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Abstract 
Schizophrenia is a common neuropsychiatric disorder with a lifetime risk of 1%. A 
number of large scale genome wide association studies have identified numerous 
individual risk single nucleotide polymorphisms (SNPs) whose precise roles in 
schizophrenia remain unknown. Accumulation of many of these risk alleles has been 
found to be a more important risk factor. Consistently, recent studies showed a role for 
enrichment of minor alleles (MAs) in complex diseases. Here we studied the role of 
MAs in general in schizophrenia using public datasets. Relative to matched controls, 
schizophrenia cases showed higher minor allele content (MAC), especially for the 
sporadic cases. By linkage analysis, we identified 82 419 SNPs that could be used to 
predict 2.2% schizophrenia cases with 100% certainty. Pathway enrichment analysis 
of these SNPs identified 17 pathways, 15 of which are known to be linked with 
Schizophrenia with the remaining 2 associated with other mental disorders. These 
results suggest a role for a collective effect of MAs in schizophrenia and provide a 
method to genetically screen for schizophrenia. 
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1. Introduction 
Schizophrenia is one of the most frequent neuropsychiatric disorders with a lifetime 
risk of 1% in the general population (McGrath et al., 2008; McGrath, 2007). This 
disease is often chronic and places a great burden on family and society. It is 
characterized by the occurrence of delusions, hallucinations, disorganized speech 
and behavior, impaired cognition, and mood symptoms (van Os and Kapur, 2009). 
Data from twin, family, and adoption studies showed strong evidence that 
schizophrenia is predominantly a genetic disorder with high heritability (Sullivan et al., 
2003).  
 
The precise mode of Schizophrenia inheritance is unclear and risk prediction using 
known genetic components is presently unrealistic. Based on investigating familial 
syndromes with schizophrenia-like phenotypes, two rare variants have been identified 
as associated with schizophrenia: the 22q11 deletion (Ivanov et al., 2003; 
Karayiorgou et al., 1995; Sporn A Fau - Addington et al., 2004) and a 
1:11translocation (Blackwood et al., 2001; Hodgkinson et al., 2004). With the advent 
of copy number variants (CNVs) microarray technology, an increasing number of large 
rare deletions have been detected in schizophrenia patients (Levinson et al., 2011; 
Moreno-De-Luca et al., 2010; Walsh et al., 2008). However, the effect size associated 
with common CNVs is smaller than initially estimated (Wray and Visscher, 2010). In 
addition, many candidate genes for schizophrenia have been found by Genome-wide 
association studies (GWAS) (O'Donovan et al., 2008; Schizophrenia Psychiatric 
Genome-Wide Association Study, 2011). However, these SNPs are at frequencies of 
20–80% in the general population and only account for a minimal increase in risk 
(Mulle, 2012; Tiwari et al., 2010). It is likely that schizophrenia may be related to 
accumulation of many risk alleles at thousands of loci (International Schizophrenia et 
al., 2009).  
 
An allele can belong to either the major or the minor allele according to its frequency 
in the population and the minor allele (MA) has frequency (MAF) < 0.5. Most known 
risk alleles are MAs (Park et al., 2011). Our previous studies have shown that the 
collective effects of MAs may play a role in numerous traits and diseases (Yuan et al., 
2014; Zhu et al., 2015a; Zhu et al., 2015b). Specifically, enrichment of genome wide 
common SNPs or MAs is associated with Parkinson's disease (Zhu et al., 2015b) and 
lower reproductive fitness in C.elegans and yeasts (Zhu et al., 2015a). We here 
studied the role of genome wide MAs as a collective whole in schizophrenia using 
previously published GWAS datasets.  
 
2. Materials and Methods: 
2.1 Subjects 
Two GWAS datasets of Cases and controls (phs000021.v3.p2, phs000167.v1.p1 
(International Schizophrenia et al., 2009; O'Donovan et al., 2008; Stefansson et al., 
2009; Suarez et al., 2006) were downloaded from database of Genotypes and 
Phenotypes (dbGaP). All subjects we selected for analysis are European-American 
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ancestry population. The SNPs of all subjects were genotyped using AFFY_6.0 in 
genome-wide. Principal component analysis (PCA) using the GCTA tool was 
performed to analyze the genetic homogeneity of the subjects (Yang et al., 2011). 
Outliers were excluded through selection of the principal component values 
(Supplementary Table S1). Duplicated subjects were excluded, and the parents of 
cases were also excluded. 

 
2.2 SNPs selection 
All SNPs for analysis in this study are autosomal SNPs. In addition, we excluded 
SNPs showing departure from the Hardy-Weinberg equilibrium (P < 0.01), with 
missing data < 5%, and with MAF< 10-4. After these filters, there were 512 673 SNPs 
remaining (Table 1).  
 
2.3 Statistical analysis 
The Hardy-Weinberg equilibrium, missing data, MAF and logistic regression analysis 
were performed using PLINK Tools (Purcell et al., 2007). MAC per subject means the 
ratio of the total number of MAs divided by the total number of SNPs scanned 
(non-informative NN SNPs were excluded). The script for MAC calculation was 
previously described (Zhu et al., 2015b). Risk coefficient of each SNP was calculated 
with logistic regression test (equal to coefficient logistic regression test). The weighted 
risk score of a MA was calculated as follows: for homozygous MA, the risk coefficient 
was 1 x the coefficient, for heterozygous MA, it was 0.5 x the coefficient, for 
homozygous major allele, the coefficient was 0. The total weighted risk score from all 
MAs in a subject was obtained by summing up the weighted risk coefficient of all MAs 
by the script as described previously (Zhu et al., 2015b). 

 
2.4 Genetic risk models construction and evaluation 
125 prediction models were obtained from different combinations of MAF and p-value 
(Zhu et al., 2015b). For external cross-validation, the phs000021.v3.p2 study was 
used as training dataset, and the phs000167.v1.p1 study as validation dataset. 
Receiver operating characteristic (ROC) curves were used to describe the ability to 
differentiate cases and controls. True positive rate (TPR) is the proportion of cases 
with weighted risk scores higher than all of the controls. Area under the curve (AUC) 
and the TPR were calculated for each model by prism5.  
 
For the internal cross-validation, a 10 fold cross-validation was used to test the 
models with good performance in external cross-validation. The models with TPR > 2% 
and AUC > 0.58 were chosen for internal cross-validation. Subjects in 
phs000021.v3.p2 were divided into 10 sub-sets randomly. When a sub-set was used 
as the validation data, the other 9 sub-sets were used as the training data. The 
cross-validation process was repeated 10 times, and the mean AUC and TPR values 
were calculated from these 10 results.  

 
2.5 SNPs annotation and functional enrichment analysis 
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ANNOVAR (http://annovar.openbioinformatics.org/) was used to annotate SNPs 
(Wang et al., 2010). For functional enrichment analysis, WebGestalt 
(http://bioinfo.vanderbilt.edu/webgestalt/) tools were used for gene ontology 
annotation and pathway analysis according to Kyoto Encyclopedia of Genes and 
Genes (KEGG) (http://www.genome.jp/kegg/) (Wang et al., 2013; Zhang et al., 2005).  
 
3. Results 
3.1 Collective effects of minor alleles in Schizophrenia  
We made use of the published GWAS datasets (phs000021.v3.p2 and 
phs000167.v1.p1). We first cleaned these datasets by removing outliers in principle 
component analysis (PCA) plots (see Figure in Supplementary Table S1). The 
cleaned datasets contains 1 003 cases and 1 152 controls in phs000021.v3.p2 
dataset, and 828 cases and 1 068 controls in phs000167.v1.p1 dataset (Table 1). MA 
status of each SNP was then obtained by using the control cohort using MAF < 0.5 as 
cutoff. MAC of each subject was calculated, and the mean MAC of cases and controls 
was compared. The results showed that the mean MAC of schizophrenia cases is 
significantly higher than that of controls in both the phs000021.v3.p2 data (mean MAC 

[mean ± stdev], cases vs controls is 0.2235 ± 0.0010 vs 0.2233 ± 0.0011, P = 
2.71E-06, t test) and the phs000167.v1.p1 data (cases 0.2251± 0.0011 vs controls 
0.2249 ± 0.0011, P = 9.21E-04, t test, Supplementary Table S2). MAC values of both 
cases and controls showed normal distribution but cases were shifted slightly to the 
right or higher MAC values (Figure 1A and B).  
 
To study of the role of MAC in sporadic versus familial cases of schizophrenia, we 
further combined the subjects in the two datasets and calculated the MAC of each 
subject again. Then we compared the mean MAC of sporadic schizophrenia cases (n 
= 1217) to that of cases with family history of a psychotic illness (n = 493). We also 
compared these two groups of cases with the controls (n = 2220). The results showed 
that the mean MAC of sporadic schizophrenia cases (cases1) was slightly higher than 
cases with family history (cases2) (cases1 0.221505 ± 0.001039 vs cases2 0.221503 

± 0.001044，P = 0.49, one-way ANOVA). The MAC difference between sporadic cases 

and controls was significant (cases1 0.221505 ± 0.001039 vs controls 0.221412 ± 
0.001054, P = 6.4E-03, one-way ANOVA), and more so than that between cases with 

family history and controls (cases2 0.221503 ± 0.001044 vs controls 0.221412 ± 
0.001054, P = 0.04, one-way ANOVA, Supplementary Table S2). The results 
confirmed the expectation that collective effects of minor alleles should play more 
important role in sporadic Schizophrenia cases because familial cases may involve 
major effect mutations in a small number of genes. 
 
We also calculated a risk coefficient score for each SNP by logistic regression 
analysis and obtained a weighted risk score based on the MA status and the risk 
coefficient score as previously described (Zhu et al., 2015b). The MAC of each 
individual was then converted into a weighted risk score by summing up the weighted 
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risk scores of each SNP. The mean weighted risk score of cases was found to be far 

greater than that of controls in both datasets (cases 290.43 ± 55.86 vs controls 
-253.59 ± 57.90 in phs000021.v3.p2, P = ~0; cases 294.37 ± 50.77 vs controls 
-188.19 ± 50.50 in phs000167.v1.p1, P = ~0, t-test, Supplementary Table S2). This 
was apparent on a distribution plot of the weighted risk score with clearly separated 
cases and controls (Figure 1C and D).  

 
3.2 Evaluation of risk prediction models   
In order to get an optimal MAs model or a subset of MAs for risk prediction, we divided 
the MAs into 5 groups according to MAF (<0.5, <0.4, <0.3, <0.2, and <0.1, Fig 2). We 
performed logistic regression analysis and obtained the p-values for each SNP. Based 
on these p-values, we divided each group into 25 subgroups and obtained a of 125 
prediction models (Fig 2, Supplementary Table 3). We then performed external 
cross-validation and internal cross-validation analyses to test these models. In 
external cross-validation, we used phs000021.v3.p2 as the training dataset and 
phs000167.v1.p1 as the validation dataset. We then used the receiver operator 
characteristic (ROC) curve to examine the discriminatory capability or area under the 
curve (AUC) of each model in the testing dataset. We found 17 models with AUC > 
0.58 and true positive rate (TPR) > 2%. Among these models, the best TPR is 2.78%, 
and the best AUC is 0.6 (Fig 2 and Supplementary Table S3). 
 
A 10 fold internal cross-validation analysis with these 17 models was further 
performed using phs000021.v3.p2 dataset. Each model was analyzed 10 times, and 
the mean AUC and TPR were calculated. The best model had AUC 0.62 (95%CI, 
0.5919-0.6367) and TPR 2.2% (95%CI, 0.8786%-3.4957%) in internal 
cross-validation analysis, and AUC 0.6 (95%CI, 0.5678-0.6374) and TPR 2.67% 
(95%CI, 1.672%-3.995%) in external cross-validation analysis. There were 82 419 
SNPs in this model with MAF < 0.5, and each MA had a p-value < 0.16 (Figure 2 and 
Supplementary Table S3).  
 
We next tested whether the set of 82 419 SNPs is relatively specific to schizophrenia. 
We compared these SNPs with the previously identified 37 564 SNPs specific for 
Parkinson’s disease (Zhu et al., 2015b). Only 1 239 SNPs were found shared 
between these two sets, indicating that different diseases may be linked with different 
sets of SNPs.  
 
3.3 SNPs annotation 
We next examined the potential functions of the 82 419 SNPs by annotating them with 
the ANNOVAR software (Wang et al., 2010). There were 82 834 SNPs annotation 
results in total due to the fact that some SNPs may lie in between two genes and 
could hence generate two annotation results. We found 0.956% of SNPs in exonic 
regions (Table 2, Supplementary Table S4). 
 
We mapped the 82 419 SNPs to gene loci using WebGestalt tools, and found 6 588 
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genes (Supplementary Table S4). These genes were characterized using Gene 
Ontology in WebGestalt according to biological process, molecular function, and 
cellular component. As shown in Table 3, most of these genes were related to 
cytoskeletal proteins, phospholipid, anion and actin biding, GTPase regulators, 
transmembrane receptor protein tyrosine kinases, transmembrane receptor protein 
kinases, small GTPase regulators, and mental ion transmembrane transporter 
activities, and nucleoside-triphosphatase regulators.  
 
Pathway analysis was carried out on these 6 588 genes according to the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) using WebGestalt tools. A total of 17 
pathways were identified with P < 0.05 (after multiple test adjustment) (Table 4, and 
Supplementary Table S5). All of these signaling pathways have been shown to have a 
role in schizophrenia except the gastric acid secretion and bile secretion pathway that 
may play a role in autism, depression (Horvath et al., 1999; Padol et al., 2012), and 
Alzheimer's disease (Simpson et al., 1994; Winkler et al., 2015). The pathways linked 
with schizophrenia include focal adhesion(Fan et al., 2013), axon guidance (Chen et 
al., 2011), calcium signaling pathway (Berridge, 2013; Hertzberg et al., 2015; Lidow, 
2003), ECM-receptor interaction (Lubbers et al., 2014), vascular smooth muscle 
contraction (Sakakibara et al., 2012), arrhythmogenic right ventricular cardiomyopathy 
(Kawasaki et al., 2015), regulation of actin cytoskeleton (Criscuolo and Balledux, 
1996; Zhao et al., 2015), long-term potentiation (Frantseva et al., 2008; Hasan et al., 
2011; Salavati et al., 2015), MAPK signaling pathway (Funk et al., 2012), ABC 
transporters (Akamine et al., 2016), neuroactive ligand-receptor interaction (Adkins et 
al., 2012), GnRH signaling pathway (Brambilla F Fau - Rovere et al., 1976), salivary 
secretion (Toone Bk Fau - Lader and Lader, 1979), cell adhesion molecules (CAMs) 
(Webster et al., 1999; Zhang et al., 2015) and dilated cardiomyopathy (Finsterer and 
Stollberger, 2016; Volkov Vs Fau - Volkov and Volkov, 2013). 
 
4. Discussion 
In this study, we showed enrichment of MAs in schizophrenia cases relative to 
matched controls. We also identified a set of 82 419 SNPs that can predict with 
certainty a fraction of schizophrenia cases. These results are consistent with previous 
work on other complex diseases and traits (Yuan et al., 2014; Zhu et al., 2015a; Zhu 
et al., 2015b).  
 
There were reports of male bias in schizophrenia (Aleman et al., 2003). The ratio of 
males to females in cases of phs000021.v3.p2 data was 2.28 but was close to 1 in the 
other dataset. We however did not observe significant differences in MAC values 
between male and female cases in both datasets. Thus, MAC may play a similar role 
in both sexes.  
 
Recent studies have shown that a much larger than expected portion of the human 
genome may be functional (Fung et al., 2014; Hu et al., 2013; Sauna and 
Kimchi-Sarfaty, 2011). Genetic diversities are at saturation levels as indicated by the 
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observation that higher fractions of fast evolving SNPs are shared between different 
human groups (Yuan et al., 2017). This raises the question of what selection forces 
are keeping genetic diversity levels from increasing with time. By linking the total 
amount of SNPs or MAs in an individual to complex diseases and traits, it is clear that 
complex diseases could serve as a negative selection mechanism to prevent 
abnormal increase in SNP numbers in an individual. It is intuitively obvious that the 
overall property of the genome as a whole should be linked with the wellbeing of an 
organism. Our results here on schizophrenia further confirmed the hypothesis we put 
forward before that a highly complex and ordered system such as the human brain 
must have an optimum limit on the level of randomness or entropy in its building parts 
or DNAs (Zhu et al., 2015b).  
 
It has been difficult to use any genetic markers or combinations of them to predict risk 
of schizophrenia. We here identified a set of 82 419 SNPs that could predict 2.2% 
cases with 100% specificity. Although this is still a low percentage, it may still prove 
valuable for prenatal diagnosis of schizophrenia. The set of 82 419 SNPs specific for 
schizophrenia was highly linked with pathways known to be involved in the disease, 
thereby validating our method of looking for disease specific set of SNPs. This set is 
much larger than any known from previous studies (International Schizophrenia et al., 
2009). This large collection of risk alleles is not unexpected if most genome 
sequences are functional as explained by the maximum genetic diversity (MGD) 
theory (Huang, 2008; Huang, 2009; Huang, 2016), which inspired this work in the first 
place. Future studies using larger sample sizes may help identify a more specific set 
of risk SNPs that could predict higher fraction of cases.  
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Table Legends: 
 
Table 1.Description of datasets used in this study.  

  phs000021.v3.p2 phs000167.v1.p1 

 
cases controls cases controls 

Number of Subjects 1003 1152 828 1068 

Number of SNPs  512673 512673 512673 512673 

Sex (male:female) 697:306 526:626 534:534 567:261 

 

 
 
Table 2. Statistics of SNPs distribution. 

Locus 
Number of 
SNPs 

Percentage% 

Exonic 792 0.956  

Intergenic 44440 53.649  

Intronic 30742 37.113  

UTR3 821 0.991  

UTR5 80 0.097  

Upstream 357 0.431  

Downstream 536 0.647  

upstream,downstream 8 0.010  

Splicing 4 0.005  

ncRNA-intronic 4735 5.716  

ncRNA-exonic 319 0.385  
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Table 3. Categories of top-10 significantly enriched genes.   

Terms Count P  
Biological Process 

signaling  1859 2.56E-14 

single organism signaling 1859 2.56E-14 

cell communication  1904 2.56E-14 

nervous system development 747 1.49E-12 

signal transduction 1647 3.63E-12 

cell adhesion 442 7.23E-12 

biological adhesion  442 8.20E-12 

single-organism process 2873 8.20E-12 

cell projection organization 447 1.54E-10 

single-multicellular organism process 2149 1.75E-10 

Molecular Function 

cytoskeletal protein binding 322 3.07E-09 

phospholipid binding 245 6.20E-07 

anion biding 1010 3.11E-06 

actin binding 179 1.20E-05 

GTPase regulator activity 215 1.20E-05 

transmembrane receptor protein tyrosine kinase activity 48 1.37E-05 

nucleoside-triphosphatase regulator 219 1.50E-05 

transmembrane receptor protein kinase activity 60 2.03E-05 

small GTPase regulator activity 150 5.10E-05 

mental ion transmenbrane transporter activity 190 5.10E-05 

 

Cellular Component 

cell projection 580 4.27E-13 

membrane 2824 9.06E-13 

neuron projection 329 7.13E-12 

cell periphery 1628 8.53E-12 

plasma membrane part 813 9.65E-12 

synapse 260 2.08E-11 

plasma membrane 1588 7.56E-11 

cell junction 371 7.80E-11 

cell projection part 318 5.03E-10 

intrinsic to plasma membrane 539 3.84E-09 

Count: the number of genes in pathway;  
P: p value adjusted by the multiple test adjustment. 
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Table 4. Significantly enriched KEGG pathways from WebGestalt Toolkit.  

KEGG pathway O E R P 
Focal adhesion 105 76.3 1.38 0.0027 

Axon guidance 70 47.84 1.46 0.0027 

Calcium signaling pathway 86 62.27 1.38 0.0049 

ECM-receptor interaction 47 31.76 1.48 0.0112 

Vascular smooth muscle contraction 58 40.42 1.44 0.0112 

Arrhythmogenic right ventricular 

cardiomyopathy (ARVC)  
43 28.46 1.51 0.0112 

Gastric acid secretion 39 25.98 1.5 0.0173 

Regulation of actin cytoskeleton 99 76.71 1.29 0.0173 

Long-term potentiation 38 25.16 1.51 0.0173 

MAPK signaling pathway 118 94.03 1.25 0.0178 

ABC transporters 27 16.91 1.60  0.0264 

Neuroactive ligand-receptor interaction 114 91.97 1.24 0.0316 

GnRH signaling pathway 48 34.64 1.39 0.0395 

Salivary secretion 39 27.22 1.43 0.0398 

Cell adhesion molecules (CAMs)  61 46.19 1.32 0.0461 

Dilated cardiomyopathy 45 32.58 1.38 0.0474 

Bile secretion 38 26.81 1.42 0.0485 

 
O: the number of genes in our gene set and also in the category; E: the expected 
gene number in the category; R: ratio of enrichment; P: p value adjusted by the 
multiple test adjustment. 
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Figure Legends 

 

 
Figure 1. Minor allele distribution in cases and controls. Distribution of MAC (A, B) 
and weighted risk score (C, D) of case and control subjects in two different datasets. 

MAC：Minor allele content of SNPs with MAF < 0.5.  
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Figure 2. Discriminatory ability of different prediction models. SNPs were divided 
into 5 groups based on MAF, each group was further divided into 25 subgroups based 
on p-values from the logistic regression test and 125 prediction models were obtained. 
AUC (A) and TPR (B) were calculated using a training dataset and a validation 
dataset to evaluate the discriminatory ability. 
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