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Investigating circadian rhythmicity in pain
sensitivity using a neural circuit model for spinal
cord processing of pain

Jennifer A. Crodelle*, Sofia H. Piltz’, Victoria Booth and Megan Hastings
Hagenauer.

Abstract Primary processing of painful stimulation occurs in the dorsal horn of
the spinal cord. In this article, we introduce mathematical models of the neural cir-
cuitry in the dorsal horn responsible for processing nerve fiber inputs from noxious
stimulation of peripheral tissues and generating the resultant pain signal. The differ-
ential equation models describe the average firing rates of excitatory and inhibitory
interneuron populations, as well as the wide dynamic range (WDR) neurons whose
output correlates with the pain signal. The temporal profile of inputs on the different
afferent nerve fibers that signal noxious and innocuous stimulation and the excitabil-
ity properties of the included neuronal populations are constrained by experimental
results. We consider models for the spinal cord circuit in isolation and when top-
down inputs from higher brain areas that modulate pain processing are included.
We validate the models by replicating experimentally observed phenomena of A
fiber inhibition of pain and wind-up. We then use the models to investigate mecha-
nisms for the observed phase shift in circadian rhythmicity of pain that occurs with
neuropathic pain conditions. Our results suggest that changes in neuropathic pain
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rhythmicity can occur through dysregulation of inhibition within the dorsal horn
circuit.

1 The neural processing of pain

The ability for an organism to detect pain is essential for its survival. It is intuitive
that the processing of pain must engage a wide-variety of neural circuits ranging
from the spinal cord, up through the brainstem, thalamus, and cortex. Though this
is true, many of the higher-level cognitive and emotional influences re-converge at
the level of the spinal cord, to gate the input of nociceptive information entering
the dorsal horn. The dorsal horn serves as a processing center for incoming pain
signals, while the midbrain and cortex, as a whole referred to as descending or top-
down inhibition [22], serve as a modulator of the pain circuit in the dorsal horn. As
a result, there is a tradition of modeling pain processing by focusing exclusively on
spinal cord circuitry.

The neural circuit in the dorsal horn receives information about stimulation of
peripheral tissues from several types of primary afferent nerve fibers. Nerve fibers
called nociceptors detect painful stimuli and are only activated when a stimulus
exceeds a specific threshold. These afferents have their cell bodies in the dorsal root
ganglia, a cluster of nerve cell bodies located in the back of the spinal cord, and their
axons, or afferent fibers, reach to the dorsal horn [3].

There are two major classes of nociceptive fibers: medium diameter, myelinated,
fast conducting A fibers that mediate localized, fast pain, and small diameter, un-
myelinated, slow conducting C fibers that mediate diffused, slow pain. In addition to
the two nociceptive fibers, there are large diameter, myelinated, rapidly conducting
AP fibers that respond to innocuous, mechanical stimulation [25]. The dorsal horn
circuit is composed of many populations of neurons, including excitatory and in-
hibitory interneurons, and the Wide Dynamic Range (WDR) neurons, or projection
neurons. These WDR neurons respond to input from all fibers, and constitutes the
majority of the output from the dorsal horn circuit up to the brain.

In this article, we introduce a mathematical model of the pain processing neu-
ral circuit in the dorsal horn. We are particularly interested in using the model to
investigate mechanisms for circadian and sleep-dependent modulation of pain sen-
sitivity. As reviewed in [9], pain sensitivity exhibits a daily rhythm with a trough
in the late afternoon and a peak sometime after midnight for humans. There are
several hypotheses for the source of this circadian rhythm, including the sensory
afferent fibers, and the top-down inhibition. Since the dorsal root ganglia rhythmi-
cally express clock genes responsible for generating circadian rhythmicity of other
physiological processes [37], and the dorsal root ganglia contain the cell bodies for
a wide variety of afferent neurons, we assume for our model that circadian modu-
lation occurs at the level of primary afferent input to the spinal cord. In the case of
more severe or chronic pain, the influences of homeostatic sleep drive on top-down
inhibition may be more relevant [37]. We aim to use our mathematical model of the
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pain circuit in the dorsal horn to form hypotheses on where the modulation might
occur and how this placement can affect the firing behavior of the projection neu-
rons.

1.1 Previous models of pain processing

There is a long history to understanding how the body perceives pain, including
many conflicting theories. Today’s main theory of pain, the gate control theory of
pain, was developed in 1965 by Ronald Melzack and Charles Patrick Wall [20].
These researchers revolutionized the understanding of the pain pathway by scruti-
nizing previous conceptual models of pain processing and developing a model that
accounts for the experimental evidence seen thus far. The gate control theory of pain
posits that the neural circuitry in the dorsal horn exhibits a gating mechanism that is
modulated by activity in the Af and C afferent fibers [23]. The nociceptive C fibers
facilitate activity in the dorsal horn circuit, whereas the A fibers inhibit activity.
When the amount of painful stimuli (activity in C fibers) outweighs the inhibition
from the A fibers, the “gate opens” and activates the WDR neurons and thus, the
experience of pain. Experimentalists have used this theory to frame their investi-
gations on the types of fibers that project to the spinal cord, as well as the role of
different neuron types in the dorsal horn.

Although the gate control theory of pain [20] is a simplification and not a com-
plete representation of the physiological underpinnings of pain [23], it has been
a productive starting point for several mathematical and computational models of
pain. These models in turn have given insight into the underlying mechanism of
pain. The gate control theory was shown to explain several observed phenomena
in pain and suggested a possible mechanistic explanation for rhythmic pain (i.e., a
sudden change in the input from fast or slow afferent fibers) [6]. Later in [5], the
authors considered an excitatory and inhibitory connection from the mid-brain to
the inhibitory interneurons and projection neurons, respectively, to be included in
the model developed in [6]. This generalization made it possible to take the effect of
N-methyl-D-aspartate (NMDA) receptors into account, and therefore, allowed for
the resulting model to successfully reproduce the “wind-up” mechanism [5] —that
is, an increased level of activity in a neuron that is being repeatedly stimulated [21].

Similarly to [6, 5], more recent models of pain have considered a modeling
framework at the level of a single neuron. These biophysically detailed models of
pain have been constructed by connecting compartmental models of individual neu-
rons in the dorsal horn according to the circuit architecture proposed by the gate
control theory [20]. In these models, the action potential firing of an individual neu-
ron is described by a Hodgkin-Huxley model of membrane current [13] with ap-
propriate membrane dynamics and synaptic strengths based on experimental data.
This approach allows for a detailed representation of the geometry and biophysics
of each neuron connected to the other neurons via a network whose biophysical


https://doi.org/10.1101/107375
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/107375; this version posted February 9, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

4 Crodelle, Piltz, Booth and Hagenauer

behavior and characteristics are then calculated numerically [12]. Such a network
model has been previously constructed for the interaction between a deep dorsal
horn neuron and Ad fibers [17], a wide-dynamic range projection neuron [1], and
for the dorsal horn circuit between a projection, inhibitory, and excitatory neuron
[38]. All these models were validated by showing that they are able to reproduce
observed phenomena such as wind-up in the presence of nonzero calcium conduc-
tances and NMDA [1, 17, 38]. In addition to wind-up, the model in [38] exhibits also
pain inhibition via a response to a stimulus in the A fibers, as has been observed ex-
perimentally [36]. On the other end of the modeling spectrum, Arle et al. [2] have
constructed a very large-scale, physiologically accurate network model of spinal
cord neural circuitry that includes numerous known cell types, their laminar distri-
bution and their modes of connectivity. In addition to simulating pain signaling, the
network accounts for the primary motor reflex responses. They applied the model to
investigate the mechanisms of pain relief through dorsal column stimulation (DCS),
a procedure used to treat neuropathic pain. Their results identify limitations of gate
control theory and propose alternate circuitry that more accurately accounts for the
effects on nociceptive and neuropathic pain of DCS.

In this work, we take a similar approach to the previous models of pain in terms
of the network architecture in the dorsal horn proposed by the gate control theory
[21]. However, instead of considering a detailed biophysical model of a single neu-
ron as in [1, 17, 38] or a large-scale network of individual neurons as in [2], we
construct equations to describe the population activity of projection, inhibitory, and
excitatory neurons in the dorsal horn. As a result, we work with average firing rates
of each of the three neuron populations according to the formalism developed in
[35]. Therefore, our modeling approach is similar to [6] but we give our model pre-
dictions in terms of average firing rates of neuron populations instead of potentials
of individual cells.

Thus far, we have not encountered an average firing-rate model for pain in the
literature. Our choice of modeling framework and dynamic variables is motivated
by our long term aim to integrate a model for pain into an existing model for the
sleep-wake cycle constructed in terms of the average firing rate of sleep- and wake-
promoting neuron populations. Such a combined sleep-wake-pain model would al-
low us to test existing hypotheses and ask several biologically motivated questions
from the model, for example, on the coupling between sleep, circadian rhythms, and
pain sensitivity [7], including the case of chronic pain which is not assessed by the
existing biophysical models of pain in [17, 38].

2 Mathematical Model

In this section we construct our model for the dorsal horn circuit. We choose a
firing-rate model in which we describe the firing rate of the projection, inhibitory
interneuron and excitatory interneuron populations in the dorsal horn circuit. The
following sections define equations of time evolution for the firing rate of popula-
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tions, as well as the response functions for each population, arrival times for the
afferent fibers, and connectivity between populations.

2.1 Equations of time evolution

In our model for pain processing, we focus on the dorsal horn and construct equa-
tions for the average firing rate of three interconnected neuron populations in the
dorsal horn circuit. We assume that the input to our model is a stimulation of the
afferent fibers that has been pre-processed in the dorsal root ganglion. Based on this
model input, and on the connections between the neuron populations in the dorsal
horn, our model predicts the activity of the projection neurons that then proceeds to
the mid-brain (see Figure 1).

» brain

axon terminals of A
SENsory neurons

—

E C
Fig. 1 Diagram of our biophysical model for the dorsal horn circuit. For variable names and default
parameter values, see Table 1.

In the dorsal horn circuit, the population of the wide-dynamic range (i.e., neurons
that respond to both nociceptive and non-nociceptive stimuli) projection neurons
(W) is connected to the population of inhibitory interneurons (/) and excitatory in-
terneurons (E) (see Figure 1). According to the formalism of the average firing rate
models, we follow [35] and assume that the rate of change of the average firing rate
in Hz (i.e., average number of spikes per unit time) of the projection, inhibitory, and
excitatory neuron populations, fy, f7, and fg, respectively, is determined by a non-
linear response function (that we define in Section 2.2). These response functions
determine the average firing rate of a neuron population based on the external inputs
(i.e., stimulations of the afferent fibers pre-processed in the dorsal root ganglion) and
the firing rates of the presynaptic neuron populations (see Figure 1). In the absence
of input from other neuron populations and afferent fibers, we assume the average
firing rate of the neuron population decays exponentially. These assumptions yield
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Weo(gaBW fAB + 8ADW faD + cw fc + 8ew fE — &w f1) — fw

Tw

dfe _ Ex(gcefc—gieft) — fe

dt TE
dfi _ L-(gasifa) — fi

dt

) 6]

b

where Ty, Tg, and 7; are the intrinsic time scales of the projection, excitatory, and
inhibitory neuron populations, respectively. Weight gy denotes the strength of the
effect a change in an external input or presynaptic neuron population N has on neu-
ron population M. We indicate inhibitory synaptic input with a negative sign and
excitatory synaptic input with a positive sign. We define the step functions of the ex-
ternal inputs, fap, fap, and fc, and the monotonically increasing firing rate response
functions W, E., and I, in the following subsections 2.1.1 and 2.2, respectively.

For a summary of all model variables and parameters, see Table 1.

Table 1 Summary of our model [in Equation (1)] variables, parameters, and default parameter

values.

Name

Description

Default value

8ABW
8ABI
8ADW
8CE
gcw
8EW
8IE
81w
maxsp
maxap
maxc
maxg
maxy
maxy
TE

T

Tw

weight of the synaptic connection from Af fibers to W
weight of the synaptic connection from Af fibers to I
weight of the synaptic connection from A fibers to W
weight of the synaptic connection from C fibers to £
weight of the synaptic connection from C fibers to W
weight of the synaptic connection from E to W

weight of the synaptic connection from / to E

weight of the synaptic connection from / to W
amplitude of the A fiber model input

amplitude of the A§ fiber model input

amplitude of the C fiber model input

maximum firing rate of £

maximum firing rate of /

maximum firing rate of W

intrinsic time scale of E

intrinsic time scale of /

intrinsic time scale of W

0.6
0.6
0.3
0.6
0.4
0.4
0.05
0.15
2

0.5
1.5
60 Hz
80 Hz
50 Hz
20ms
20ms
1ms

2.1.1 Model inputs from the dorsal root ganglion

The three different types of afferent fibers not only have different sizes of diameter
but they also differ at the level of myelination that provides insulation. As a result,
impulses are transmitted at different conductance speeds in the three afferent fibers.
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To determine the pattern of nerve input from a painful stimulus to the spinal cord
(see Figure la in [26]), we simulate the arrival of 1000 nerve impulses. The ma-
jority (82%) of these fibers consists of slow C fibers (with an average conduction
velocity of 1.25 m/s and a standard deviation of 0.75 m/s), 9% as Ad fiber fibers
(with an average conduction velocity of 0.12 m/s and a standard deviation of 0.083
m/s), and 9% as A fibers (with an average conduction velocity of 0.024 m/s and
standard deviation of 0.013 m/s). We assume that the time of initiation of each of
the nerve pulses in each of these fibers in the periphery in response to painful stim-
ulation are be roughly equivalent, and that they need to travel 1 meter to reach the
spinal cord (e.g., the length of a leg). We choose these proportions and conductance
speeds based on the literature [25, 16]. Our simulated data from fibers with different
conductance speeds reproduces the observed pattern [26] of a fast response to the
AB- and AS fibers (i.e., first pain) followed by a slow response to the C fibers (i.e.,
second pain) (see Figure 2).

To generate a simplified model input similar to the simulated input in Figure 2,
we use Heaviside step functions to represent how a stimulation (of the afferent Af,
A, and C fibers) and its pre-processing in the dorsal root ganglion is received by
the dorsal horn circuit. Thus, the external inputs fap, fap, and fc to the model in
Equation (1) are given by

faB(t) = maxapH (¢t —ton,; ) H (torr,, — 1),
fap(t) = maxapH (t —ton,, ) H (torr,, — 1), )
fc(l‘) = maxCH(t — tONC)H(tOFFC — t) s

where maxsp, maxap, and maxc are the amplitudes of the signals from A3, AJ, and
C fibers, respectively, fon,,, fon,,» and fon,. are the time points when an input from
AfB, Ad, and C fibers, respectively, is received by the dorsal horn circuit, IOFFyp
torF,,, and torr,. are the time points when an input from Af, Aé fiber, and C
fibers, respectively, has decayed and H (x) is a Heaviside step function

0, ifx<O,
Hx)={ 1 ifx=0, (3)
1, ifx>0.

In Figure 3, we show an example input that mimics the combined signal from the
three afferent fibers and that we use as an input to our model in Equation (1).
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Histogram Of Arrival Times
9% Abeta fibers (30-70m/s), 9%Adelta fibers (5-30mi's), 82%Cfibers (0.5-2m/s)
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Fig. 2 Simulated post-stimulus histogram from three afferent fibers with different conductance
speeds reproduces a pattern observed in the action potential of projection neurons [26] where fast
pain response is composed of a response to stimuli in the Af3- and A§ fibers followed by slow pain
response to stimuli in the C fibers.

2.2 Firing rate response functions

In our modeling framework, we assume a sigmoidal shape for the monotonically
increasing firing rate response functions We., E.., and L., and use hyperbolic tangent
functions to represent them

w

Wa(c) = maxwé (1 -+ tanh (al (c—ﬁw)>> ,
Ew(c) :maxE% <l+tanh (Otl(c_ﬁw))> , 4)

W

Lo(c) = max;% (1 + tanh (oclw (c— ﬁw)>> ;
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Fig. 3 Simulated model input to the dorsal horn circuit from the afferent fibers after pre-processing
in the dorsal root ganglion.

where maxy, maxg, and max; are the maximum firing rates of the projection, ex-
citatory, and inhibitory neuron population, respectively. In Equation (4), the shape
of the tanh-functions is determined by the input ¢ at which the average firing rate
of the projection, excitatory, and inhibitory neuron population reaches half of its
maximum value, ¢ = By, ¢ = Bg, and ¢ = B, respectively. The slope of the tran-
sition from non-firing to firing in the projection, excitatory, and inhibitory neuron
population is given by 1/04y, 1/ag, and 1/ay, respectively. See Table 1 for default
parameter values. We choose the parameter values for the tanh-functions in such
a way that the input-output curve of the projection, excitatory, and inhibitory neu-
ron population agrees qualitatively with experimental observations (see Figure 4).
Hence, we assume the inhibitory interneuron population has a nonzero resting firing
rate, as has been reported in [3, 22], and a higher maximum firing rate than that of
the projection and excitatory interneuron populations, as has been assumed in a bio-
physically detailed model of the dorsal horn circuit [38]. In our model assumptions
for the response functions, we mimic the model predictions of [38] that agree with
data from experimental observations in [18, 27]. Thus, we assume that for a small
input, the excitatory interneuron population has a small average firing rate that, how-
ever, reaches a higher maximum than that of the projection neuron population for a
large input (see Figure 4).
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Fig. 4 Response functions of the projection (black), excitatory (red), and inhibitory (blue) neuron
populations for different constant inputs (on the x-axis). For parameter values, see Table 1.

3 Model validation

In this section, we set out to show that our model reproduces various experimental
observations such as pain inhibition, wind-up and neuropathic phase changes.

First, we show that our model reproduces the average firing-rate pattern of the
populations of neurons in the dorsal horn when the three afferent fibers differ in
their conductance speeds. That is, as a response to the input from the afferent fibers
as shown in Figure 2, the average firing rates of the projection and interneuron popu-
lations [which are connected to each other as shown in Figure 1 and whose dynamics
are modeled as in Equation (1)] are qualitatively similar to the simulated histogram
in Figure 2 and also seen experimentally [e.g., see Figure la in [26] (see Figure
5)]. In addition, the model captures the expected tonic firing rate in the inhibitory
neuron population [3, 22], as well as captures the low firing rate of the excitatory
neurons [19, 28] (see Figure 4). We use the model output shown in Figure 5 as our
point of comparison when choosing “default” values for the weights gy (see Table
1) representing the strength of the connections between the neuron populations as
shown in Figure 1.


https://doi.org/10.1101/107375
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/107375; this version posted February 9, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Neural circuit model for spinal cord pain processing 11

Projection neurons (W)
T

30 i T T T T
25 -
2.0l
Tz =
2
RH |
gl
£ 104 —— .
) | ~ |
5| A _
ol ) L L 1 AN I | L |
o 005 01 015 0z 025 03 035 04
time (seconds)
Excitatory neurons (E)
5 T T T T T
— \
— A \ll q
)
L \
e dr / 1 1
] / 4
Fer i Y T
“ak i \ -
[ e
0 I 1 1 I | I |
] 005 [X] 015 0z 025 03 035 04
time (seconds)
Inhibitory neurons (1)
25 T T T T
A
20 —
a [\
£ /
Zasl) N 4
@ [ N
E] | N
ol
g 1
= f
=l — i
1
ol 1 1 | I

1 |
0z 025 03 035 04
time (seconds)

o
=
@
o
o

Fig. 5 Firing rates for each population in response to the input from afferent fibers as described in
Figure 3

3.1 Pain inhibition

It has been experimentally observed that stimulation of A fiber afferents can lead
to inhibition in some wide-range projection neurons that typically follows from a
stimulation of the C fiber afferents [38]. This is related to the idea that when you
stub your toe, you immediately apply pressure on the toe and feel some lessening
of pain. To capture this phenomenon in our model, we stimulate all three fibers
(stubbing of the toe) and then deliver a pulse to the Af fiber a short time thereafter
(pressure applied to toe), shown in Figure 6 by the red arrows. The arrival time of
the second pulse to the A fiber is increased by 10ms for each simulation, and the
response in the projection neurons is shown in blue. As can be seen in Figure 6, the
timing of the second pulse gets closer to the arrival of the C fiber stimulation, and
there is a brief period of excitation followed by a longer period of inhibition, as seen
in experiments [36]. Thus, our model successfully captures this delayed inhibition
phenomenon.
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Fig. 6 Pain inhibition phenomenon captured in the model. Response of the projection neuron pop-
ulation to the initial fiber pulse stimulation (at # = 0) and the second pulse stimulation only to Af3
fibers (red arrow) for increasing in time between fiber stimulations.

3.2 Wind-up

We aim to further validate our dorsal horn circuit model (1) by showing that it
reproduces wind-up —that is, increased (and frequency-dependent) excitability of
the neurons in the spinal cord because of repetitive stimulation of afferent C fibers
[21]. Wind-up serves as an important tool for studying the role the spinal cord plays
in sensing of pain, and it has been often used as an example phenomenon to validate
single neuron models of the dorsal horn (see [17, 1, 38], for example). However,
both the physiological meaning and the generation of wind-up remain unclear (see
[11] for a review).

There are several possible molecular mechanisms proposed for the generation
of wind-up (see Figure 6 in [11]). Earlier work on single neuron models suggests
that wind-up is generated by a combination of long-lasting responses to NMDA
and calcium currents providing for cumulative depolarization [1]. Indeed, calcium
conductances and NMDA receptors of the projection/deep dorsal horn neurons are
included in all previous models of the dorsal horn [38, 17, 1]. In contrast to the
model in [1], wind-up can also be reproduced in the absence of synapses that ex-
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press gamma-Aminobutyric (GABA) from C fibers to the projection neuron [38].
The study done in [17] emphasizes the effect (direct or via influencing the depen-
dence of the deep dorsal horn neurons on their intrinsic calcium currents) NMDA
and inhibitory conductances have on the extent of wind-up in the deep dorsal horn
neurons [17].

Experimental data on superficial and deep dorsal horn suggest that wind-up is
exhibited more by the deep than by the superficial dorsal horn neurons [30]. How-
ever, wind-up in the potential of the C fibers is observed in the superficial but not in
the deep dorsal horn [29]. Similarly to [1], we investigate whether wind-up of the
wide-dynamic range projection neurons in the dorsal horn circuit can be explained
by an increase in the C fiber response before the C-input reaches the dorsal horn
circuit. Thus, we assume wind-up occurs “upstream” from the dorsal horn circuit
described by our model in (1), and represent it as an increase in the duration, and as
a decrease in the arrival time, of the C fiber model input to the dorsal horn circuit.

Increase in C fiber synaptic efficacy has been proposed as a possible generation
mechanism for wind-up in the literature [29] and suggested as one of the molecular
mechanisms underlying wind-up (see Fig. 6 in [11]). Similarly to [1], our model
predicts an increase in the activity of the projection neurons for an increase in the
width of the step input from C fibers (see Figure 7, left). Furthermore, as in [1], our
model also predicts that wind-up in the excitatory interneurons (as a response to the
change in the C fiber model input) is similar to that seen in the projection neurons
(see Figure 7, right). However, such behavior of the excitatory interneurons is not
well-supported by experiments where wind-up is mostly observed in the projection
neurons [30]. Because wind-up in the excitatory interneurons had not been reported
by 2010, C fiber presynaptic facilitation was discarded as a possible mechanistic
explanation for wind-up in the modeling work done by [1]. Nonetheless, the authors
note that there is a possibility for underestimating the extent of wind-up in interneu-
rons because they are smaller in size than projection neurons, and therefore, more
difficult to sample for electrophysiology experiments than projection neurons [1].

We note here that the proposed mechanism we simulate in Figure 7 involves
changing the profile of the model input (in Figure 3) which leads to an obvious
change in the model output. We discuss implementations of dynamic wind-up mech-
anisms in our conclusions in Section 5.
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Fig.7 (Left) Projection and (right) excitatory interneuron activity predicted by the model in (1) and
otherwise as shown in Table 1] when C fibers are stimulated repeatedly. We assume that repeated
stimulation of C fibers is experienced in the neurons upstream from the deep dorsal horn, and thus,
seen as an increase in the duration of the C fiber model input (see Figure 3) to the dorsal horn
circuit (1). In other words, the model input from C fibers arrives to the dorsal horn circuit at time
tone = 0.015+n0.012s, where n =0, 1,2,3,4,5 and n increasing from bottom to top panel.

3.3 Neuropathy

Following model creation, we next set out to determine whether changes in the
balance of excitation and inhibition within spinal cord pain circuitry could explain
changes in pain processing under pathological conditions. We were particularly in-
terested in the case of inflammation and neuropathic pain, in which non-noxious
mechanical stimuli become painful following peripheral nerve injury. Both nerve
injury and inflammation can cause a deregulation of chloride ion transporters in
the dorsal horn. Maintaining a low intracellular chloride concentration is impor-
tant for the functioning of inhibitory neurotransmission. Under typical conditions,
the neurotransmitter GABA produces an inhibitory post-synaptic response by bind-
ing to the GABA4 receptor, which allows negatively-charged chloride ions to flow
into the post-synaptic neuron, thus producing hyperpolarization. Under neuropathic
or inflammatory conditions, intracellular chloride concentrations may stay semi-
permanently elevated, allowing chloride ions to flow out of the cell in response to
GABA,4 receptor activity, producing excitatory rather than inhibitory effects. Sev-
eral authors have hypothesized that this deregulation of spinal pain inhibition could
explain the development of pain sensation in response to non-noxious stimuli under
neuropathic conditions [34, 10].

Neuropathic conditions are characterized by an 8-12 hour shift in the phasing of
daily rhythms in pain sensitivity [37, 31, 15, 8]. As an application of the model,
we investigate whether a large phase shift could be produced by a combination of
deregulated neural inhibition, and differentially-phased rhythmic afferent input from
AP and C fibers [24], see [9].

Several inflammatory pain conditions, such as osteoarthritis and rheumatoid
arthritis, have been shown to exhibit circadian rhythm in pain, with the peak of
pain intensity being felt during the night, see Figure 1 in [8]. Neuropathic pain
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occurs from various conditions involving the brain, spinal cord and nerves. It is
distinguished from inflammatory conditions, like arthritis, in that it often appears
in body parts that are otherwise normal under inspection and imaging, and is also
characterized by pain being evoked by a light touch. Experiments on pain in neuro-
pathic patients suggest that neuropathic pain has a circadian rhythm as well, having
its peak in the afternoon, see Figure 2 in [8]. An afternoon peak in pain sensitivity
is opposite of the daily rhythm in pain sensitivity under normal conditions [9]. We
use our model to further investigate this phenomenon and propose that a possible
mechanism for this shift in rhythm is due to the interaction between the A and C
fibers.

It has been seen experimentally that the A fiber activity can have an inhibitory
influence on C fibers, and that under neuropathic conditions, this inhibition can turn
to excitation [33, 10]. Using both of these experimentally observed results, as well
as the idea that the circadian rhythm comes into the dorsal horn at the level of the
fiber inputs we show that we can get a change in phase of the firing rate of the
projection neurons with a change from inhibition (normal conditions) to excitation
(neuropathic conditions) in the influence from the A fibers to the C fibers. In order to
test our hypothesis that under neuropathy, response to acute phasic pain peaks in the
late afternoon when, under normal conditions, pain sensation reaches its minimum
value, we introduce two principal modifications to our model in Equation (1). First,
we impose a circadian rhythm on the maximum amplitude of the model inputs from
AP and C fibers (i.e., on parameters max,p and maxc, respectively). Second, we
assume an amplitude modulation of the C fibers by the Af fibers (see Figure 8).

Our motivation for the second assumption comes from experimental data sug-
gesting that A fibers can decrease the activity of C nociceptors [33]. To represent
such an inhibitory effect of A fibers, we model the amplitude modulation between
the AB and C fibers with a weight g4g¢, which under normal conditions is in-
hibitory and g4pc < 0, whereas under neuropathy, the inhibitory interneuron popu-
lation through A fibers has an excitatory effect on the C fibers and g4gc > 0. By
simulating our modified model, we investigate whether the activity of the projection
neurons follows the circadian rhythm in C fibers under normal conditions and that
of the A fibers under neuropathic conditions.

Earlier work suggests circadian rhythmicity in both the touch and pain sensitivity
(see Figures 1 and 2 in [24]). Namely, the pain sensitivity is at its lowest in the early
afternoon and at its highest in night, while the highest sensitivity for tactile dis-
crimination is reached in the late afternoon and the lowest in the late morning [24].
These experimental observations motivate us to introduce a circadian rhythm to the
model input from Af fibers that is in antiphase with the circadian rhythm of the
C fiber-model inputs, while keeping the arrival times from the three afferent fibers
at their default values (see Figure 3 and Table 1). Thus, in our modified model for
neuropathy, maxag = 1.5(1+sin (¥ — 7)) and maxc = 1.3(1+sin (§1)) + 1.6 (see
blue and red curves, respectively, in Figure 9). In addition, because of the synaptic
connection from the inhibitory interneuron populations to C fibers, we compute the
effective maximum height of the C fiber model input as
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Fig. 8 Diagram of our biophysical model for the dorsal horn circuit under (blue) neuropathic and
(red) normal conditions.

maxc,, = Maxc + gapcMaxag , )

where g gc = —0.5 under normal conditions, and g,gc = 1.5 under neuropathic
conditions. In order to assess the extent of experienced pain, we compute the inte-
gral of the firing rate of the projection neurons to a stimulus in C fibers (i.e., painful
stimuli) using the trapezoidal method from ¢ > 0.07s onwards (i.e., the C-response
of W, see model output curve in Figure 5). Indeed, our model simulations suggest
that inhibition turned excitation at the level of the fibers is a possible mechanistic
explanation for the flip in phase of pain sensitivity seen under neuropathic condi-
tions. Our model shows that under normal conditions, the pain sensitivity rhythm
follows the circadian rhythm of the C fibers (see top and bottom panels in Figure 9)
but mimics the rhythm in the Af fibers under neuropathic conditions (see middle
and bottom panels in Figure 9).

We note here that under neuropathic conditions, the firing rate of the projection
neurons is at, or near, its maximum value throughout the day. While patients with
neuropathic pain experience an increased level of pain throughout the day than those
without, it is unrealistic for the pain to be at, or near, its maximum all day. In the next
section, we propose an amended model in which we include top-down inhibition
from the mid-brain where this is not the case.
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Fig. 9 (Circles) Integrated projection neuron activity predicted by the model in (1) under (top)
normal and (middle) neuropathic conditions, and (bottom) the different circadian rhythms of the
height of the afferent fiber-model inputs. Under normal conditions, the interneuron population /
decreases the height of the model input from C fibers (see black solid curve in the bottom panel),
whereas under neuropathic conditions the connection between / and C fiber model input is excita-
tory. As a result, the effective height of the C fiber model input (black dashed curve) is higher than
its baseline value (red curve). We calculate the activity of the projection neuron population as the
area under the C-response. Thus, for each zeitgeber time point (with the corresponding maximum
heights of the model inputs from Af and C fibers shown in the bottom panel), we simulate the
neuropathy model for 0.4s and determine the integral under the projection neuron response for
t = [0.007s,0.4s].

4 Model with descending control from the mid-brain

4.1 Introduction

In its current form, our biophysical model of the dorsal horn pain circuit includes
response functions for the three neuron populations that mimic empirical obser-
vations. Importantly, our model reproduces the phenomenon of pain inhibition in
which a brief mechanical stimulus applied after a painful stimulus can decrease the
activity of the projection neurons, and thereby, decrease the sensation of pain. Our
model also captures the phase shift in pain intensity for neuropathic pain, however,
the amplitude of the pain intensity under neuropathic conditions is very small, and
the firing rate of the projections neurons is basically at its maximum throughout the
day. In an attempt to both make the model more realistic, as well as explain the
neuropathic phase flip, we introduce an amended model in which we consider com-
munication from the dorsal horn to the mid-brain (see Figure 10). Influence from
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Fig. 10 Diagram of our biophysical model for the dorsal horn circuit including connections to and
from the mid-brain under (blue) neuropathic and (red) normal conditions.

the mid-brain to the dorsal horn plays an important role in modulating inhibition
within the pain circuit of the dorsal horn [5, 37, 22]. There are several descend-
ing pathways from the brain down to the spinal cord that could affect the afferent
fibers, the inhibitory interneurons and the projection neurons, see Figure 2 in [22].
We choose to model the inhibitory descending pathway, as done in [5]. The mo-
tivation for this added mechanism is to enable the projection neurons to exhibit a
more realistic phase flip in pain sensitivity throughout the day under neuropathic
conditions. We also aim to include a mechanism for the effect of the homeostatic
sleep drive on this top-down inhibition. As shown in [14] and [32], the build up of
the homeostatic sleep drive is reflected in the daily rhythm of the pro-inflammatory
cytokines, whose increased levels are associated with an increased firing rate of the
WDR projection neurons. We model this by assuming that the connection from the
mid-brain to the dorsal horn circuit is a function of the time spent awake, or the
build-up of the homeostatic sleep drive. We verify this amended model by showing
that it can reproduce the same phenomena as the earlier model, as well as show
that this amended model can better capture the observed change in phase of pain
sensitivity rhythm for neuropathic patients.

4.2 Amendments to model

In our modified biophysical model for pain, we add a connection between the pro-
jection neurons and the mid-brain as shown in Figure 10 and a dimension to the
mathematical model in Equation (1). Thus, the dynamics for the average firing rate
of neuron populations / and E remain as they are in Equation (1), and the equations
for the projection neurons W and neuron population in the mid-brain (7') become as
follows:
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dfw _ We(8asw faB + 8apw fap + 8cw fc + 8ew fE — gw f1 — grw (H) fr) — fw

dt ™w ’

dfr _ Te(gwrfw)— fr L ©)

dt T

where 7r is the intrinsic time scale of the population 7' and weight gy denotes the
strength of the effect a change in the W population has on the neuron population
T. To investigate the coupling between neuropathic pain and sleep deprivation, we
allow, gwr, the strength of the effect of a change in the 7 population on the W pop-
ulation, to depend on the homeostatic sleep drive H. Hence, we write the weight of
the connection from 7 to W as grw (H). As in the case of the other neuron pop-
ulations in Section 2.2, we assume a monotonically increasing firing rate response
function (with respect to input ¢) for the mid-brain population 7':

To(c) = maxT% (1 +tanh (;T (C—ﬁ7)>) , @

where maxr is the maximum firing rate of the mid-brain population, ¢ = Br is the
input at which the average firing rate of the mid-brain population reaches half of its
maximum value, and 1/ay determines the slope of the transition from non-firing to
firing in mid-brain population.

4.3 Model Validation

In regard to parameter values, we introduce a lag in the connection from the mid-
brain to the projection neurons, and choose 77 = 0.05 ms, which is larger than the
intrinsic time scales of the other populations (see Table 1). We do this as a result
of the assumption that the signal must travel much further to interact with the mid-
brain than it would to other populations within the dorsal horn circuit. In addition,
we assume that the maximum amplitude and the slope of the response function of
T are smaller than those of the other neuron populations of the model and we pick
(maxr, oz, Br) = (30,0.75,1.4) (see Figure 11). As in the beginning of Section 3,
we choose values for the weights gwr = 0.1 and g7w = 0.05 using the model output
of the average firing rates of the four neuron populations to the model input (shown
in Figure 3) as our point of comparison (see Figure 12).

The modified model including connections to and from the mid-brain can capture
the delayed inhibition response in the projection neurons from delayed stimulation
of the A fibers (see Figure 13).

As concerns neuropathy, we use a similar approach as in Section 3.3 and con-
sider both (a) an inhibitory effect of the A fibers to the C fibers represented by
amplitude modulation of the C fibers by the Af fibers as given in Equation (5),
and (b) circadian rhythm in the C and A fibers. In addition, we use the amended
model to investigate the hypothesis that under neuropathy, time spent awake causes
increased excitatory input from the mid-brain to the dorsal horn circuit [14]. Thus,
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Fig. 11 Response functions of the projection (black), excitatory (red), inhibitory (blue), and mid-
brain (magenta) neuron populations for different constant inputs (on the x-axis).
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Fig. 12 Firing rates for each population (connected as described in Figure 10) in response to the
input from afferent fibers as described in Figure 3 including the amendments to the dorsal horn
circuit model given in Equation (6).
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Fig. 13 Pain inhibition phenomenon captured in the modified model including top-down inhibi-
tion. Response of the projection neuron population to the initial fiber pulse stimulation (at r = 0)
and the second pulse stimulation only to A fibers (red arrows) for increasing in time between
fiber stimulations.

we assume that the strength of the connection from the mid-brain population 7' to
the projection neuron population W given by the weight grw (see Figure 10) in-
creases during wake and decreases during sleep. Moreover, we assume that under
normal conditions, the 7 population inhibits the activity of the W population, while
under neuropathy, the connection from 7" to W is excitatory (see red and blue lines
in Figure 10). Thus, under normal conditions, the weight gry has a daily rhythm
shown in red, and under neuropathic conditions, it has the rhythm shown in blue in
Figure 14, where negative values result in excitatory input from 7" to W because of
our choice of using a negative sign in front of g7y in Equation (6).

With these above-mentioned modifications to the model of the dorsal horn cir-
cuit, our amended model reproduces a more pronounced flip in the phase of the W
population (see Figure 15) than in the case of only amplitude modulation of the C
fibers through A fibers (see Figure 9). We note as well that the W population does
not saturate to its maximum firing rate in Figure 15 (right), as it did in the earlier
model in Figure 9.
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Fig. 14 The strength of the connection from the mid-brain to the projection neuron population as
a function of hours after wake-up under (blue) neuropathic and (red) normal conditions. We note
that negative values of grw result in excitatory input from 7' to W population, see Equation (6).

5 Conclusions and future work

We have constructed a biophysical model of the pain processing circuit in the dorsal
horn that represents the interactions between inhibitory and excitatory interneurons,
and WDR projection neurons. Our model considers the average firing rate of each of
these three neuron populations, and therefore includes less biophysical detail than
previous circuit models consisting of single spiking neurons. However, our choice of
modeling framework is motivated by our ongoing work to incorporate this model for
the pain processing circuit with sleep-wake regulatory network models (see [4] for
a review). Such an extended sleep-wake-pain model would allow us to test several
existing hypotheses on the effects of sleep-dependent and circadian modulation of
pain sensitivity. In addition, we have chosen to use a simplified modeling approach,
because it allows us to examine whether suggested mechanisms (i.e., rhythmicity
in afferent fibers and their interaction changing from inhibitory to excitatory un-
der neuropathic conditions) are capable of explaining observed rhythmicity in pain
before we incorporate more physiological details into our model.

Concerning the phenomenon of wind-up, we simulate it as an increase in the
synaptic efficacy of the C fibers before their input reaches the deep dorsal horn
circuit. This is an assumption that is supported by experimental evidence of wind-
up in the potential of the C fibers observed in the superficial but not in the deep
dorsal horn [29]. However, experimental data also suggest that wind-up is more
pronounced in the deep than in the superficial dorsal horn neurons [30]. Therefore,
our model assumption of wind-up occurring only upstream from the deep dorsal
horn is not widely supported by the data. Moreover, at the current stage, our model
incorporates no information on possible mechanistic explanations of wind-up. This
is a limitation of the model as it restricts our ability to test existing hypotheses (see
Figure 6 in [11]) and increase the current understanding of the generation of wind-

up.
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Fig. 15 Integrated (circles, top 2 panels) and maximum (asterisks, bottom 2 panels) projection
neuron firing rates predicted by the amended equations of time evolution given in (6) under nor-
mal (top and 4th panels) and neuropathic (2nd and bottom panels) conditions showing predicted
circadian modulation over 24 h. Circadian rhythmicity of responses is generated by the different
circadian rhythms in the amplitudes of the afferent fiber-model inputs (middle panel). Under nor-
mal conditions, the interneuron population / decreases the amplitude of the model input from C
fibers (red curve) leading to a reduced effective amplitude of C fiber input (black solid curve). Un-
der neuropathic conditions, the connection between / and C fiber model input is excitatory resulting
in a higher effective amplitude of the C fiber model input (black dashed curve). We calculate the
activity of the projection neuron population as the area under the C-response in the same way as in
Figure 9.
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As concerns neuropathy, by taking into account both amplitude modulation of
the C fibers by the A fibers and normal inhibitory effect switching to excitatory
under neuropathic conditions, our model reproduces a change in the daily rhythm
seen in the activity of the WDR projection neurons and predicts a higher baseline
of pain under neuropathy than under normal conditions, both of which agree with
experimental evidence. In the case where a connection to, and from, the mid-brain is
included in the dorsal horn circuitry, the flip of the rhythm in the projection neurons
is more pronounced and does not evoke a response in the WDR neurons that is
at its maximum as in the case where there is no connection to the mid-brain. In
our ongoing work, we investigate the robustness of these above-mentioned model
predictions for neuropathy, in particular as concerns the range of parameter values
that represent the strength of the connection between the WDR projection neurons
and the mid-brain.

We have incorporated neuropathy in an attempt to validate that our model can
replicate known circadian pain effects. It is important to note that a more biologi-
cally realistic model has been developed including large networks of individual neu-
rons [2]. Similarities between our model and the one proposed by Arle et al. is the
lack of connection from the Af fibers to the inhibitory interneurons, but a major dif-
ference is that their model has two distinct circuits for nociceptive and neuropathic
pain. We instead use the same circuit but propose different mechanisms within the
circuit that contribute to neuropathic pain (for example inhibition switching to ex-
citation under neuropathic conditions). We justify our use of a simplified model
by emphasizing that our motivation is in understanding the effect of circadian and
sleep-dependent processes on pain sensitivity, and note that our model does capture
circadian effects in neuropathic pain patients.

In our ongoing work, we are constructing equations for the time evolution of the
average activity of each of the three afferent fiber populations. Such a generalization
would not only increase our ability to include possible mechanisms of wind-up but
also help in connecting models of pain and sleep together. That is, in the future
generalized model, a change in the homeostatic sleep drive (that is an output of the
sleep-wake model) could be directly fed into the pain circuit model by influencing
the sensitivity of the afferent fibers to external stimuli. This will allow us to more
thoroughly investigate several hypotheses on the coupling between sleep deprivation
and pain sensitivity.
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