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Abstract

Within a rational framework a decision-maker selects actions based on the
reward-maximisation principle which stipulates they acquire outcomes with the
highest values at the lowest cost. Action selection can be divided into two dimen-
sions: selecting an action from several alternatives, and choosing its vigor, i.e.,
how fast the selected action should be executed. Both of these dimensions de-
pend on the values of the outcomes, and these values are often affected as more
outcomes are consumed, and so are the actions. Despite this, previous works
have addressed the computational substrates of optimal actions only in the spe-
cific condition that the values of outcomes are constant, and it is still unknown
what the optimal actions are when the values of outcomes are non-stationary.
Here, based on an optimal control framework, we derive a computational model
for optimal actions under non-stationary outcome values. The results imply that
even when the values of outcomes are changing, the optimal response rate is
constant rather than decreasing. This finding shows that, in contrast to previ-
ous theories, the commonly observed changes in the actions cannot be purely
attributed to the changes in the outcome values. We then prove that this obser-
vation can be explained based on the uncertainty about temporal horizons; e.g.,
in the case of experimental protocols, the session duration. We further show that
when multiple outcomes are available, the model explains probability match-
ing as well as maximisation choice strategies. The model provides, therefore, a
quantitative analysis of optimal actions and explicit predictions for future test-
ing.
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Introduction

According to normative theories of decision-making, actions made by humans and ani-
mals are chosen with the aim of earning the maximum amount of future reward whilst incurring
the lowest cost (Marshall, 1890; von Neumann & Morgenstern, 1947). Within such theories indi-
viduals optimize their actions by learning about their surrounding environment so as to satisfy
their long-term objectives. The problem of finding the optimal action is, however, argued to
have two aspects: (1) choice, i.e., deciding which action to select from several alternatives; and
(2) vigor, i.e., deciding how fast the selected action should be executed. For a rat in a Skinner box,
for example, the problem of finding the optimal action involves selecting a lever (choice) and de-
ciding at what rate to respond on that lever (vigor). High response rates can have high costs (e.g.,
in terms of energy consumption), whereas a low response rate could have an opportunity cost if
the experimental session ends before the animal has earned sufficient reward. Optimal actions
provide the right balance between these two factors and, based on the reinforcement-learning
framework and methods from optimal control theory, the characteristics of optimal actions and
their consistency with various experimental studies have been previously elaborated (Dayan,
2012; Niv, Daw, Joel, & Dayan, 2007; Salimpour & Shadmehr, 2014).

These previous models have assumed, however, that outcome values are stationary and do
not change on-line over the course of a decision-making session. To see the limitations of such
an assumption, imagine the rat is in a Skinner box and has started to earn outcomes (e.g., food
pellets) by taking actions. One can assume that, as a result of consuming rewards, the motivation
of the animal to earn more food outcomes will decrease (e.g., because of satiety) and, therefore,
over time, the outcomes earned will have a lower value. Such changes in value should affect both
optimal choice and vigor (Killeen, 1995) but have been largely ignored in the previous models.
This is while in most of the experimental and real-world scenarios, outcome values are affected
by the history of outcome consumption, a phenomenon known as “law of diminishing marginal
utility”1 in the economics literature, and as “drive reduction theory” in psychological accounts of
motivation, which indicates that the drive for earning an outcome decreases as the consequence
of prior consumption of the outcomes (Hull, 1943; Keramati & Gutkin, 2014).

Here, building on previous work, we introduce a new concept called reward field, which
captures non-stationary outcome values. Using this concept and methods from optimal control
theory, we derive the optimal response vigor and choice strategy without assuming that outcome
values are stationary. In particular, the results indicate that even when the values of outcomes
are changing, the optimal response rate in an instrumental conditioning experiment is a con-
stant response rate. This finding rules out previous suggestions that the commonly observed
decrease in within-session response rates is due to decreases in outcome value (Killeen, 1995).
Instead, we show that decreases in within-session response rates can be explained by uncer-
tainty regarding session duration. This later analysis is possible because the session duration
is explicitly represented in the current model, which is another dimension in which the current
model extends previous work. The framework is then extended to choice situations and specific
predictions are made concerning conditions under which the optimal strategy is maximization
or probability matching.

1Also known as “First Law of Gossen” named for Hermann Heinrich Gossen (1810 – 1858).
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Model Specification

The outcome space

We define the outcome space as a coordinate space with n dimensions, where n is the
number of outcomes in the environment. For example, in a concurrent instrumental condition-
ing experiment in which the outcomes are water and food pellets, the outcome space will have
two dimensions corresponding to water and food pellets. Within the outcome space, the state
of the decision-maker at time t is defined by two factors: (i) the amount of earned outcome up
to time t , which is denoted by xt and can be thought of as the position of the decision-maker
in outcome space; e.g., in the above example, xt = [1,2] would indicate that one unit of water
and two units of food pellet have been gained up to time t ; and (ii) the outcome rate at time t ,
denoted by vt , which can be considered the velocity of the decision-maker in the outcome space
(vt = dxt /d t ); e.g., if a rat is earning two units of water and one unit of food pellet per unit of
time, then vt = [2,1]. In general, we assume that the outcome rate cannot be negative (v ≥ 0),
which means that the cumulative number of earned outcomes cannot decrease with time.

The reward

We assume that there exists an n-dimensional reward field, denoted by Ax,t , where each
element of Ax,t represents the per unit value of each of the outcomes. For example, the element
of Ax,t corresponding to food pellets represents the value of one unit of food pellet at time t ,
given that x units of outcome have been previously consumed. As such, Ax,t is a function of both
time and the amount of outcome earned. This represents the fact that (i) the reward value of
an outcome can change value as a result of consuming previous outcomes, e.g., due to satiety
(depending on x) and (ii) the reward value of an outcome can change purely with the passage
of time; e.g., an animal can get hungrier over time causing the reward value of food pellets to
increase (depending on t ).

In general, we assume that Ax,t has two properties:

∂Ax,t

∂x
≤ 0,

∂Ax,t

∂t
≥ 0, (1)

which entail that (i) the outcome values decrease (or remain constant) as more outcomes are
earned, and (2) that outcome values do not decrease with the passage of time.

Cost

Within the context of instrumental conditioning experiments, previous studies have ex-
pressed the cost of earning outcomes as a function of the delay between consecutive responses
made to earn outcomes. For example, if a rat is required to make several lever presses to earn
outcomes, then the cost will be higher if the delay between lever presses is short. More precisely,
if the previous response has occurred τ time steps ago, then the cost of the current lever press
will be (Dayan, 2012; Niv et al., 2007):

Cτ = a

τ
+b, (2)

where a and b are constants. b is the constant cost of each lever press, which is independent
of the delay between lever presses whereas the factor a controls the rate-dependent component
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of the cost. Previous research has established that predictions derived from this definition of
cost are consistent with experimental data (Dayan, 2012; Niv et al., 2007). Note that costs such
as basal metabolic rate and the cost of operating the brain, although consuming a high portion
of energy produced by the body, are not included in the above definition because they are con-
stant and independent of response rate and, therefore, are not directly related to the analysis of
response vigor and choice.

Here, we express cost as a function of outcome rate rather than the rate of action execu-
tion. We define the cost function Kv as the cost paid at each time step for earning outcomes at
rate v. In the specific case that the outcome space has one dimension (there is only one out-
come), and under ratio schedules of reinforcement (fixed-ratio, variable-ratio, random-ratio) in
which the decision-maker is required to perform either precisely or on average k responses to
earn one unit of outcome, the cost defined in equation 2 will be equivalent to:

Kv = ak2v2 +kbv. (3)

See Theorem A1 in Appendix for the proof. This definition of cost implies that it is only a func-
tion of outcome rate and is time-independent (∂Kv/∂t = 0). Although, in general, it may seem
reasonable to assume that, as time passes within a session, the cost of taking actions will in-
crease because of factors such as effector fatigue, here we made a time-independence assump-
tion based on previous studies showing that factors such as effector fatigue have a negligible
effect on response rate (McSweeney, Hinson, & Cannon, 1996). In general, we assume that at
least one response is required to earn an outcome (k > 0), and the cost of earning outcomes is
non-zero (a > 0).

Value

The reward earned in each time step can be calculated as the reward of one unit of each of
the outcomes (Ax,t ) multiplied by the amount earned from each of the outcomes, which will be
v.Ax,t . The cost of earning this amount of reward is Kv, and therefore the net amount of reward
earned will be:

Lx,v,t = v.Ax,t −Kv. (4)

A decision-making session starts at t = 0 and the total duration of that session is T . We denote
the total reward gained in this period as S0,T , which is the sum of the net rewards earned at each
point in time:

S0,T =
∫ T

0
Lx,v,t d t . (5)

The quantity S0,T is called the value function, and the goal of the decision-maker is to find the
optimal rate of earning outcomes that yields the highest value. The optimal rates that maximize
S0,T can be found using different variational calculus methods, such as the Euler-Lagrange equa-
tion or the Hamilton-Jacobi-Bellman equation (Liberzon, 2011). The results presented in the
next sections are derived using the Euler-Lagrange equation (see Appendix for details of value
function in non-deterministic schedules).
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Results

Optimal response vigor

In this section we use the model presented above to analyse optimal response vigor when
there is one outcome and one response available in the environment. The analysis is divided
into two sections. In the first section, we assume that the decision-maker is certain about session
duration, i.e., that the session will continue for T time units, and will extend this analysis in the
next section to a condition in which the decision-maker assumes a probabilistic distribution of
session lengths.

Response vigor when the session duration is known. We maintain the following theo-
rem:

Theorem 1 If the duration of the session is fixed and the time-dependent change in the reward
field is zero (∂Ax,t /∂t = 0), then the optimal outcome rate is constant (d v/d t = 0). If the time-
dependent change in the reward field is positive (∂Ax,t /∂t > 0), then the optimal outcome rate will
be accelerating (d v/d t > 0).

See Appendix for a proof of this theorem. Note that the assumption ∂Ax,t /∂t = 0 implies that the
passage of time has no significant effect on the reward value of the outcome; e.g., a rat is not get-
ting hungrier during an instrumental conditioning session, which is a reasonable assumption
given the short duration of such experiments (typically less than an hour). Within this condi-
tion, the above theorem states that the optimal response rate is constant throughout the session,
even under conditions in which the reward value of the outcome decreases within the session
as a result of earning outcomes, e.g., because of satiety. As an intuitive explanation for why a
constant rate is optimal, imagine a decision-maker who chooses a non-constant outcome rate
that results in a total of xT outcomes during the session. If, instead of the non-constant rate,
the decision-maker selects a constant rate v = xT /T , then the total outcomes earned will be the
same as before; however, the cost will be lower because cost is a quadratic function of the out-
come rate and, therefore, it is better to earn outcomes at a constant rate. Nevertheless, although
this prediction is clear enough, it is not consistent with the experimental results, described next.

Within-session pattern of responses. It has been established that in various schedules
of reinforcement, including variable-ratio (VR) schedules (McSweeney, Roll, & Weatherly, 1994),
the rate of responding within a session has a particular pattern: the response rate reaches its
maximum a short time after the session starts (warm-up period), and then gradually decreases
toward the end of the session (Figure 1:left panel). Killeen (Killeen, 1994) proposed a mathe-
matical description of this phenomenon, which can be expressed as follows (Killeen & Sitomer,
2003):

β= r

δr +1/α
, (6)

where β is the response rate, δ is the minimum delay between responses, r is the resulting out-
come rate, and α is called specific activation2. The model suggests that as the decision-maker
earns outcomes during the session, the value of α gradually declines due to satiety, which will

2Note that in the original notation in (Killeen & Sitomer, 2003), α is denoted by a and β is denoted by b.
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cause a decrease in response rate3. Although this model has been shown to provide a quantita-
tive match to the experimental data, it is not consistent with Theorem 1 which posits that, even
under conditions in which outcome values are changing within a session, the optimal response
rate should not decrease during the session. As a consequence, the present model suggests that
the cause of any decrease in the within-session response rate cannot be due purely to a change
in outcome value.

Note, however, the optimal response rate advocated by Theorem 1 is not consistent with
reports of decreasing response rates across a session, which implies that some of the assump-
tions made to develop the model may not be accurate. Although the form of the cost and reward
functions is reasonably general, we assumed that the duration of the session, T , is fixed and
known by the decision-maker. In the next section we show that relaxing this assumption such
that the duration of the session is unknown results much closer concordance between predic-
tions from the model and the experimental data.

DRAFT

decision-maker is certain about session duration, i.e., that
the session will continue for T time units, and will extend
this analysis in the next section to a condition in which the
decision-maker assumes a probabilistic distribution of session
lengths.

Response vigor when the session duration is known. We
maintain the following theorem:

Theorem 1 If the duration of the session is fixed and the
time-dependent change in the reward field is zero (ˆAx,t/ˆt =
0), then the optimal outcome rate is constant (dv/dt = 0).
If the time dependent change in the reward field is positive
(ˆAx,t/ˆt > 0), then the optimal outcome rate will be acceler-
ating (dv/dt > 0).

See SI text for a proof of this theorem. Note that the assump-
tion ˆAx,t/ˆt = 0 implies that the passage of time has no
significant e�ect on the reward value of the outcome; e.g., a rat
is not getting hungrier during an instrumental conditioning ses-
sion, which is a reasonable assumption given the short duration
of such experiments (typically less than an hour). Within this
condition, the above theorem states that the optimal response
rate is constant throughout the session, even under conditions
in which the reward value of the outcome decreases within the
session as a result of earning outcomes, e.g., because of satiety.
As an intuitive explanation for why a constant rate is optimal,
imagine a decision-maker who chooses a non-constant outcome
rate that results in a total of xT outcomes during the session.
If, instead of the non-constant rate, the decision-maker selects
a constant rate v = xT /T , then the total outcomes earned will
be the same as before; however, the cost will be lower because
cost is a quadratic function of the outcome rate and, therefore,
it is better to earn outcomes at a constant rate. Nevertheless,
although this prediction is clear enough, it is not consistent
with the experimental results, described next.

Within-session pattern of responses. It has been established that
in various schedules of reinforcement, including variable-ratio
(VR) schedules [11], the rate of responding within a session has
a particular pattern: the response rate reaches its maximum a
short time after the session starts (warm-up period), and then
gradually decreases toward the end of the session (Figure 1:left
panel). Killeen [12] proposed a mathematical description of
this phenomenon, which can be expressed as follows [13]:

— = r

”r + 1/–
, [6]

where — is the response rate, ” is the minimum delay be-
tween responses, r is the resulting outcome rate, and – is
called specific activation2. The model suggests that as the
decision-maker earns outcomes during the session, the value of
– gradually declines due to satiety, which will cause a decrease
in response rate3. Although this model has been shown to
provide a quantitative match to the experimental data, it is
not consistent with Theorem 1 which posits that, even under
conditions in which outcome values are changing within a
session, the optimal response rate should not decrease during
the session. As a consequence, the present model suggests

2Note that in the original notation in [13], – is denoted by a and — is denoted by b.
3Here satiety refers to both post-ingestive factors (such as blood glucose level; [6]) and/or pre-

ingestive factors (for example sensory specific satiety; [14]).
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Fig. 1. The pattern of within-session response rates (responses per minute). Left
panel: Experimental data. The rate of responding per minute during successive
intervals (each interval is 5 minutes) in a variable-ratio (VR15) schedule (k = 15).
The figure is adopted from [11]. Right panel: The theoretical pattern of within-session
responses predicted by the model in different conditions. Please see the text for details
of each condition.

that the cause of any decrease in the within-session response
rate cannot be due purely to a change in outcome value.

Note, however, the optimal response rate advocated by
Theorem 1 is not consistent with reports of decreasing re-
sponse rates across a session, which implies that some of the
assumptions made to develop the model may not be accurate.
Although the form of the cost and reward functions is reason-
ably general, we assumed that the duration of the session, T ,
is fixed and known by the decision-maker. In the next section
we show that relaxing this assumption such that the duration
of the session is unknown results much closer concordance
between predictions from the model and the experimental
data.

Response vigor when session duration is unknown. In this
section we assume that the decision-maker is uncertain about
the session duration, which can be either because the session
duration is in fact non-deterministic, or because of inherent
inaccuracies in interval timing in animals [15, 16]. In this
condition, a plausible way to calculate optimal response rates
is to set an expectation as to how long the session will last
and to calculate the optimal response rate based on that ex-
pectation. Based on this, if tÕ time step has passed since the
beginning of the session, then the expected session duration is
E[T |T > tÕ] and therefore the value of the rest of the session
will be StÕ,E[T |T>tÕ]. The following theorem maintains that the
optimal rate of outcome delivery that maximizes the value
function is a decreasing function of the current time in the ses-
sion tÕ, and therefore the optimal response rates will decrease
throughout the session.

Theorem 2 Assuming StÕ,E[T |T>tÕ] is the value function and
that (i) the time dependent change in the reward field is zero
(ˆAx,t/ˆt = 0), (ii) the probability that the session ends at each
point in time is non-zero (p(T ) > 0), (iii) values of outcomes
decrease as more are consumed (ˆAx,t/ˆx < 0), then the
optimal rate of outcome delivery is a decreasing function of tÕ:

dvú
tÕ

dtÕ < 0. [7]

See SI text for the proof of this theorem. Theorem 2 stems
from two bases: (i) the optimal rate of outcome delivery is
a decreasing function of session length, i.e., when the session
duration is long the decision-maker can a�ord to earn outcomes

Dezfouli et al. PNAS | August 25, 2016 | vol. XXX | no. XX | 3

Figure 1. The pattern of within-session response rates (responses per minute). Left panel: Ex-
perimental data. The rate of responding per minute during successive intervals (each interval is
5 minutes) in a variable-ratio (VR15) schedule (k = 15). The figure is adopted from (McSweeney
et al., 1994). Right panel: The theoretical pattern of within-session responses predicted by the
model in different conditions. Please see the text for details of each condition.

Response vigor when session duration is unknown. In this section we assume that the
decision-maker is uncertain about the session duration, which can be either because the ses-
sion duration is in fact non-deterministic, or because of inherent inaccuracies in interval timing
in animals (Gallistel & Gibbon, 2000; Gibbon, 1977). In this condition, a plausible way to cal-
culate optimal response rates is to set an expectation as to how long the session will last and to
calculate the optimal response rate based on that expectation. Based on this, if t ′ time step has
passed since the beginning of the session, then the expected session duration is E[T |T > t ′] and
therefore the value of the rest of the session will be St ′,E[T |T>t ′]. The following theorem maintains
that the optimal rate of outcome delivery that maximizes the value function is a decreasing func-
tion of the current time in the session t ′, and therefore the optimal response rates will decrease
throughout the session.

Theorem 2 Assuming St ′,E[T |T>t ′] is the value function and that (i) the time dependent change in
the reward field is zero (∂Ax,t /∂t = 0), (ii) the probability that the session ends at each point in time

3Here satiety refers to both post-ingestive factors (such as blood glucose level; (Killeen, 1995)) and/or pre-ingestive
factors (for example sensory specific satiety; (McSweeney, 2004)).
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OPTIMAL RESPONSE VIGOR AND CHOICE 9

is non-zero (p(T ) > 0), (iii) values of outcomes decrease as more are consumed (∂Ax,t /∂x < 0), then
the optimal rate of outcome delivery is a decreasing function of t ′:

d v∗
t ′

d t ′
< 0. (7)

See Appendix for the proof of this theorem. Theorem 2 stems from two bases: (i) the opti-
mal rate of outcome delivery is a decreasing function of session length, i.e., when the session
duration is long the decision-maker can afford to earn outcomes more slowly, and (ii) when
the session duration is unknown, expected session duration should increase with the passage
of time. This phenomenon, which has been elaborated within the context of delayed gratifica-
tion (McGuire & Kable, 2013; Rachlin, 2000), is more significant if the decision-maker assumes a
heavy-tail distribution over T . Putting (i) and (ii) together implies that the optimal response rate
will decrease with the passage of time. Importantly, this suggests, from a normative perspective,
uncertainty about the session duration is necessary in order to explain within-session decreases
in response rates.

For simulation of the model we characterized the session duration using a Generalized
Pareto distribution following (McGuire & Kable, 2013). Simulations of the model are depicted
in Figure 1:right panel. Simulations show three different conditions. In condition (i) the ses-
sion duration is known, and as the figure shows irrespective of whether the reward of outcomes
is decreasing or fixed, the optimal response rate is constant. In condition (ii) session duration
is unknown, but the reward of outcomes is constant. Again in this condition the optimal re-
sponse rate is constant. In condition (iii) session duration is unknown and the reward decreases
as more outcomes are consumed. Only in this condition, consistent with experimental data, re-
sponse rates decrease as time passes (see Appendix for details of the simulations). Therefore, the
simulations confirm that decreases in the reward of outcomes alone are not sufficient to explain
within-session response rates, but by assuming uncertainty about session duration, the pattern
of responses will be consistent with the experimental data. Note that a similar pattern will be
obtained using any other distribution that assigns a non-zero probability to positive values of T .

Relationship to temporal discounting. There are, however, alternative explanations
available based on changes in outcome value. One candidate explanation is based on the tem-
poral discounting of outcome value according to which the value of future rewards is discounted
compared to more immediate rewards. Typically, the discount value due to delay is assumed to
be a function of the interaction of delay and outcome value. If, at the beginning of the session,
outcome values are large (e.g., because a rat is more hungry), then any discount produced by
selecting a slow response rate will be larger at that point than later in the session when the value
of the outcome is reduced (e.g., due to satiety) and so a delay will have less impact. It could be
argued, therefore, that it is less punitive to maintain a high response rate at the beginning of the
session to avoid delaying outcomes and then to decrease response rate as time passes within
the session. As such, temporal discounting predicts decreases in within-session response rates
consistent both with experimental observations and with the argument that outcome value de-
creases within the session (e.g., the satiety effect).

Prediction. Although plausible, such explanations make very different predictions com-
pared to the model. The most direct prediction from the model is that introducing uncertainty
into the session duration without altering the average duration should nevertheless lead to a
sharper decline in response rate within the session; e.g., if for one group of subjects the session

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 7, 2017. ; https://doi.org/10.1101/106500doi: bioRxiv preprint 

https://doi.org/10.1101/106500
http://creativecommons.org/licenses/by/4.0/


OPTIMAL RESPONSE VIGOR AND CHOICE 10

lasts exactly 30 minutes whereas for another group the session length is uncertain and can end
at any time (but ends on average after 30 minutes), then the model predicts that the response
rate in the second group will be higher at the start and decrease more sharply than in the first
group. This effect is not anticipated by the temporal discounting account of the effect.

Effect of experimental parameters: Relating the model to currently available data. Op-
timal response rates predicted by the model are affected by experimental parameters (e.g., re-
ward magnitude), which can be compared against experimental data. In general, in an instru-
mental conditioning experiment, the duration of the session can be divided into three sections:
(i) outcome handling/consumption time, which refers to the time that an animal spends con-
suming the outcome, (ii) post-reinforcer pause, which refers to the pause that occurs after con-
suming the outcome and before starting to make the next response (e.g., lever press). Such a
pause is consistently reported in previous studies using an FR schedule, (iii) run time, which
refers to the time spent making responses (e..g, lever pressing). Experimental manipulations
have been shown to have different effects on the duration of these three sections of the session,
and whether each of these sections is included when calculating response rates can affect the re-
sults. The predictions of the current model are with regard to response rate; whether manipulat-
ing experimental parameters are expected to change the two other measures (outcome handling
and post-reinforcer pause) cannot be predicted by the current model. In the following sections,
we briefly review the currently available data from instrumental conditioning experiments and
their relationship to predictions of the model4.

The effect of response cost (a and b). Experimental studies in rats working on a FR sched-
ule (Alling & Poling, 1995) indicate that increasing the force required to make responses causes
increases in both inter-response time and the post-reinforcement pause. The same trend has
been reported in Squirrel monkeys (Adair & Wright, 1976). Consistent with this observation, the
present model predicts that increases in the cost of responding, for example by increasing the
effort required to press the lever (increases in a and b), lead to a lower rate of earned outcomes
and a lower rate of responding (Figure 2). The reason for this is that, by increasing the cost, the
response rate for each outcome should slow in order to compensate for the increase in the cost
and so maintain a reasonable gap between the reward and the cost of each outcome.

The effect of ratio-requirement (k). Experimental studies mainly imply that the rate of
earned outcomes decreases with increases in the ratio-requirement (Aberman & Salamone, 1999;
Barofsky & Hurwitz, 1968), which is consistent with the general trend of the optimal rate of out-
come earning implied by the present model (see below).

Experimental studies on the rate of responding on FR schedules indicate that the post-
reinforcer pause increases with increases in the ratio-requirement (Ferster & Skinner, 1957, Fig-
ure 23)(Felton & Lyon, 1966; Powell, 1968; Premack, Schaeffer, & Hundt, 1964). In terms of overall
response rates, some experiments report that response rates increase with increases in the ratio-
requirement up to a point beyond which response rates will start to decline, in rats (Barofsky &
Hurwitz, 1968; Kelsey & Allison, 1976; Mazur, 1982), pigeons (Baum, 1993) and mice (Greenwood,
Quartermain, Johnson, Cruce, & Hirsch, 1974), although other studies have reported inconsis-
tent results in pigeons (Powell, 1968), or a decreasing trend in response rate with increases in the
ratio-requirement (Felton & Lyon, 1966; Foster, Blackman, & Temple, 1997). The inconsistency
is partly due to the way that response rates are calculated in the different studies; for example

4Note that, for simplicity, the simulations in this section are made under the assumption that the session duration
is fixed.
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Figure 2. Effect of response cost on response rates. Left panel: Empirical data. Inter-response
intervals when the force required to make a response is manipulated. Figure is adopted from
Adair and Wright (1976). Right panel: Model prediction. Inter-response interval (equal to the
inverse of response rates) as a function of cost of responses (b).
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Figure 3. Left panel: The effect of ratio-requirement on the response rate. Middle panel: The
effect of the initial motivational drive on response rates. Right panel: The effect of the reward
magnitude on response rates.

in some studies outcome handling and consumption time are not excluded when calculating re-
sponse rates (Barofsky & Hurwitz, 1968), in contrast to the other studies (Foster et al., 1997). As
a consequence, the experimental data regarding the relationship between response rate and the
ratio-requirement is inconclusive.

With regard to this issue, the present model predicts that the relationship between re-
sponse rate and the ratio-requirement is an inverted U-shaped pattern (Figure 3: left panel),
which is consistent with the studies mentioned previously depending on the value of other ex-
perimental parameters. The model makes an inverted U-shaped prediction because, under a low
ratio-requirement, the cost is generally low and, therefore, as the ratio-requirement increases,
the decision-maker will make more responses to compensate for the drop in the amount of re-
ward. In contrast, when the ratio-requirement is high, the cost of earning outcomes is high and
the margin between the cost and the reward of each outcome becomes significantly tighter as the
ratio-requirement increases. The margin can, however, be loosened by decreasing the response
rate.

The Effect of deprivation level. Experimental studies that have used FR schedules sug-
gest that response rates increase with increases in deprivation (Ferster & Skinner, 1957, Chap-
ter 4)(Sidman & Stebbins, 1954). However, such increases are mainly due to decreases in the
post-reinforcement pause, and not due to the increases in the actual rate of responding after the
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pause (see (Pear, 2001, Page 289) for a review of other reinforcer schedules). The model predicts
that, with increases in deprivation, the rate of responding and of earned outcomes will increase
linearly (Figure 3: middle panel). The rate of increase is, however, negligible when the session
duration is long, in which case, even under high deprivation, sufficient time is available to earn
sufficient reward and become satiated. This provides a potential reason why the effect of depri-
vation on response rate has not previously been observed in experimental data.

The effect of reward magnitude. Some studies show that post-reinforcement pauses in-
crease as the magnitude of the reward increases (Powell, 1969), whereas other studies suggest
that the post-reinforcement pause decreases (Lowe, Davey, & Harzem, 1974), although, in this
later study, the magnitude of the reward was manipulated within-session and a follow-up study
showed that, at a steady state, the post-reinforcement pause increases with increases in the mag-
nitude of the reward (Meunier & Starratt, 1979). Reward magnitude does not, however, have a
reliable effect on the overall response rate (Keesey & Kling, 1961; Lowe et al., 1974; Powell, 1969).
Regarding predictions from the model, the effect of the reward magnitude on earned outcome
and response rates is, again, predicted go take an inverted U-shaped relationship (Figure 3: right
panel), and, therefore, depending on the value of the parameters, the predictions of the model
are consistent with the experimental data. The model makes a U-shaped prediction because,
when the reward magnitude is large then, given high response rates, the animals will become
satiated quickly and, therefore, the reward value of future outcomes will decrease substantially
if animal maintains this high response rate. As a consequence, under a high reward magnitude
condition, increase in reward will cause response rates to decrease. Under a low reward mag-
nitude condition, however, satiety has a negligible effect and a high response rate ensures that
sufficient reward can be earned before the session ends.

Optimal choice and response vigor

In this section we address the choice problem, i.e., the case where there are multiple out-
comes available in the environment and the decision-maker needs to make a decision about the
response rate along each outcome dimension. An example of this situation is a concurrent in-
strumental conditioning experiment in which two levers are available and pressing each lever
produces an outcome on a ratio schedule. Unlike the case with single outcome environments,
the optimal rate of earning outcomes is not necessarily constant and can take different forms
depending on whether the reward field is a conservative field or a non-conservative field, and
whether the costs of responses along the outcome dimensions are independent of each other.
Below, we derive the optimal choice strategy in each condition.

Conservative reward field. A reward field is conservative if the amount of reward expe-
rienced by consuming different outcomes does not depend on the order of consumption and
depends only on the number of each outcome earned by the end of the session. This property
holds in two conditions (i) when the value of each outcome is unrelated to the prior consumption
of other outcomes; and (ii) the consumption of an outcome affects the value of other outcomes
and this effect is symmetrical. As an example of condition (i), imagine an environment with two
outcomes in which one of the outcomes only satisfies thirst and the other only satisfies hunger.
Here, consumption of one of the outcomes will not affect the amount of reward that will be ex-
perienced by consuming the other outcome and, therefore, the total reward during the session
does not depend on the order of choosing the outcomes. As an example of condition (ii), imag-
ine an environment with two outcomes in which both outcomes satisfy hunger and, therefore,
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consuming one of the outcomes reduces the amount of future reward produced by the other out-
come. Here, if the effect of the outcomes on each other is symmetrical, i.e., consuming outcome
O1, reduces the reward elicited by outcome O2 by the same amount that consuming outcome O2

reduces the reward elicited by outcome O1, then it will not matter which outcome is consumed
first and the total reward during the session will be independent of the chosen order. As such,
the reward field will be conservative.

More precisely, a reward field is conservative if there exists a scalar field Dx such that:

Ax,t =−∂Dx

∂x
. (8)

It can be shown that if a reward field satisfies equation 8 then the amount of reward experienced
in a session depends on the total number of earned outcomes. Under this condition the optimal
response rate will be constant for each outcome relative to the other. Intuitively, this is because,
in terms of the total rewards per session, the only thing that matters is the final number of earned
outcomes and, therefore, there is no reason why the relative allocation of responses to outcomes
should vary within the session. The actual response rate for each outcome will, however, depend
on whether the costs of the outcomes are independent, a point elaborated in the next section.

Conservative reward field and independent response cost. The costs of various out-
comes are independent if the decision-maker can increase their work for one outcome without
affecting the cost of other outcomes. As an example, imagine a decision-maker that is using their
left hand to make responses that earn one outcome and their right-hand to make responses that
earn the second outcome. In this case, the independence assumption entails that the cost of
responding with one or other hand is determined by the response rate on that hand; e.g., the
decision-maker can increase or decrease rate of responding on the left hand without affecting
the cost of responses on the right hand. More precisely, the independence assumption entails
that the Hessian matrix of Kv is diagonal:

∂2Kv

∂vi∂v j
= 0, i 6= j . (9)

In this situation even if some of the outcomes have a lower reward or a higher cost (inferior out-
comes) compared to other outcomes (superior outcomes), it is still optimal to allocate a portion
of responses to the inferior outcomes. This is because responding for inferior outcomes has no
effect on the net reward earned from superior outcomes and, therefore, as long as the response
rate for inferior outcomes is sufficiently low that the reward earned from them is more than the
cost paid, responding for them is justified. The portion of responses allocated to each outcome
depends, however, on the cost and reward of each outcome. We maintain the following theorem:

Theorem 3 If (i) the reward field is conservative, i.e., there exists a scalar field Dx such that equa-
tion 8 is satisfied, (ii) the time-dependent term of the reward field is zero (∂Ax,t /∂t = 0), and (iii)
the cost function satisfies equation 9, then the optimal rate of earning outcome v∗ will be constant
(dv/d t = 0) and satisfies the following equation:

∂Kv∗

∂v∗
= AT v∗,T . (10)
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See Appendix for the proof and for the specification of optimal responses. As an example, imag-
ine a concurrent fixed-ratio (FR) schedule in which an animal needs to make k responses on the
left lever in order to earn O1, and lk responses on the right lever in order to earn O2, and both
outcomes have the same reward properties. According to Theorem 3, the optimal response rate
for O1 (the outcome with the lower ratio-requirement) is l times greater than the response rate
for the second outcome O2. Figure 4:left panel independent cost condition shows the simulation
of the model and the optimal trajectory in the outcome space. As the figure shows, the rate of
earning O1 is higher than O2, however, the relative portion of earned outcomes remains the same
throughout the session.

The above results are generally in line with the probability matching notion, which states
that a decision-maker allocates responses to outcomes based on the ratio of responses required
for each outcome (Estes, 1950). Probability matching is often argued to violate rational choice
theory because, within this theory, it is expected that a decision-maker works exclusively for the
outcome with the higher probability (i.e., the lower ratio-requirement). However, based on the
model proposed here probability matching is the optimal strategy and therefore consistent with
rational decision-making.

Conservative reward field and dependent response cost. In this section we assume that
the cost of responses for an outcome is affected by the rate of responses for earning other out-
comes. In other words, what determines the cost is the delay between subsequent responses
either for the same or for a different outcome; i.e., the cost is proportional to the rate of earning
all of the outcomes. In instrumental conditioning this assumption entails, for example, that the
cost of pressing, say, the right lever is determined by the time that has passed since the last press
on either the right or a left lever. In this condition the optimal strategy is maximisation; i.e., to
take the action with the higher reward (or lower ratio-requirement) and to stop taking the other
action (see Theorem A2 in Appendix). The reason is, unlike the case with independent costs,
allocating more responses to earn an inferior outcome will increase the cost of earning superior
outcomes and, therefore, it is better to pay the cost for the superior outcome only, which requires
fewer responses per unit of outcome.

For example, under a concurrent FR schedule in which an animal needs to make k re-
sponses on the left lever to earn O1, and lk responses on the right lever to earn O2 (O1 and O2

have the same reward properties), the optimal response rate will be a constant response rate
on the left lever and a zero response rate on the right lever. Figure 4:left panel dependent cost
condition shows a simulation of the model and the optimal trajectory in outcome space, which
shows that the subject only earns O1.

As such, whether the outcome rate reflects a probability matching or a maximization strat-
egy depends on the cost function and, in instrumental conditioning experiments, the cost that
reflects the maximization strategy is more readily applicable. Regarding the experimental data,
evidence from concurrent instrumental conditioning experiments in pigeons tested using VR
schedules (Herrnstein & Loveland, 1975) is in-line with the maximization strategy and consis-
tent with predictions from the model. Within the wider scope of decision-making tasks, some
studies are consistent with probability matching, whereas other studies provide evidence in-line
with the maximization strategy (see (Vulkan, 2000) for a review). In many of these latter studies,
however, the decision-making task involved making a single choice (e.g., single button press)
with immediate feedback (about whether the choice was rewarded) after which the next trial
was initiated and, because such disjointed actions are unlikely to convey a rate-dependent cost,
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the structure of such studies cannot be readily related to the model proposed here.
Prediction. One way of testing the above explanation for maximization and matching

strategies is to compare the pattern of responses when two different effectors are used to make
responses for the outcomes vs. when a single effector is being used to earn both outcomes. In
the first condition the costs of the two outcomes are independent of each other whereas in the
second condition they are dependent on each other. As a consequence, the theory predicts that,
in the first condition, response rates will reflect probability matching whereas in the second con-
dition they will reflect the maximization strategy.
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Fig. 2. Left panel: Optimal trajectory in a conservative reward field. Earning O1
requires k responses and earning O2 requires lk responses. Initially the amount of
earned outcome is zero (starting point is at point [0, 0]), and the graph shows the
trajectories that the decision-maker takes in two different conditions corresponding
to when the costs of outcomes are independent, and when the costs are dependent
on each other. Right panel: The optimal trajectories in the outcome space when
the reward field is non-conservative. The graph shows the optimal trajectory in the
conditions that the session duration is short (T = 7), medium (T = 15.75) and long
(T = 23).

properties, e.g., consumption of one unit of either O1 or O2
decreases hunger by one unit, however, they generate di�er-
ent amount of rewards, e.g., one unit of O1 generates more
reward than one unit of O2. Within such an environment,
if hunger is high then consuming O1 generates significantly
more reward than O2 and, therefore, early in the session it is
better to allocate more responses to O1, whereas later in the
session (when hunger is presumably lower and the di�erence
in the value of the outcomes is small) responses for O2 can
gradually increase. If we reverse this order, i.e., first O2 is
consumed and then O1, then early consumption of O2 will
cause satiety and the decision-maker will lose the chance to
experience high reward from O1 when hungry. As such, the
amount of experienced reward depends on the order of con-
suming the outcomes and, based on the above explanation, a
larger amount of reward can be earned during the session if
more responses are allocated to the outcome with the higher
reward at the beginning of the session (see Theorem S3 in SI
text). Figure 2:right panel shows the simulations of the model
under di�erent session durations. In each simulation, at the
beginning of the session the initially earned outcomes are zero
and each line in the figure shows the trajectory of the amount
earned from each outcome during the session. As the figure
shows, in all conditions the rate of earning O1 is higher than
O2 and this di�erence is more apparent under long session
durations, in which a large amount of reward can be gained
during the session and it makes a significant di�erence to earn
O1 first.

Prediction. A test of the above prediction would involve an
experiment in which the subject is responding for two food
outcomes containing an equal number of calories (and therefore
having the same impact on motivation) but with di�erent levels
of the desirability (e.g., having di�erent flavors) and, therefore,
having a di�erent reward e�ect. Theorem S3 predicts that, if
the session duration is long enough, early in the session the
response rate for the outcome with the greater desirability will
be higher whereas, later in the session, responses for the other
outcome will increase.

Discussion

Computational models of action selection are essential for un-
derstanding decision-making processes in humans and animals,

and here we extended them by providing a general analytical
solution to the problem of response vigor and choice. There
are two significant di�erences between the model proposed
here and previous models of response vigor [3, 4]. Firstly,
although the e�ect of between-session changes in outcome
values on response vigor was addressed in previous models
[22], the e�ects of on-line changes in outcome values within
a session were not addressed. On the other hand, the e�ect
of changes in outcome value on the choice between actions
has been addressed in some previous models [7], however their
role in determining response vigor has not been investigated.
We address such limitations directly in this model.

Secondly, previous work conceptualized the structure of
the task as a semi-Markov decision process and derived the
optimal actions that maximize the average reward per unit of
time (average reward). Here, we used a variational analysis
to calculate the optimal actions that maximize the reward
earned within the session. One benefit of the approach taken
in the previous works is that it extends naturally to a wide
range of instrumental conditioning schedules such as interval
schedules, whereas the extension of the model proposed here
to the case of interval schedules is not trivial. Optimizing the
average reward (as adopted in previous work) is equivalent to
the maximization of reward in an infinite-horizon time scale;
i.e., the session duration is unlimited. In contrast, the model
used here explicitly represents the duration of the session
which, as we showed, plays an important role in the pattern
of responses.
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Figure 4. Left panel: Optimal trajectory in a conservative reward field. Earning O1 requires k
responses and earning O2 requires l k responses. Initially the amount of earned outcome is zero
(starting point is at point [0,0]), and the graph shows the trajectories that the decision-maker
takes in two different conditions corresponding to when the costs of outcomes are independent,
and when the costs are dependent on each other. Right panel: The optimal trajectories in the
outcome space when the reward field is non-conservative. The graph shows the optimal trajec-
tory in the conditions that the session duration is short (T = 7), medium (T = 15.75) and long
(T = 23).

Non-conservative reward field. A reward filed is non-conservative if the total amount
of reward experienced during the session depends on the order of the consumption of the out-
comes. Imagine an environment with two outcomes say O1 and O2, where both outcomes have
the same motivational properties, e.g., consumption of one unit of either O1 or O2 decreases
hunger by one unit, however, they generate different amount of rewards, e.g., one unit of O1

generates more reward than one unit of O2. Within such an environment, if hunger is high then
consuming O1 generates significantly more reward than O2 and, therefore, early in the session
it is better to allocate more responses to O1, whereas later in the session (when hunger is pre-
sumably lower and the difference in the value of the outcomes is small) responses for O2 can
gradually increase. If we reverse this order, i.e., first O2 is consumed and then O1, then early con-
sumption of O2 will cause satiety and the decision-maker will lose the chance to experience high
reward from O1 when hungry. As such, the amount of experienced reward depends on the order
of consuming the outcomes and, based on the above explanation, a larger amount of reward can
be earned during the session if more responses are allocated to the outcome with the higher re-
ward at the beginning of the session (see Theorem A3 in Appendix). Figure 4:right panel shows
the simulations of the model under different session durations. In each simulation, at the begin-
ning of the session the initially earned outcomes are zero and each line in the figure shows the
trajectory of the amount earned from each outcome during the session. As the figure shows, in
all conditions the rate of earning O1 is higher than O2 and this difference is more apparent under
long session durations, in which a large amount of reward can be gained during the session and
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it makes a significant difference to earn O1 first.

Prediction. A test of the above prediction would involve an experiment in which the sub-
ject is responding for two food outcomes containing an equal number of calories (and therefore
having the same impact on motivation) but with different levels of the desirability (e.g., having
different flavors) and, therefore, having a different reward effect. Theorem A3 predicts that, if the
session duration is long enough, early in the session the response rate for the outcome with the
greater desirability will be higher whereas, later in the session, responses for the other outcome
will increase.

Discussion

Computational models of action selection are essential for understanding decision-
making processes in humans and animals, and here we extended them by providing a general
analytical solution to the problem of response vigor and choice. There are two significant differ-
ences between the model proposed here and previous models of response vigor (Dayan, 2012;
Niv et al., 2007). Firstly, although the effect of between-session changes in outcome values on re-
sponse vigor was addressed in previous models (Niv, Joel, & Dayan, 2006), the effects of on-line
changes in outcome values within a session were not addressed. On the other hand, the effect
of changes in outcome value on the choice between actions has been addressed in some previ-
ous models (Keramati & Gutkin, 2014), however their role in determining response vigor has not
been investigated. We address such limitations directly in this model.

Secondly, previous work conceptualized the structure of the task as a semi-Markov deci-
sion process and derived the optimal actions that maximize the average reward per unit of time
(average reward). Here, we used a variational analysis to calculate the optimal actions that max-
imize the reward earned within the session. One benefit of the approach taken in the previous
works is that it extends naturally to a wide range of instrumental conditioning schedules such
as interval schedules, whereas the extension of the model proposed here to the case of interval
schedules is not trivial. Optimizing the average reward (as adopted in previous work) is equiv-
alent to the maximization of reward in an infinite-horizon time scale; i.e., the session duration
is unlimited. In contrast, the model used here explicitly represents the duration of the session
which, as we showed, plays an important role in the pattern of responses.

Relationship to principle of least action. A basic assumption that we made here is that
the decision-maker takes actions that yield the highest amount of reward. This reward max-
imization assumption has a parallel in physics literature known as the principle of least action,
which implies that among all trajectories that a system can take, the true trajectories are the ones
that minimize the action. Here action has a different meaning from that used in psychology lit-
erature, and it refers to the integral of the Lagrangian (L) along the trajectory. In the case of a
charged particle with charge q and mass m in a magnetic field B , the Lagrangian will be:

L = 1

2
mv2 +qv.A, (11)

where A is the vector potential (B = ∇× A). By comparing equation 11 with equations 4 and
5, we can see that the reward field Ax,t corresponds to the vector potential, and the term Kv

corresponds to 1
2 mv2 by assuming m = 2ak2, and b = 0. This parallel can provide some in-

sights into the properties of the response rates. For example, it can be shown that when the
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Lagrangian is not explicitly dependent on time (time-translational invariance), which here im-
plies that ∂Ax,t /∂t = 0, then the Hamiltonian (H , or energy) of the system is conserved. The
Hamiltonian in the case of the system defined in equation 4 (with single outcome) is:

H = Kv − ∂Kv

∂v
v

=−ak2v2 (using equation 3).

Conservation of the Hamiltonian implies that ak2v2 (and therefore v) is constant (response-rate
is constant), as stated by Theorem 1. Further exploration of this parallel can be an interesting
future direction.
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Appendix

Value in non-deterministic schedules

The value of a trajectory in the outcome space is the sum of the net amount of rewards
that can be earned during a session. However, the amount of reward earned during a session can
be non-deterministic, as for example in the case of VR and RR schedules of reinforcement, ac-
tions lead to outcomes probabilistically. Similarly, the cost of earning outcomes will also be non-
deterministic, since the number of responses required to earn outcomes is non-deterministic.
Let’s denote the cost of earning outcomes under such non-deterministic schedules by K ′

v. Using
this, we define the value function as the sum of the expected net amount of rewards that will be
earned during a session:

S0,T =
∫ T

0
E[v.Ax,t −K ′

v]d t =
∫ T

0
Lx,v,t d t , (A12)

where the expectation is w.r.t the number of earned outcomes along each outcome dimension
during d t time step. Following the above definition, we have:

Lx,v,t = E[v.Ax,t −K ′
v], (A13)

where Lx,v,t is the expected net reward earned in d t time step. In the main text and in the follow-
ing sections, E[v] is denoted by v for simplicity of notation. By replacing v by E[v] in equation 4
we get:

Lx,v,t = E[v].Ax,t −KE[v]. (A14)

In the main text, equation A14 (equation 4 in the main text) was used instead of equation A13,
and the aim of this section is to show that equation A14 and equation A13 are equivalent. We first
consider environments with one-dimensional outcome spaces, and then we extend it to the case
of environments with multi-dimensional outcome spaces. We maintain the following theorem:

Theorem A1 Assume that the cost of one response, given that the delay since the last response is τ,
is as follows:

Cτ = a/τ+b. (A15)

Furthermore, assume that on average, or exactly, k responses are required to earn one unit of the
outcome, and r is the number of outcomes earned. Then we have:

Lx,v,t = Er [v]Ax,t −KEr [v], (A16)

where
Kv = vk(kav +b). (A17)

Proof. We first provide an intuitive explanation for why the cost defined in equation A15
is the same as the cost defined in equation A17 in the case of FR schedules of reinforcement (i.e.,
exactly k responses are required to earn an outcome). Earning the outcome at rate v implies that
the time it takes to earn the outcome is 1/v , and since k responses have been executed in this
period, the delay between responses is:

τ= 1

kv
, (A18)
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and therefore using equation A15 (equation 2 in the main text), the cost of making one response
will be akv+b. Since k responses are required for earning each outcome, the total cost of earning
one unit of the outcome will be k times the cost of one response, which will be k(akv +b). Since
the total amount of outcome earned is vd t , the total cost per unit of time will be:

Kv =k(akv +b)vd t

d t
=vk(akv +b),

(A19)

which is equivalent to equation 3 and A17.
We now show that equation A16 and equation A13 are equivalent in order to prove Theo-

rem A1. Equation A13 has two terms. As for the first term, Ax,t can be assumed to be constant in
d t time step, and therefore we have:

Er [v Ax,t ] = Er [v]Ax,t . (A20)

As for the second term we maintain that:

Er [K ′
v ] = KEr [v]. (A21)

To show the above relation, assume that r is the number of outcomes earned after making one
response. Since according to the definition of RR and VR schedules, out of N responses on av-
erage N /k will be rewarded, we have Er [r ] = 1/k and the expected rate of outcome earning will
be:

Er [v] = Er

[ r

τ

]
= 1

kτ
. (A22)

Furthermore, according to equation A15 the cost of one response is a/τ+b, and therefore, the
cost per unit of time will be:

K ′
v = a/τ+b

τ
. (A23)

Therefore:

Er [K ′
v ] =a/τ+b

τ

=Er [v]k(akEr [v]+b) (using equation A22)

=KEr [v] (using equation A17),

which proves equation A21. Substituting equations A21, A20 in equation A13 yields equa-
tion A16, which proves the theorem.

We now turn to the case of multi-dimensional outcome spaces. The aim is to show equa-
tion A13 is equivalent to equation A14. To show this, we first maintain that:

E[v.Ax,t ] = E[v].Ax,t , (A24)

which holds since Ax,t can be assumed to be constant during d t time step. Next, we show that:

E[K ′
v] = KE[v], (A25)
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which states that E[K ′
v] can be represented as a function of E[v]. To show this, assume ri is the

number of outcomes earned after making one response for outcome i , and τi is the delay be-
tween responses for outcome i . We have:

E[vi ] = E

[
ri

τi

]
= E[ri ]

τi
, (A26)

and therefore τi can be expressed as a function of E[vi ]. Next, assume that [Cτ]i is the cost of
making one response for outcome i with delay τi between the responses, and τ is a vector con-
taining the delay between responses for each outcome (τ= [τ1 . . .τn]). In d t time step, d t/τi re-
sponses for outcome i are made, and therefore the total cost in d t time period will be [Cτ]i d t/τi ,
which implies that the cost for outcome i per unit of time is [Cτ]i /τi . Given this, the total cost
paid for all the outcomes per unit of time will be:

E[K ′
v] =∑

i

[Cτ]i

τi

=∑
i

[Cτ]i
E[vi ]

E[ri ]
(using equation A26)

= KE[v],

where we used the fact that τ in Cτ can be expressed using E[v] (using equation A26), and there-
fore E[K ′

v] can be expressed as a function of E[v], which is denoted by KE[v] (as noted in equa-
tion A25). Substituting equation A25,A24 in equation A13 yields equation A14.

Optimal actions in one-dimensional outcome space

The aim is to derive optimal actions when the outcome space has one dimension. Given
the reward field Ax,t , the reward of gaining d x units of outcome will be Ax,t d x, and since d x =
vd t , the reward earned in each time step is v Ax,t . Given that Kv is the cost function (the cost
paid in each time step), the net reward in each time step can be written as:

Lx,v,t = v Ax,t −Kv , (A27)

and based on this, the value, which is the sum of net rewards in each time step, will be:

S0,T =
∫ T

0
Lx,v,t d t . (A28)

The optimal rates that maximize S0,T can be found using different variational calculus
methods such as the Euler-Lagrange equation, or the Hamilton-Jacobi-Bellman equation (Liber-
zon, 2011). Here we use the Euler-Lagrange form, which sets a necessary condition for δS = 0:

d

d t

∂L

∂v
= ∂L

∂x
. (A29)

Furthermore, since the end-point of the trajectory is free (the amount of outcomes that can be
gained during a session is not limited, but the duration of the session is limited to T ), the optimal
trajectory will also satisfy the transversality conditions:

∂L

∂v

∣∣∣∣
t=T

= 0, (A30)
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which implies:
∂Kv

∂v

∣∣∣∣
t=T

= Ax,t
∣∣

t=T , (A31)

where as mentioned T is the total session duration.
By substituting equation A27 in equation A29 we will have:

d

d t

(
−∂Kv

∂v
+ Ax,t

)
= v

d Ax,t

d x
. (A32)

The term d Ax,t /d t has two components: the first component is the change in Ax,t due to the
change in x and the second component is due to the time-dependent changes in Ax,t :

d Ax,t

d t
=d x

d t

∂Ax,t

∂x
+ ∂Ax,t

∂t

=v
∂Ax,t

∂x
+ ∂Ax,t

∂t
.

(A33)

Furthermore we have:
d

d t

(
∂Kv

∂v

)
= d v

d t

∂2Kv

∂v2 . (A34)

Substituting equations A33, A34 in equation A32 yields:

d v

d t

(
∂2Kv

∂v2

)
= ∂Ax,t

∂t
. (A35)

In the condition that the rate of outcome earning is constant (d v/d t = 0), we have xT = vT ,
which by substituting in equation A31 yields:

∂Kv∗

∂v∗ = AT v∗,T . (A36)

The above equation will be used in order to calculate the optimal rate of outcome earning.

Theorem 1: Proof

The cost function Kv defined in equation 3 satisfies the following relation:

∂2Kv

∂v2 > 0, (A37)

which holds as long as at least one response is required to earn an outcome (k > 0), and the cost
of earning outcomes is non-zero (a > 0).

Assuming that ∂Ax,t /∂t = 0, and given equation A37, the only admissible solution to equa-
tion A35 is:

d v

d t
= 0. (A38)

Furthermore, assuming ∂Ax,t /∂t > 0, and given equation A37, the only admissible solution to
equation A35 is:

d v

d t
> 0, (A39)

which proves Theorem 1.
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Theorem 2: Proof and simulation details

Proof of Theorem 2. In order to prove the theorem, we first provide a lemma. Assuming
that the total session duration (T ) has the probability density function f (T ) and that f (T ) > 0,
here we show that the expectation of the total session duration never decreases as time passes
throughout the session.

Lemma 1 Let’s denote the expectation of the session duration at time t ′ with T ′

T ′ = E[T |T > t ′], (A40)

and assume T has the following probability density function:

T ∼ f (T ), f (T ) > 0. (A41)

Then:

∂T ′

∂t ′
> 0. (A42)

Proof. We have:

∂T ′

∂t ′
= ∂E[T |T > t ′]

∂t ′

= f (T )

1−F (T )

(
E[T |T > t ′]− t ′

)> 0,
(A43)

where F (T ) is the cumulative distribution function of T .

Based on the above lemma, we show that the optimal response rate is a decreasing func-
tion of t ′. Based on equation A31, the optimal response rate satisfies the following equation:

∂Kv

∂v

∣∣∣∣
t=T ′

= Ax,t
∣∣

t=T ′ . (A44)

Taking the derivative w.r.t to t ′ we get:

d v

d t ′

(
∂2Kv

∂v2

)
= ∂T ′

∂t ′

(
v
∂Ax,t

∂x
+ ∂Ax,t

∂T ′

)
. (A45)

Theorem 2 assumes that ∂Ax,t /∂x < 0 and ∂Ax,t /∂T ′ = 0, which given equations A42,A37, and
that v > 0 yields:

d v∗

d t ′
< 0, (A46)

which implies that the rate of earning outcomes decreases as time passes within a session.
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Simulation details. The simulation of the model depicted in Figure 1:right panel re-
quires defining (i) the reward field, (ii) the cost function, and (iii) a probability distribution
over the session duration. As for the probability distribution of the session duration, following
McGuire et al (McGuire & Kable, 2013), we assumed that T follows a Generalized Pareto distri-
bution:

F (T ) = 1−
(
1+ kt

σ

)−1/k

, (A47)

where k is a shape parameter (note that k is not the ratio-requirement here) and σ is a scale
parameter, and the third parameter (location µ) was assumed to be zero. Furthermore we have:

F (T |T > t ′) = 1−
(
1+ kt

σ+kt ′

)−1/k

, (A48)

which has the following expected value:

E[T |T > t ′] = σ+kt ′

1−k
, (A49)

which as we expect is an increasing function of t ′. For the simulation of the model we assumed
that k = 0.9 and σ= 6, which represents that the initial expectation for the session duration is 60
minutes.

For the cost function, in all the simulations the cost defined in equation 3 was used, which
is equivalent to the cost function used in the previous works (Dayan, 2012; Niv et al., 2007).

For the definition of the reward field, we used the framework provided by Keramati et al
(Keramati & Gutkin, 2014), which provides a computational model for how the values of out-
comes change with the consumptions of the outcomes. They suggested that the dependency of
the reward field on the amount of outcome earned is indirect and it is through the motivational
drive. They conceptualized the motivational drive as the deviations of the internal states of a
decision-maker from their homeostatic set-points. For example, let’s assume that there is only
one internal state, say hunger, where H denotes its homeostatic set-point (which corresponds
to the deprivation level, assuming that initial value of x is zero), and there is an outcome which
consuming each unit of it satisfies l units of the internal state. In this condition, the motivational
drive at point x, denoted by Dx , will be:

Dx = 1

2
(H − l x)2. (A50)

Keramati et al (Keramati & Gutkin, 2014) showed that such a definition of the motivational drive
has implications that are consistent with the behavioral evidence. According to the framework,
the reward generated by earning δx units of the outcome is proportional to the change in the
motivational drive, which can be expressed as:

Ax,t =−∂Dx

∂x
= l (H − l x). (A51)

As equation A51 suggests, with earning more outcomes (increase in x) Ax,t decreases. Given the
above reward field, the optimal response rate of outcome earning, obtained by equation A36, will
be:

v∗ = Hl −bk

T l 2 +2ak2 . (A52)
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Equation A52 was used in the simulations of the “decreasing reward and unknown session dura-
tion” condition in Figure 1:right panel. The simulation of this condition was done using param-
eters k = 15, l = 0.1, a = 0.002, b = 0.1, H = 80. As for T , in each time t ′ within the session, the
expected session duration (E[T |T > t ′]) was calculated using equation A49, and was used as T in
equation A52.

For the “known session duration (fixed or decreasing reward)” condition in Figure 1:right
panel, the same parameters as the previous condition were used, but the session duration was
fixed to T = 60. For the “fixed reward (known or unknown session duration)” condition, we
assumed that the reward field is independent of the amount of reward earned:

Ax,t = l H . (A53)

Given the above reward field, the optimal rate of outcome earning is:

v∗ = Hl −bk

2ak2 . (A54)

The simulation of this condition was done using parameters k = 15, l = 0.1, a = 0.002, b = 0.1,
H = 40. Note that in this condition the response rate was independent of the session duration.
The response rates in all the conditions were obtained by multiplying the outcome rates by k
(since k responses are required to earn one unit of outcome).

Simulation details of Figures 2, 3. The simulation depicted in Figure 2 and Figure 3 are
using equation A52 with the following parameters (note that the optimal response rates were
obtained by multiplying v∗ by k). For Figure 2:right panel simulation parameters are T = 50,
k = 1, l = 1, a = 1, H = 8. Parameter b is varied between 3 to 7 in order to generate the plot.

In Figure 3:left panel simulation parameters are T = 50, l = 1, a = 0.3, b = 0.05, H = 100.
Parameter k was varied between 1 to 100 in order to generate the plot.

In Figure 3:middle panel simulation parameters are T = 50, k = 1, l = 1, a = 0.3, b = 0.05.
Parameter H was varied between 10 to 100 in order to generate the plot.

In Figure 3:right panel simulation parameters are T = 50, k = 1, a = 0.1, b = 0.1, H = 100.
Parameter l was varied between 0 to 1 in order to generate the plot.

Optimal actions in multi-dimensional outcome space

The aim of this section is to derive the optimal actions in the condition that the outcome
space is multi-dimensional. Optimal trajectory will satisfy the Euler-Lagrange equation along
each outcome dimension:

d

d t

∂L

∂v
= ∂L

∂x
, (A55)

where:
Lx,v,t = Ax,t .v−Kv. (A56)

Furthermore since the end point of the trajectory is free (the total amount of outcomes is not
fixed) we have:

∂L

∂v

∣∣∣∣
t=T

= 0. (A57)

Using equation A55, A56 we have:

d

d t

(
d

dv
(−Kv +v.Ax,t )

)
= d(v.Ax,t )

dx
. (A58)
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For the right hand side of the above equation we have:

d(v.Ax,t )

dx
= vᵀ

∂Ax,t

∂x
. (A59)

We also have:
d Ax,t

d t
= ∂Ax,t

∂t
+ ∂Ax,t

∂x
v, (A60)

which by substitution into equation A58 yields:

d

d t

∂Kv

∂v
= ∂Ax,t

∂t
+

(
∂Ax,t

∂x
−
∂Aᵀ

x,t

∂x

)
v. (A61)

We now provide two lemmas, which will be used in the proof of the following theorems.

Lemma 2 Assume that H is the Hessian matrix of Kv, i.e.,

[H]i , j =
K 2

v

∂vi∂v j
, (A62)

and furthermore assume that the cost of earning outcomes along each dimension is independent
of the outcome rate on the other dimensions, i.e.,

Hi , j = 0, i 6= j . (A63)

Then:
d

d t

∂Kv

∂v
= dv

d t
¯

(
∂2Kv

∂v2

)
, (A64)

where ∂2Kv/∂v2 represents the diagonal terms of H, and ¯ is entrywise Hadamard product.

Proof. Using equation A63 we have:

d

d t

∂Kv

∂v
= dv

d t
H

= dv

d t
¯

(
∂2Kv

∂v2

)
,

(A65)

where the last equation comes from the fact that H is a diagonal matrix.

Lemma 3 Assuming that the reward field is conservative, i.e.,

Ax,t =−∂Dx

∂x
, (A66)

then:

M = ∂Ax,t

∂x
−
∂Aᵀ

x,t

∂x
= 0. (A67)
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Proof. Using equation A66 we get:

[M]i , j =
∂[Ax,t ]i

∂x j
− ∂[Ax,t ] j

∂xi

=− ∂2Dx

∂x j∂xi
+ ∂2Dx

∂xi∂x j

=− ∂2Dx

∂xi∂x j
+ ∂2Dx

∂xi∂x j
(using Schwarz’s theorem)

= 0.

Note that the use of Schwarz’s theorem is based on the assumption that Dx is twice differentiable,
which holds in the circumstances that we consider here.

Theorem 3: Proof and simulation details

Proof of Theorem 3. Theorem 3 assumes that (i) the costs of earning outcomes are inde-
pendent (equation A63), (ii) the reward field is conservative (equation A66), and (iii) the reward
field is independent of time (∂Ax,t /∂t = 0). Based on Lemma 2, Lemma 3 and equation A61 we
have:

dv

d t
¯

(
∂2Kv

∂v2

)
= 0. (A68)

Given that equation A37 holds along each outcome dimension (∂2Kv/∂v2 > 0), the only admis-
sible solution to equation A68 is dv/d t = 0, which shows that the optimal rate of earning out-
comes is constant. Since the optimal rate is constant, we have xT = T v∗, which by substituting
in boundary conditions implied by equation A57 yields equation 10:

∂Kv∗

∂v∗
= AT v∗,T , (A69)

which completes the proof the theorem.
Simulation details. For the simulation of the model in Figure 4:left panel “independent

cost” condition, it is assumed that the two outcomes have the same reward effect, but earning the
second outcome requires l times more responses. Following Keramati et al (Keramati & Gutkin,
2014), since the two outcomes have the same reward properties we defined the motivational
drive as follows:

Dx = 1

2
(H −x1 −x2)2, (A70)

where as mentioned Dx is the motivational drive and it represents the deviations of the internal
state of the decision-maker from its homeostatic set-point (H). x1 is the amount of O1 earned
and x2 is the amount of O2 earned, and the current motivational drive for earning outcomes de-
pends on the difference between the total amount of earned outcomes (x1+x2) and the homeo-
static set-point (H).

Given the motivational drive, the amount of reward generated by consuming each out-
come will be equal to the amount of change in the motivational drive due to the consumption of
the outcomes (equation 8), and therefore, we have:

Ax,t =−∂Dx

∂x
= [H −x1 −x2, H −x1 −x2] . (A71)
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The above equation was used as the reward field in the simulations. As for the cost function,
earning one unit of O1 requires k responses on the left lever, and earning one unit of O2 requires
lk responses on the right lever. Based on this and using equation 3, the cost function will be:

Kv = v1[ak2v1 +kb]+ v2[ak2l 2v2 +klb], (A72)

where v1 is the rate of earning O1 and v2 is the rate of earning O2.
Using Theorem 3, the optimal response rate will be:

response rate =


for left lever︷ ︸︸ ︷

kl 2H

T l 2 +2ak2l 2 +T
,

for right lever︷ ︸︸ ︷
kl H

T l 2 +2ak2l 2 +T

 , (A73)

where as mentioned in the main text “left lever” is the response that should be taken for earning
O1, and “right lever” is the response that should be taken for earning O2. Parameters used for
simulations are k = 1, l = 2, a = 1, b = 0, H = 100.

Theorem A2: Definition, proof and simulation details

Proof of Theorem A2. The aim of this section is to derive optimal actions in the condi-
tions that the costs of earning outcomes are dependent on each other. In this condition, one can
assume what determines the cost is the delay between subsequent responses, either for the same
or for a different outcome, i.e., the cost is proportional to the rate of earning all of the outcomes.
In particular, if for earning O1, k responses are required and for earning O2, lk responses are
required (l 6= 1), then the delay between subsequent responses (τ) will be 1/(kv1 + lkv2). Given
equation 2, the cost of earning one unit of O1 will be k[a(kv1+ lkv2)+b], and the cost of earning
one unit of O2 will be kl [a(kv1+ lkv2)+b]. Such a cost function can be achieved by defining the
cost as follows:

Kv = v1[ak(kv1 + lkv2)+kb]+ v2[akl (kv1 + lkv2)+klb]. (A74)

In the following theorem, we maintain that given the above cost function, the optimal actions
are to make no response for O2, and to make responses for O1 at a constant rate.

Theorem A2 Given the cost function defined in equation A74 and assuming that the two out-
comes have the same reward properties, i.e.,:

[Ax,t ]1 = [Ax,t ]2. (A75)

Then the optimal actions satisfy the following equations:

d v1

d t
= 0,

v2 = 0.
(A76)

Proof. By substituting equation A74 in equation A56 we have:

L =−v1 [ak(kv1 + lkv2)+kb)]− v2 [akl (kv1 + lkv2)+klb]+
v1[Ax,t ]1 + v2[Ax,t ]2.

(A77)
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Using the boundary condition mentioned in equation A57 we have:

[AxT ,T ]1 −2ak2l v2 −2ak2v1 −bk = 0,

[AxT ,T ]2 −2ak2l 2v2 −2ak2l v1 −bkl = 0.
(A78)

Using equation A75 we get:

v1 =−l v2 −b/(2ak), (A79)

which is not admissible given constraints v1 ≥ 0 and v2 ≥ 0, and therefore we assume either v1

or v2 will be equal to zero. The trajectory will have a higher value by setting v2 to zero since O2

has a higher cost, and therefore the optimal solution will be v2 = 0. Since v2 = 0 the problem de-
generates to a one-dimensional problem, in which according to Theorem 1 the optimal response
rate is constant, and therefore the rate of responding for O1 will be constant, which proves the
theorem.

Simulation details. For the simulation of the model in Figure 4:left panel “dependent
cost” condition, it is assumed that k responses on the left lever are required to earn O1 and lk
response are required on the right lever to earn O2. Similar to the “independent cost” condition
mentioned in the previous section, the reward field was assumed as follows:

Ax,t =−∂Dx

∂x
= [H −x1 −x2, (H −x1 −x2)] . (A80)

Since the response rate for one of the outcomes will be zero (according to Theorem A2), the
problem degenerates to an environment with one action and one outcome. Using Theorem 1,
and equation A36 the optimal response rate will be:

response rate =

k
H −bk

T +2ak2︸ ︷︷ ︸
for left lever

, 0︸︷︷︸
for right lever

 . (A81)

Parameters used for simulations are k = 1, l = 2, a = 1, b = 0, H = 100.

Theorem A3: Definition, proof and simulation details

Proof of Theorem A3. The aim of Theorem A3 is to derive optimal actions when the re-
ward field is non-conservative and the costs of actions are independent. An example of a non-
conservative reward field is when the amount of reward that consuming an outcome produces
is greater or smaller than the change in the motivational drive. For example, assume that there
are two outcomes available, and the consumption of both outcomes has a similar effect on the
motivational drive:

Dx = 1

2
(H −x1 −x2)2, (A82)

but the reward that the second outcome generates is l times larger (l 6= 1) than the change it
creates in the motivational drive:

Ax,t =
[
−∂Dx

∂x1
,−l

∂Dx

∂x2

]
= [H −x1 −x2, l (H −x1 −x2)] . (A83)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 7, 2017. ; https://doi.org/10.1101/106500doi: bioRxiv preprint 

https://doi.org/10.1101/106500
http://creativecommons.org/licenses/by/4.0/


OPTIMAL RESPONSE VIGOR AND CHOICE 30

In this condition, ∂[Ax,t ]1/∂x2 =−1 and ∂[Ax,t ]2/∂x1 =−l , and therefore the reward of the second
outcome due to the consumption of the first outcome decreases more sharply than the reward
of the first outcome would, due to the consumption of the second outcome. We have:

M = ∂Ax,t

∂x
−
∂Aᵀ

x,t

∂x
=

[
0 l −1

1− l 0

]
, (A84)

and as long as l 6= 1 then M 6= 0, and therefore the reward field is non-conservative, because if it
was conservative then according to Lemma 3 we should have M = 0.

If the reward field is non-conservative, i.e., there does not exist a scalar field Dx such that
Ax,t satisfies equation 8, then the optimal response rates are as follows: early in the session the
decision-maker exclusively works for the outcome with the higher reward value (O1) and, when
the time remaining in the session is less than the threshold (Tc ), the decision-maker then gradu-
ally starts working for the outcome with the lower reward value (O2). More precisely we maintain
the following theorem:

Theorem A3 If the reward field follows equation A83, ∂Ax,t /∂t = 0, and the cost is as follows:

Kv = 1

2
mv2

1 +
1

2
mv2

2 , (A85)

then the optimal trajectory in the outcome space will be:

[v1, v2] =
{[

0, H(l−1)
T l−Tc

]
, T − t > Tc

arc of a circle T − t ≤ Tc

, (A86)

where

Tc = m
arctan(1/l )

l −1
,

m = 2ak2.
(A87)

Proof. We have:
∂Ax,t

∂x
−
∂Aᵀ

x,t

∂x
=

[
0 l −1

1− l 0

]
, (A88)

and based on equations A63, A85, A61 we get:

d v1

d t
= l −1

m
v2,

d v2

d t
=− l −1

m
v1.

(A89)

Defining w = (l −1)/m, the solution to the above set of differential equations has the form:

x = [
q1 + r /w sin(w t +α), q2 + r /w cos(w t +α)

]
, (A90)

which is an arc of a circle centered at [q1, q2], and r and α are free parameters. The parameters
can be determined using the boundary condition imposed by equation A57, and also assuming
that the initial position is x = 0. The boundary condition in equation A57 implies:

mv = Ax,t
∣∣

t=T =
[√

2Dx, l
√

2Dx

]
, (A91)
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which implies that at the end of the trajectory the rate of earning the second outcome is l times
larger than the first outcome. Therefore, the general form of the trajectory will be an arc starting
from the origin and ending along the above direction. Given the constraint that v ≥ 0 only the
solutions in which q2 ≤ 0 are acceptable ones (i.e., the center of the circle is below the x-axis).
Solving equation A90 for q2 ≤ 0 we get:

T ≤ Tc , (A92)

where

Tc = m
arctan(1/l )

l −1
, (A93)

and therefore Tc is independent of H (the initial motivational drive). As such if T ≤ Tc (equa-
tion A92) then the optimal trajectory will be an arc of a circle starting from the origin. Otherwise,
if T > Tc , the optimal trajectory will be composed of two segments. In the first segment, v1 will
take the boundary condition v1 = 0 and the decision-maker earns only the second outcome (the
outcome with the higher reward effect). The first segment continues until the remaining time
in the session satisfies equation A92 (the remaining time is less than Tc ), after which the second
segment starts, which is an arc of a circle defined by equation A90. The rate of earning the second
outcome, v2, in the first segment of the trajectory (when v1 = 0) can be obtained by calculating
the rates at the beginning of the circular segment. The initial rate at the start of the circular
segment is as follows:

r = H(l −1)

T l −Tc
, (A94)

which implies that at the first segment of the trajectory we have:

[v1, v2] =
[

0,
H(l −1)

T l −Tc

]
, (A95)

which completes the proof of Theorem A3.
It is interesting to mention that there is a parallel between the trajectory that a decision-

maker takes in the outcome space, and the motion of a charged particle in a magnetic field. In
the case that the outcome space is three dimensional, using equation A61 the optimal path in
the outcome space satisfies the following properties:

m
dv

d t
=

(
∂Ax,t

∂x
−
∂Aᵀ

x,t

∂x

)
v

=−v×B,

(A96)

where × is the cross product, B is the curl of the reward field (B = curlAx,t ), and m = 2ak2. The
equation A96 in fact lays out the motion of a unit charged particle (negatively charged) with mass
m in a magnetic field with magnitude B.

Simulation details. Simulations shown in Figure 4:right panel are based on Theorem A3,
and the parameters used are k = 1, l = 1.1, a = 1, b = 0, H = 100, m = 2ak2.
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