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Abstract

Inferring relatedness from genomic data is an essential component of genetic association studies, popula-
tion genetics, forensics, and genealogy. While numerous methods exist for inferring relatedness, thorough
evaluation of these approaches in real data has been lacking. Here, we report an assessment of 12 state-
of-the-art pairwise relatedness inference methods using a dataset with 2,485 individuals contained in
several large pedigrees that span up to six generations. We find that all methods have high accuracy
(∼92% − 99%) when detecting first and second degree relationships, but their accuracy dwindles to less
than 43% for seventh degree relationships. However, most IBD segment-based methods inferred seventh
degree relatives correct to within one relatedness degree for more than 76% of relative pairs. Overall,
the most accurate methods are ERSA and approaches that compute total IBD sharing using the output
from GERMLINE and Refined IBD to infer relatedness. Combining information from the most accurate
methods provides little accuracy improvement, indicating that novel approaches—such as new meth-
ods that leverage relatedness signals from multiple samples—are needed to achieve a sizeable jump in
performance.

The recent explosive growth in sample sizes of genetic studies has led to an increasing proportion of individ-
uals with at least one close relative in a dataset, necessitating relatedness detection. As the number of pairs
in a sample grows quadratically in its size, for a constant rate of relatedness among pairs, proportionately
more individuals will have close relatives in large datasets. This pervasiveness has relevance to nearly every
genetic analysis performed in moderate to large scale data, including trait mapping and population genetics.
In particular, inferring relatedness between samples1–3 is essential to avoid spurious signals in genetic asso-
ciation studies4–6; empowers linkage analysis by enabling the correct specification of pedigree structures7–9;
facilitates identification of relatives in the context of forensic genetics1,10,11; and is needed to account for
or remove relatives in population genetic analyses12–14. Relatedness estimation has also drawn the interest
of the general public via companies that offer genetic testing services and advertise their ability to find
customers’ relatives, thus allowing individuals to explore their ancestry and genealogy. The broad utility
of relatedness detection has motivated the development of numerous methods for such inference. These
methods work by estimating the proportion of the genome shared identical by descent (IBD) between indi-
viduals1,3 or a closely-related quantity, where an allele in two or more individuals’ genomes is said to be IBD
if those individuals inherit it from a recent common ancestor2. Characterizing the true relatedness of two or
more samples is challenging for several reasons, including chance sharing of alleles between individuals who
are only distantly related, and the fact that the distributions of IBD proportions for different relatedness
classes overlap2,15 (e.g., first cousins and half-first cousins).

Motivated by the substantial need to identify relatives in modern samples, we present an evaluation of
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Degree Number of Pairs

1 4,969

2 6,625

3 8,241

4 7,636

5 3,794

6 816

7 73

Unrelated 3,051,598

Total 3,083,752

Table 1: Number of pairs of individuals in the SAMAFS dataset that passed sample filters (Supplemental
Note) and are reported to have relatedness between first and seventh degree or as unrelated. We combined
reported monozygotic (MZ) twins with the set of first degree relatives.

12 state-of-the-art pairwise relatedness methods, each capable of scaling to analyze thousands of individuals,
including seven that directly infer genome-wide relatedness measures16–22 and five IBD segment detection
methods23–27 that we utilized to infer these quantities. To assess these methods, we used SNP array geno-
types from Mexican American individuals contained in large pedigrees from the San Antonio Mexican Amer-
ican Family Studies (SAMAFS)28–30. Our analysis sample included 2,485 individuals genotyped at 521,184
SNPs (Supplemental Note) within pedigrees that span up to six generations, and with genotype data from as
many as five generations of individuals. Given this large sample, including 13 pedigrees with >50 individuals
(Supplemental Figure 1), numerous relatives exist, and we used these to evaluate the inference methods. In
particular, we analyzed >3,700 pairs of individuals within each of the first through fifth degree relatedness
classes, 816 and 73 sixth and seventh degree relatives, respectively, and more than three million pairs of
individuals that are reported as unrelated (Table 1). Prior evaluations of relatedness inference methods
included only a subset of the methods we evaluate, and either considered simulated data17,18,20–22 (which
may not fully capture the complexities of real data), used small sample sizes17,18,22,31, or did not consider
sixth and seventh degree relatives17,18,20,22. This analysis of real data from large numbers of up to sixth
degree relatives, as well as dozens of seventh degree relative pairs, provides a comprehensive evaluation of
existing pairwise relatedness inference methods.

The performance metric for this study is the rate at which each method infers the pairs of samples to have
the same degree of relatedness as that reported in the SAMAFS pedigrees. These reported relationships are
generally reliable, and we filtered out relative pairs whose degree of relatedness is potentially inflated due
to apparent relatedness on ancestral lineages reported as unrelated (Supplemental Note). Some programs
directly infer the degree of relatedness19, while others infer a kinship coefficient17,18,20 or a coefficient of
relatedness16,22 (which is two times the kinship coefficient32), and the remainder instead detect IBD seg-
ments23–27 (Table 2). To infer the degree of relatedness from an estimated kinship coefficient, we use the
mapping recommended in the KING paper17 (Supplemental Table 1), which are ranges that use differences
in powers of two for the relatedness degree intervals and are generally consistent with simulations17.

For IBD detection methods that report the number of IBD segments shared at a locus23,26—denoted IBD0,
IBD1, and IBD2 for the corresponding number of copies that are IBD—it is straightforward to calculate
a kinship coefficient2. This coefficient, φij , between a pair of samples i, j denotes the probability that
a randomly selected allele in individual i is IBD with a randomly selected allele from the same genomic

position in j. Let k
(0)
ij , k

(1)
ij , and k

(2)
ij denote the proportion of their genomes that individuals i, j share IBD0,

IBD1, and IBD2 respectively; then the kinship coefficient is φij =
k
(1)
ij

4 +
k
(2)
ij

2 . The proportions k
(1)
ij and k

(2)
ij

are simply the sum of the genetic lengths of the IBD1 and IBD2 segments, respectively, between samples i, j
divided by the total genetic length of the genome analyzed. For the IBD detection methods24,25,27 that do
not distinguish between regions that are IBD1 from IBD2, the proportion of the genome that is inferred to
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be IBD0 provides an alternate means of estimating the degree of relatedness (Supplemental Table 1), with
the ranges of values here again from the KING paper17. We classified pairs of individuals with lower kinship
coefficients or higher IBD0 rates than indicated for the eighth degree range as unrelated.

The results from the analysis are shown in Figure 1, which depicts the proportion of sample pairs inferred
to be within each of the degree classes that we considered (first through eighth degree and unrelated),
separated according to their reported relatedness degree. All methods perform well when inferring first and
second degree relatives, with accuracies ranging from 98.8% to 99.5% for first degree relatives, and from
92.8% to 98.6% for second degree relatives. However, the methods’ accuracies diverge for more distant
relatedness, with the IBD segment-based methods generally having higher accuracy than those that rely
on allele frequencies of independent markers. For example, for sixth and seventh degree relatives, the
top performing IBD segment-based method has 58.1% and 42.5% accuracy, respectively, while the highest
performing allele frequency-based method has an accuracy of only 44.6% and 27.4%, respectively. This
general pattern applies to fourth and fifth degree relatives as well, although with less discrepancy between
these two inference approaches for these closer relatives. The decreased inference accuracy of all methods
for higher relatedness degrees is likely due to the exponential drop in mean pairwise IBD shared and an
increased coefficient of variation for more distant relationships15,36,37.

While the accuracies for exact inference of distant relatives are fairly low among all methods, the IBD
segment-based methods (excluding fastIBD) are correct to within one degree of the reported relationship
at a rate of ≥95.3% for sixth degree relatives and ≥76.7% for seventh degree relatives. At the same time,
ERSA, GERMLINE, and Refined IBD classify ≥80.4% pairs of unrelated individuals correctly, and several
other methods also correctly infer ∼80% pairs of unrelated individuals, although many of these methods
perform poorly when classifying reported relatives. The inference of ∼20% of the more than three million
unrelated samples as eighth degree or closer relatives suggests the presence of a non-trivial fraction of
unreported relationships in these data. Alternatively, and perhaps more likely, many of these may be false
positive relationships, as distinguishing pairs of unrelated individuals from fairly distant relatives is difficult.
With the lower bound for eighth degree relatives being a total of 19.5 cM of IBD segments shared between
individuals, spurious inferences at this level are possible, with IBD segments detected in regions subject
to historical selection38 or with low SNP density potentially leading to inflated IBD proportions. In that
regard, we note that some analyses of IBD reweight segments that overlap regions with excess IBD sharing in
order to improve the reliability of overall sharing rates39,40. Additionally, analyses that consider relatedness
among the parents and/or children of inferred distant relatives have the potential to avoid some of these
issues, and indeed, the recently developed relatedness classification method PADRE does analyze familial
relatedness signals and shows improved accuracy41.

Overall, the most accurate programs for first through seventh degree and unrelated classification are ERSA,
GERMLINE, and Refined IBD—all IBD segment-based methods. The improved accuracy of these methods
may be due to their focus on identifying long stretches of identical haplotype segments that more readily
discriminate recent shared relatedness from chance sharing of alleles. The IBDseq method, while performing
well for inferring first through seventh degree relatives, infers a much larger fraction of pairs of individuals
as related that are reported as unrelated, suggesting it may be biased towards detecting higher levels of IBD
sharing than the other methods.

Noting that the SAMAFS consist of admixed Mexican American individuals, we examined the accuracy
results among the allele frequency-based methods, several of which account for population structure. While
IBD segment-based methods generally have the best performance and do not directly account for population
structure, inferring IBD segments is computationally demanding, and considering the performance of more
efficient allele frequency-based methods is of interest. Among all these methods, PC-Relate has the highest
accuracy across all levels of relatedness, and it accounts for population structure using principal components
(PCs) inferred from a set of samples with low relatedness22. However, PREST-plus has only slightly lower
performance than PC-Relate even though it does not account for population structure. PREST-plus imple-
ments a hidden Markov model (HMM) that enables it to leverage linkage signals to identify regions that
are likely to be IBD between samples21. Therefore, although PREST-plus does not explicitly detect IBD
segments, it leverages similar signals to the IBD segment-based approaches, which might enable it to be
less susceptible to biases caused by ignoring the effects of population structure. Relatedness estimation that
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Method Version
Citation
Number

Type Output Parallelized?
Runtime

(×cores used
if >1)

Requires
independent

markers

Input required
from

outside program

Accounts for
population
structure

ERSA 2.0 19 IBD segment-based Degree of
relatedness

N 14.3h +
96.3h (×16)*

N IBD segments NA

fastIBD Beagle 3.3.2 24 IBD segment-finding IBD segments N 55.2h N NA NA

GERMLINE
(-haploid)

1.5.1 23
IBD segment-finding

(Distinguishes IBD1 and
IBD2)

IBD segments N 19.2m +
96.0h (×16)†

N Phased genotypes NA

HaploScore NA 27 IBD segment-based IBD segments N
2.4h +

96.3h (×16)* N
IBD segments;

phased genotypes NA

IBDseq r1206 25 IBD segment-finding IBD segments Y 33.1h (×16) N NA NA

KING
(KING-robust)

1.4 17
Allele frequency-based

IBD estimate
IBD 0,1,2

proportions
N 4.6m Y NA Y

PC-Relate 2.0.1 22 Allele frequency-based
IBD estimate

IBD 0,1,2
proportions

N 8.9h + 4.6m‡ Y Pairwise kinship
coefficients

Y

PLINK 1.9 1.90b2k 16 Allele frequency-based
IBD estimate

IBD 0,1,2
proportions

N 18.1s Y NA N

PREST-plus 4.1 33 Allele frequency-based;
uses linkage model

IBD 0,1,2
proportions

N 178.9h N NA N

REAP 1.2 18 Allele frequency-based
IBD estimate

IBD 0,1,2
proportions

N 3.8h + 2.8h§ Y

Ancestral population
allele frequencies;
sample ancestry

proportions

Y

Refined IBD Beagle 4.1 26
IBD segment-finding

(Distinguishes IBD1 and
IBD2)

IBD segments Y 96.0h (×16) N NA NA

RelateAdmix 0.1 20 Allele frequency-based
IBD estimate

IBD 0,1,2
proportions

Y 15.8h (×16) +
2.8h§ Y

Ancestral population
allele frequencies;
sample ancestry

proportions

Y

Table 2: Properties of the 12 relationship inference methods we analyzed. Type indicates the inference
methodology the program uses. Runtime is wall clock time to run the program with any additional time
to run programs needed for input as indicated. We ran parallelized programs using the numbers of cores
indicated in parentheses: total compute time for the parallelized programs is the runtime multiplied by the
number of cores used. Input required from outside program indicates extraneous information needed to run
the program. Programs that use either principal components, sample ancestral population proportions, or
that use a model designed for multiple populations are indicated as accounting for population structure.
“Y” indicates yes, “N” indicates no, and “NA” indicates not applicable. Runtimes are from a machine with
four AMD Opteron 6176 2.30 GHz processors (64 cores total) and 256 GB memory. *Additional time to
phase the data using Beagle 4.1 and run GERMLINE. †Additional time to phase the data using Beagle 4.1.
‡Additional time to obtain KING relatedness estimates; base PC-Relate time is the sum of time to run this
method and PC-AiR34. §Additional time to obtain ancestral population proportions using ADMIXTURE35.
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ignores population structure in admixed samples can produce either a positive or negative bias22. Consis-
tent with this, PLINK infers many sample pairs to be more related than they are reported to be, and, at
the same time, infers substantial fractions of fourth through seventh degree pairs as unrelated. KING also
dramatically underestimates relatedness, presumably because it assumes that all samples derive from one of
several homogeneous populations—a model that is inappropriate for recently admixed samples17. We also
examined results from the version of KING that assumes a single homogeneous population and its accuracy
profile more closely resembles that of PLINK (not shown).

Because the relatedness within SAMAFS has the potential to confound methods that characterize popula-
tion structure34, we further analyzed the performance of several methods using a dataset consisting of the
SAMAFS samples together with a diverse set of HapMap individuals42 (Supplemental Note; Supplemental
Figure 4). This combined dataset yields inferences of sample ancestry proportions that are strongly cor-
related with those inferred in a reduced dataset that has only low level relatedness (Supplemental Note).
Using this sample, the accuracies of both REAP and RelateAdmix improve significantly, suggesting that
either high levels of relatedness or limited ability to discriminate the ancestral populations in the admixed-
only SAMAFS data adversely affected the initial inference. Based on this augmented analysis, REAP and
RelateAdmix have closer accuracies to that of PC-Relate yet remain somewhat less accurate (Supplemental
Note; Supplemental Figure 4). The accuracy of PC-Relate and of KING are quite similar between the two
analyses, with the exception that PC-Relate has improved accuracy for seventh degree relatives in the larger
sample. Given this improvement and the fact that PC-Relate is the highest performing allele frequency-
based method overall, we tested it further by varying its input parameters and the kinship values it uses to
detect the set of individuals it uses to infer PCs. All these analyses resulted in similar accuracies except for
different rates of inferred seventh degree relatives (Supplemental Note; Supplemental Figure 5); the variation
in seventh degree relatedness inference may be due to stochastic factors and the relatively small numbers of
these relatives in the dataset.

Besides considerations related to detecting population structure, the presence of many relatives in SAMAFS
may lead to biased allele frequency estimates. Furthermore, haplotype phasing and therefore IBD inference
accuracy might be greater than would be achieved in a sample composed mostly of unrelated individuals. To
ensure the performance results presented here also apply to analyses of non-pedigree datasets, we identified
a set of only distantly related individuals using FastIndep43 and merged these samples with pairs of related
individuals to form 1,000 datasets (Supplemental Note). Each reduced dataset contains at most one related
pair of samples from any distinct SAMAFS pedigree, limiting the potential for bias. When classifying sample
pairs included in at least one reduced dataset, PLINK’s inference accuracy differs by less than 3% for the
first through fifth relatedness degrees compared to the full dataset (Supplemental Figure 2), suggesting that
allele frequency biases are small and only minimally impact inference accuracy. In order to test the IBD
detection methods, we increased the sample size of these reduced datasets by further merging 580 HapMap
samples (Supplemental Note). Results from running the IBD segment-based methods on these datasets show
a reduction in accuracy that ranges between 0% − 9.6% for first through fifth degree relatives, indicating
that relatedness in SAMAFS may impact the inference accuracy (Supplemental Figure 3). Yet the results
are still consistent with those of the larger analysis as the IBD segment-based methods generally have higher
performance than allele frequency-based methods. This is true even in the reduced datasets that have no
more than 1,204 samples and therefore are subject to a non-trivial rate of phasing error44.

In comparison to previous method evaluations, our results show some notable differences. For example, using
real data from 30 pedigrees, ERSA reported lower accuracies for first through sixth degree relatives than we
observe19, with differences ranging from 8.9% to nearly 21%. We believe this is attributable to differences in
sample size, as the ERSA analysis considered only 304 individuals compared to 2,485 here. This—in addition
to the accuracy reductions of IBD segment-based methods in the reduced datasets described above—indicates
that sample size can have a dramatic impact on the quality of IBD segment-based methods. Thus smaller
studies may wish to use allele frequency-based methods such as PC-Relate or, for non-admixed individuals,
KING-robust, which in fact considers data from each sample pair separately rather than estimating allele
frequencies from the full data17. The authors of PC-Relate22 find that KING and PLINK each tend to both
overestimate and underestimate relatedness when analyzing admixed individuals, which is consistent with
our results. They also report that PC-Relate generally outperforms REAP and RelateAdmix, matching our
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findings even after we incorporate additional HapMap individuals to aid detection of population structure
(Supplemental Note). To our knowledge, other evaluations of relatedness inference have not included methods
that directly detect IBD segments, and our results indicate that these are promising methods to apply in
this setting.

As current methods provide only moderate accuracy when classifying third through seventh degree relatives,
we evaluated the potential for increasing performance by combining inference results from the top three
programs: ERSA, GERMLINE, and Refined IBD. We first used an approach that calls the degree of relat-
edness for a pair only when all three programs unanimously agree on the relatedness degree, providing no
classification for other pairs (3,012 relative pairs and 632,615 reported unrelated pairs are unclassified). In
comparison to the most accurate method’s performance in each degree class, the inference accuracy using
this strategy increases only slightly for related pairs (+0.01%, +0.13%, +2.6%, +1.5%, +3.4%, +2.2%, and
+1.1%, respectively, for first through seventh degree), but increases by 9.0% for unrelated pairs of individuals.
This indicates a high level of discordance among the inferred relatedness status for a large fraction of pairs
that are reported as unrelated. Many of these unrelated pairs must therefore have borderline inferences, and
indeed most methods infer a sizeable fraction as only eighth degree relatives (Figure 1). We also considered
a majority vote between the three programs, discarding cases in which all three programs inferred a different
degree (only five relative pairs had such variable inferences while 110,848 pairs reported as unrelated are
so discrepant). With this approach, there is a slight decrease in performance overall (-0.04%, -0.6%, -1.3%,
-0.7%, -0.2%, -2.3%, and 0% for first through seventh degree relatives and +1.6% for unrelated samples).
These results suggest that while there is room for improvement in the specificity of relatedness inference
methods, dramatic improvement is likely to be achieved only with novel approaches and not composites
of current methods. Of interest in this regard are recently developed methods that combine information
across related individuals in order to infer a pedigree structure and/or improve relatedness accuracy41,45,46.
Importantly, each of these methods relies on a pairwise relatedness approach, highlighting the continued rel-
evance of pairwise inference methodologies even as new methods arise for addressing multi-way relatedness
inference.

As an application of these findings, we leveraged the high accuracy of IBD segment-based methods to explore
pairs of samples inferred to be closely related but reported as unrelated in the SAMAFS dataset. We used the
top performing methods, ERSA, GERMLINE, and Refined IBD, to characterize unreported relatives. These
three methods all infer a small number of first through third degree relationships that connect individuals
from different pedigrees within SAMAFS (Figure 2; Supplemental Note). Overall, we found six pairs of
pedigrees with at least five sample pairs between them that the methods unanimously infer to have first
through third degree relatedness. Additionally, these three methods agree on the inference of 235 and 744
pairs of fourth and fifth degree relatives between the pedigrees (not shown), and suggest instances of reported
first and second degree relatives likely to have the reverse relatedness class or to have much lower relatedness
(Supplemental Table 3; Supplemental Note). These results highlight the necessity of checking reported or
for unreported relatedness among samples in all cohorts and indicate that there can be sizeable numbers of
unknown relatives across a range of relatedness degrees even in well-studied samples.

Important factors for determining which analysis method to use in a study are its accuracy and its compu-
tational demands, and the runtimes of the methods evaluated here vary over several orders of magnitude
(Table 2). PLINK is the fastest program with a runtime of only 18.1 seconds, while the IBD segment-based
methods require up to 64 compute days in total (parallelized across 16 cores in our analyses). In general, we
observe a trade-off between runtime and accuracy, with the top-performing methods being those that require
the largest compute time, and with PLINK being one of the least accurate methods. Given the uniformly
high accuracy of all methods for inferring first and second degree relatives, applications that are focused
only on identifying close relatives have the option of using an efficient allele frequency-based method such
as PLINK or PC-Relate to perform inference, the latter being an accurate program that is more computa-
tional intensive than PLINK but much faster than IBD segment-based methods. A further consideration is
the ethnic group of the analysis cohort. PLINK and KING have biased results for distant relatives in the
admixed SAMAFS data we focus on, but are expected to perform well in homogeneous populations or, for
KING, collections of unadmixed samples from multiple homogeneous populations. On the other hand, for
applications in which the aims include locating more distant relatives, the use of IBD segment-based methods
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should produce improved results. Although beyond the scope of this paper, recently developed methods for
phasing extremely large samples47 should improve upon the computational requirements of several methods
(GERMLINE, ERSA, and HaploScore) and extend their utility to much larger datasets than the one we
consider here.

We have presented a detailed comparison of state-of-the-art relatedness inference methods using thousands
of pairs of individuals that range from first to seventh degree relatives as well as numerous sample pairs
that are reported to be unrelated. All the methods we assessed reliably identify first and second degree
relatives (accuracy ∼92% − 99%), but their accuracy falls precipitously when classifying third to seventh
degree relatives. This is unsurprising given the increased coefficient of variation as well as greater skewness
in the proportion of genome shared as the meiotic distance between two relatives increases15. Despite these
challenges, several IBD segment-based methods infer relatedness correct to within one degree of the reported
relationship at a rate of ≥76.7% for all relationship degrees (Figure 1). Misreported or unknown relationships
in the SAMAFS dataset likely explain some of the inference errors, particularly since even some confidently
inferred first degree relationships were likely misreported as a more distant relationship or as unrelated
(Supplemental Table 3; Figure 2). We find that IBD segment-based methods outperform other approaches
for more distantly related pairs, though notably these packages require substantially more compute time to
run (Table 2). While the precise performance results presented here are specific to the SAMAFS sample, we
find that reducing the sample size still produces similar results, with methods that leverage IBD segments
generally having greater accuracy than other approaches. Therefore, the results presented here should be
generalizable to moderate and large scale studies and indicate overall properties of pairwise relationship
inference methodologies: approaches that use IBD segments outperform other methods for third degree and
more distant relatives; and the specificity of the inferences, even in a dataset where phase accuracy may be
relatively high, are inhibited for all but the closest relatives.

Data availability

The SAMAFS sample data are available on dbGaP under accession numbers phs000847 and phs001215.
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Figure 1: Performance comparison of the evaluated methods using the SAMAFS dataset. Bar plots indicate
the percentage of sample pairs that are reported to have a given degree of relatedness and that are inferred
to be related as the indicated degree. The bar plots are separated on the horizontal axis by the reported
relatedness degree and on the vertical axis by inferred relatedness degree. For clarity, the plots list above
each bar the inferred percentage that the corresponding bar depicts. Program names listed in red are IBD
segment-based methods while those in black utilize allele frequencies for inference. Red horizontal bars under
a bar plot indicate that the corresponding inferences agree with the reported relationships.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2017. ; https://doi.org/10.1101/106013doi: bioRxiv preprint 

https://doi.org/10.1101/106013
http://creativecommons.org/licenses/by/4.0/


9

Figure 2: Relationships discovered between individuals from different SAMAFS pedigrees. Bands on the
perimeter of the elliptical plot indicate distinct pedigrees within SAMAFS with band size proportional to
the number of individuals in the pedigree. Curves between two bands correspond to discovered relative pairs
with curve color indicating the degree of relatedness: red for first degree, green for second degree, and blue
for third degree. Points where the curves end correspond to specific individuals, and a single point may
have multiple curves running to it, indicating several relationships between that individual and others in the
dataset.
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