatic background reflectance spectrum; (c) CIE D65 standard daylight 628	

illuminant; and (d) Reflectance spectra generated by a logistic function with midpoints varying 629	

from 300 to 700nm at 5nm intervals. Spectrum colours are arbitrary. In black is shown a 630	

reflectance curve with midpoint at 500nm.  631	
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 633	
Figure 2. Changes from the basic setup used for colour vision model simulations.  (a) Ten percent 634	

point added to the original reflectance spectra with midpoints varying from 300 to 700nm at 635	

5nm intervals; (b) Achromatic reflectance spectra, with reflectance values from 5% to 95%, at 10 636	

percent point intervals; (c) Background reflectance spectra calculated from the average 637	

reflectance of leafs, leaf litter, grasses and tree bark collected in the Brazilian savanna (data from 638	

Gawryszewski and Motta 2012); (c) Reflectance spectra of 859 flowers collected worldwide (data 639	

from the Flower Reflectance Database; Arnold et al. 2010). 640	

  641	

300 400 500 600 700

0
20

40
60

80
10
0

R
ef
le
ct
an
ce
(%
)

Wavelength(nm)

a)

300 400 500 600 700

0
20

40
60

80
10
0

R
ef
le
ct
an
ce
(%
)

Wavelength(nm)

b)

300 400 500 600 700

0
20

40
60

80
10
0

R
ef
le
ct
an
ce
(%
)

Wavelength(nm)

c)

300 400 500 600 700

0
20

40
60

80
10
0

R
ef
le
ct
an
ce
(%
)

Wavelength(nm)

d)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 27, 2017. ; https://doi.org/10.1101/103754doi: bioRxiv preprint 

https://doi.org/10.1101/103754
http://creativecommons.org/licenses/by-nc-nd/4.0/


 642	
Figure 3.  Chromaticity diagrams of the basic setup of colour vision model simulations: Chittka 643	

(1992) colour hexagon (CH), Endler & Mielke (2005) colour triangle (EM), and linear and log-644	

linear Receptor Noise Limited models (Linear-RNL and Log-RNL; Vorobyev & Osorio 1998; 645	

Vorobyev et al. 1998). Colours correspond to reflectance spectra from Figure 1d. 646	

  647	

E2

E1
E3

a) CH

u

s

m

b) EM

-40 0 40

-4
0

0
40

X

Y

c) Linear-RNL

-20 0 20

-2
0

0
20

X

Y
d) Log-RNL

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 27, 2017. ; https://doi.org/10.1101/103754doi: bioRxiv preprint 

https://doi.org/10.1101/103754
http://creativecommons.org/licenses/by-nc-nd/4.0/


 648	
 649	

Figure 4. ΔS and photoreceptor outputs of the basic setup of colour vision model simulations 650	

(Figure 1): Chittka (1992) colour hexagon (CH), Endler & Mielke (2005) colour triangle (EM), 651	

and linear and log-linear Receptor Noise Limited models (Linear-RNL and Log-RNL; Vorobyev 652	

& Osorio 1998; Vorobyev et al. 1998).  Variation in ΔS-values as a function of reflectance spectra 653	

with midpoints from 300 to 700nm (top row). Photoreceptor output values as a function of the 654	

same reflectance spectra (bottom row). Violet, blue and green colours represent short, middle and 655	

long λmax photoreceptor types. Vertical lines represent midpoint of maximum ΔS-values. 656	
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 658	
Figure 5.  Chromaticity diagrams of the second simulation – 10 percent point added to 659	

reflectance values: Chittka (1992) colour hexagon (CH), Endler & Mielke (2005) colour triangle 660	

(EM), and linear and log-linear Receptor Noise Limited models (Linear-RNL and Log-RNL; 661	

Vorobyev & Osorio 1998; Vorobyev et al. 1998). Colours correspond to reflectance spectra from 662	

Figure 2a. 663	
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 666	
 667	
 668	

Figure 6. ΔS and photoreceptor outputs of the second setup of colour vision model simulations -669	

10 percent point added to stimulus reflectance spectra: Chittka (1992) colour hexagon (CH), 670	

Endler & Mielke (2005) colour triangle (EM), and linear and log-linear Receptor Noise Limited 671	

models (Linear-RNL and Log-RNL; Vorobyev & Osorio 1998; Vorobyev et al. 1998). Variation 672	

in ΔS-values as a function of reflectance spectra with midpoints from 300 to 700nm (top row). 673	

Photoreceptor output values as a function of the same reflectance spectra (bottom row). Violet, 674	

blue and green colours represent short, middle and long λmax photoreceptor types. Vertical lines 675	

represent midpoint of maximum ΔS-values. For comparison, scales are the same as in Figure 4. 676	

  677	

0.
0

0.
5

1.
0

Δ
S

a) CH

0.
0

0.
5

1.
0

b) EM

0
20

40 c) Linear-RNL

0
10

20 d) Log-RNL

300 500 700

0.
0

0.
5

1.
0

Midpoint(nm)

P
ho

to
re

ce
pt

or
 o

ut
pu

t

-1
0

1

0
5

10

-5
0

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 27, 2017. ; https://doi.org/10.1101/103754doi: bioRxiv preprint 

https://doi.org/10.1101/103754
http://creativecommons.org/licenses/by-nc-nd/4.0/


 678	
 679	

Figure 7. ΔS and photoreceptor outputs of the third setup of colour vision model simulations – 680	

achromatic stimulus against achromatic background: Chittka (1992) colour hexagon (CH), 681	

Endler & Mielke (2005) colour triangle (EM), and linear and log-linear Receptor Noise Limited 682	

models (Linear-RNL and Log-RNL; Vorobyev & Osorio 1998; Vorobyev et al. 1998).  Variation 683	

in ΔS-values as a function of spectra with achromatic reflectance from 5% to 95% (top row). 684	

Photoreceptor output values as a function of the same reflectance spectra (bottom row). 685	

Photoreceptors are colour coded by their λmax photoreceptor, however they do not appear 686	

because are all superimposed. With the exception of c) Linear-RNL, scales are the same as in 687	

Figure 4.  688	

0.
0

0.
5

1.
0

Δ
S

a) CH

0.
0

0.
5

1.
0

b) EM

0
20

40 c) Linear-RNL

0
10

20 d) Log-RNL

0 50 100

0.
0

0.
5

1.
0

Achromatic reflectance (%)

P
ho

to
re

ce
pt

or
 o

ut
pu

t

-1
0

1

0
5

10
15

-5
0

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 27, 2017. ; https://doi.org/10.1101/103754doi: bioRxiv preprint 

https://doi.org/10.1101/103754
http://creativecommons.org/licenses/by-nc-nd/4.0/


 689	
 690	

Figure 8. ΔS and photoreceptor outputs of the fourth setup of colour vision model simulations – 691	

achromatic stimulus against chromatic background: Chittka (1992) colour hexagon (CH), Endler 692	

& Mielke (2005) colour triangle (EM), and linear and log-linear Receptor Noise Limited models 693	

(Linear-RNL and Log-RNL; Vorobyev & Osorio 1998; Vorobyev et al. 1998).  Variation in ΔS-694	

values as a function of spectra with achromatic reflectance from 5% to 95% (top row). 695	

Photoreceptor output values as a function of the same reflectance spectra (bottom row). Violet, 696	

blue and green colours represent short, middle and long λmax photoreceptor types. With the 697	

exception of c) Linear-RNL, scales are the same as in Figure 4.  698	
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 699	

 700	
Figure 9.  Flower reflectance spectra (N=858) projected into chromaticity diagrams: Chittka 701	

(1992) colour hexagon (CH), Endler & Mielke (2005) colour triangle (EM), and linear and log-702	

linear Receptor Noise Limited models (Linear-RNL and Log-RNL; Vorobyev & Osorio 1998; 703	

Vorobyev et al. 1998). To facilitate model comparison, point colours correspond to chromaticity 704	

distances in the CH chromaticity diagram. 705	
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