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Abstract 24 

Both gene expression levels and eQTLs (expression quantitative trait loci) are partially tissue-specific, 25 

complicating the detection of eQTLs in tissues with limited sample availability, such as the brain. 26 

However, eQTL overlap between tissues might be non-trivial, allowing for inference of eQTL 27 

functioning in the brain via eQTLs measured in readily accessible tissues, e.g. whole blood. Using 28 

Stratified Linkage Disequilibrium Score Regression (SLDSR), we quantify the enrichment in GWAS 29 

signal of blood and brain eQTLs in genome-wide association study (GWAS) for three brain-related 30 

(schizophrenia, BMI, and educational attainment), three immune-related traits (Crohn’s disease, 31 

rheumatoid arthritis, and ulcerative colitis), and five traits not strongly associated with either tissue 32 

(age at menarche, coronary artery disease, height, LDL levels, and smoking behavior). Our analyses 33 

established significant enrichment of blood and brain eQTLs in their effects across all traits. As we do 34 

not know the true number of causal eQTLs, it is difficult to determine the precise magnitude of 35 

enrichment. We found no evidence for tissue-specific enrichment in GWAS signal for either eQTLs 36 

uniquely seen in the brain or whole blood. To follow up on our findings, we tested tissue-specific 37 

enrichment of eQTLs discovered in 44 tissues by the Genotype-Tissue Expression (GTEx) consortium, 38 

and, again, found no tissue-specific eQTL effects. Finally, we integrated the GTEx eQTLs with SNPs 39 

associated with tissue-specific histone modifiers, and interrogated its effect on rheumatoid arthritis 40 

and schizophrenia. We observed substantially enriched effects on schizophrenia, though again not 41 

tissue-specific. We conclude that, while eQTLs are strongly enriched in GWAS signal, the enrichment 42 

is not specific to the tissue used in eQTL discovery. Therefore, working with relatively accessible 43 

tissues, such as whole blood, as proxy for eQTL discovery is sensible and restricting lookups for 44 

GWAS hits to a specific tissue might not be advisable.  45 

 46 
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 50 

Introduction 51 

The aim of genome-wide association studies (GWAS) is to detect statistically significant associations 52 

between genetic variants, such as single nucleotide polymorphisms (SNPs), and a trait of interest 53 

(Hirschhorn and Daly 2005). GWAS have identified many genetic variants and thereby provided 54 

insights into the genetic architecture of complex traits (Hirschhorn and Daly 2005; Visscher et al. 55 

2012). However, a large number of variants identified through GWAS are located outside of coding 56 

regions and specific knowledge of regulatory elements is limited (Lowe and Reddy 2015). Therefore, 57 

uncovering a relationship between GWAS hits and biological function has proven to be complicated 58 

(Lowe and Reddy 2015). Expression quantitative trait loci (eQTLs) contain SNPs that influence gene 59 

expression, and are not necessarily located in coding regions. eQTLs may aid functional annotation 60 

of SNPs that have been identified in a GWAS and are located outside of coding regions (Morley et al. 61 

2004; Lowe and Reddy 2015). Previous work has found substantial enrichment of eQTLs among 62 

GWAS hits (Manolio et al. 2009; Nicolae et al. 2010; Torres et al. 2014) and an enrichment in their 63 

genome-wide effect on complex traits (Davis et al. 2013). Therefore, eQTLs are viewed as an 64 

important tool in moving from genome-wide association to biological interpretation. 65 

As a result of differences in gene expression between cells originating from different tissues, 66 

eQTLs are potentially tissue-specific (Hernandez et al. 2012; GTEx Consortium 2015). Tissue-67 

specificity poses no problem if the tissue of interest is readily available for research, such as whole 68 

blood. However, discovery of eQTLs gets complicated when measurement of expression levels in a 69 

tissue is limited by ethical and practical considerations, for example in brain tissue. Several studies 70 

have shown that the overlap between eQTLs from different tissues might actually be larger than 71 

initially assumed (Ding et al. 2010; Nica et al. 2011). The Genotype-Tissue Expression (GTEx) 72 

consortium identified eQTLs in a wide range of human tissues and showed that 54-90% of the eQTLs 73 
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identified in one tissue are also designated as an eQTL in at least one other tissue (GTEx Consortium 74 

2015; Aguet et al. 2016). In another study, Liu et al (2016) found a high average pairwise genetic 75 

correlation (rg=0.738) of local gene expression between tissues. Nevertheless, small differences in 76 

terms of eQTL effect may be of considerable importance in terms of the effect an eQTL might have 77 

on complex traits related to specific tissues. It is, therefore, worthwhile to investigate the specific 78 

utility of tissue-specific eQTLs in their effect on complex traits, as studied in GWAS, as the discovery 79 

of eQTLs for tissues such as the brain might be advanced by eQTLs discovered in more accessible 80 

tissues, such as whole blood. The use of accessible tissues, though, depends on a substantial degree 81 

of similarity of eQTL effect across tissue, and to what extend eQTL differences between tissues are 82 

important in complex trait etiology. 83 

Stratified Linkage Disequilibrium Score Regression (SLDSR) is a technique that estimates the 84 

SNP-heritability (h2
SNP) of a trait based on GWAS summary statistics (Bulik-Sullivan et al. 2015; 85 

Finucane et al. 2015). By simultaneously analyzing multiple categories of SNPs (annotations), SLDSR 86 

can partition h2
SNP by annotation (h2

annot) and thereby provides a way to jointly quantify the 87 

enrichment in GWAS signal of several annotations. Here, we extend SLDSR by including annotations 88 

containing cis-eQTLs, i.e. eQTLs located closely to the gene with which they associate (Brem et al. 89 

2002; Ramasamy et al. 2014), discovered in multiple tissues. To this end, we perform analyses based 90 

on representative eQTL resources, and consider a variety of traits as outcomes.  91 

Firstly, we selected all eQTLs per gene discovered in large samples of RNA expression levels 92 

assessed in whole blood (N=4896)(Wright et al. 2014; Jansen et al. 2017) and in brain tissues (N=134) 93 

(Ramasamy et al. 2014), and quantified the contribution of these blood and brain eQTLs to the 94 

genetic variance in complex traits captured in GWAS. We then estimated tissue-specific eQTL effects 95 

on complex traits by quantifying the enrichments of eQTLs uniquely found in whole blood or 96 

uniquely found in brain, conditional on the enrichment of the complete blood eQTL annotation or 97 

complete brain eQTL annotation, respectively. We considered the effect of eQTLs on three brain-98 

related phenotypes: schizophrenia, BMI, and educational attainment; three immune disorders: 99 
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Crohn’s disease, rheumatoid arthritis, and ulcerative colitis; and five other complex traits and 100 

disorders: age at menarche, coronary artery disease, height, LDL levels, and smoking behavior.  101 

Secondly, we retrieved all eQTLs identified in any of the 44 tissues from the GTEx consortium 102 

(N=70-361, median=126.5)(GTEx Consortium 2015; Aguet et al. 2016). We considered the 103 

enrichment in GWAS signal of the union of all GTEx eQTLs, and, additionally, the enrichment of 104 

tissue-specific eQTL effects on top of the union of all GTEx eQTLs. We expected to observe tissue-105 

specific enrichment of eQTLs in their effects on complex traits related to the tissue in question, e.g. 106 

eQTLs discovered in immune-related tissues are expected to show higher enrichments in their effect 107 

on immune-related traits compared to eQTLs found in skin tissue. We considered tissue-specific 108 

enrichment of cis-eQTLs in their effect on schizophrenia (a disorder where there is strong prior 109 

evidence for the involvement of processes in the brain) and rheumatoid arthritis (a disease with 110 

strong prior evidence for the involvement of processes in the immune system) as GWAS for these 111 

traits are well powered for extended LD-score-based analyses. We further considered the 112 

enrichment of the intersection of cis-eQTLs discovered in any tissue, and histone modification in a 113 

specific tissue (i.e. tissue-specific epigenetically changed chromatin states in regulatory regions).  114 

Our analyses were designed to elucidate the relation between eQTLs and complex traits, and 115 

to quantify the extent to which this relation is dependent on the tissue used in eQTL discovery. Our 116 

analysis further considered the enrichment of genomic regions related to gene expression and 117 

epigenetically modified in specific tissues.  118 

 119 

Material and Methods 120 

SLDSR method 121 

A measure of linkage disequilibrium (LD) for each SNP, called an “LD score”, can be computed by 122 

taking the sum of correlations between that SNP and all neighboring SNPs (Bulik-Sullivan et al. 2015; 123 

Finucane et al. 2015). Under a polygenic model, LD scores are expected to show a linear relationship 124 

with GWAS test statistics of corresponding SNPs, where the slope is proportional to h2
SNP. For SLDSR, 125 
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LD scores are based on only (functional) parts of the genome and used as predictors in a multiple 126 

linear regression (Finucane et al. 2015). In this manner, SLDSR is able to partition h2
SNP into parts that 127 

are explained by these parts of the genome (i.e. h2
annot), while accounting for influences of the 128 

remaining annotations in the model. The enrichment of an annotation is then obtained by taking the 129 

ratio of h2
annot over the proportion of SNPs that fall within that annotation. For eQTLs, the 130 

denominator, i.e. the number of SNPs in the annotation, is a complicated quantity: not all significant 131 

eQTLs are likely causal; whereas including only lead, or putative causal, eQTLs may result in very 132 

small annotations located near genes and other regulatory elements, which presents a risk of 133 

inflated estimates of the enrichment in GWAS signal. Because of these issues, we consider all 134 

significant cis-eQTLs as an annotation, and retain additional gene-centric and regulatory annotations 135 

in the model.  136 

 137 

Target traits 138 

As outcome for SLDSR, we used summary statistics of GWAS on Crohn’s disease (Jostins et al. 2012), 139 

rheumatoid arthritis (Okada et al. 2014), ulcerative colitis (Jostins et al. 2012), BMI (Speliotes et al. 140 

2010), educational attainment (Rietveld et al. 2013), schizophrenia (Ripke et al. 2014), age at 141 

menarche (Perry et al. 2014), coronary artery disease (Schunkert et al. 2011), height (Allen et al. 142 

2010), LDL levels (Teslovich et al. 2010), and smoking behavior (Furberg et al. 2010). The first three 143 

traits were chosen because these are related to the immune system and are therefore expected to 144 

reveal considerable enrichment of blood eQTL signal (Jostins et al. 2012; Okada et al. 2014). Similarly, 145 

brain eQTLs are expected to show substantial enriched effects due to previous reports on the 146 

involvement of the central nervous system (CNS) in schizophrenia (Ripke et al. 2014), educational 147 

attainment (Rietveld et al. 2013), and BMI (Vimaleswaran et al. 2012). Of course, these traits do not 148 

perfectly align with either tissue, e.g. the immune system has been implicated in the etiology of 149 

schizophrenia (Andreassen et al. 2015) and BMI (Karalis et al. 2009), and might therefore also be 150 

enriched in their effects for the other eQTL set. However, this is expected to occur at lower rates. 151 
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Enrichment of blood and brain eQTL effects on the remaining traits was calculated to contrast the 152 

results with traits for which we do not have a strong a priori expectation of the relationship between 153 

trait and tissue.  154 

The discovery sample for detection of blood eQTLs (Wright et al. 2014; Jansen et al. 2017) 155 

included participants from the Netherlands Twin Register (NTR)(Boomsma et al. 2008; Ripke et al. 156 

2013) and Netherlands Study of Depression and Anxiety (NESDA)(Penninx et al. 2008). Subjects from 157 

these studies, not necessarily the same ones, also participated in the GWAS for some of the traits 158 

examined (Allen et al. 2010; Speliotes et al. 2010; Teslovich et al. 2010; Furberg et al. 2010; Rietveld 159 

et al. 2013; Perry et al. 2014). To ensure that the discovery sample did not affect estimates of 160 

enrichments of eQTL effects in the various GWAS signals, we looked at trait-specific enrichment of 161 

blood and brain eQTL signal in GWAS signal for educational attainment and smoking behavior. We 162 

compared the results from using publicly available datasets with using summary statistics based on 163 

the same sample without subjects from the NTR or NESDA. The results did not reveal appreciable 164 

differences between the respective datasets for educational attainment, but did show substantial 165 

differences for smoking behavior (S1 Figure). This latter finding could conceivably be a function of 166 

relatively strong effects of smoking behavior on gene expression levels (Vink et al. 2015). Therefore, 167 

the remaining analyses for smoking behavior were performed using the summary statistics without 168 

participants from NTR or NESDA, whereas analyses for the other traits (age at menarche, BMI, 169 

educational attainment, height, and LDL level) were run using publicly available summary statistics.  170 

 171 

Blood and brain eQTL enrichment 172 

A catalog of whole blood cis-eQTLs was obtained from Jansen et al (2017; Wright et al. 2014), where 173 

all eQTLs significantly associated with gene expression in whole blood for each probe set were 174 

selected for inclusion in our whole blood eQTL annotation. A list of brain eQTLs was obtained from 175 

the UK brain expression consortium (UKBEC), for which the analyses are described in Ramasamy et al 176 

(2014). We based the brain eQTL annotation on SNPs that were significantly associated with the 177 
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average gene expression across 12 brain regions. SLDSR annotations were constructed as per the 178 

instructions in Bulik-Sullivan et al. and Finucane et al. (2015). To guard against upward bias in the 179 

eQTL enrichment signal, two extra annotations containing SNPs within a 500 base pair (bp) and 180 

100bp window around any eQTL were constructed for each eQTL set (Finucane et al. 2015). Finally, 181 

to ensure that the enrichment of eQTL effects in GWAS signal was not in fact caused by their 182 

proximity to the genes they influence, an additional gene centric annotation was computed, which 183 

contained all genes for which eQTLs were included.  184 

 185 

Tissue-specific eQTL enrichment 186 

To distinguish between the effects of blood- and brain-specific eQTLs, we split each annotation into 187 

two sets based on the overlap in genes that were tagged by eQTLs from both tissue. That is, the 188 

brain eQTL annotation was split into an annotation of brain eQTLs which regulate genes for which 189 

also at least one blood eQTL was found, and a second annotation of eQTLs that tagged genes for 190 

which only brain eQTLs were found. Likewise, the blood eQTL annotation was split into an 191 

annotation containing only eQTLs that tagged genes for which eQTLs from both tissue was found, 192 

and an annotation consisting of blood eQTLs that tagged genes for which only eQTLs have been 193 

found in blood.  194 

 195 

Enrichment of eQTLs from 44 tissues 196 

There are limitations to above mentioned analyses of tissue-specific enrichments of eQTL effects in 197 

GWAS signal. The eQTLs are obtained from two different projects, which vary in terms of sample size 198 

and their definition of an eQTL. To mitigate the heterogeneity between studies, and to extend to 199 

additional tissues. We performed additional analyses using eQTLs obtained by a common pipeline 200 

from 44 tissues (see S2 Table) and based on a broader eQTL locus definition (GTEx Consortium 2015; 201 

Aguet et al. 2016). For each of the 44 tissues, we created annotations for analysis in SLDSR following 202 

the previously described procedure. Analogous to the procedure of Finucane et al (2015) for cell-203 
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type-specific analysis using SLDSR, we additionally created an annotation that contained all GTEx 204 

eQTLs, i.e. a SNP would be included in this annotation if it was designated as part of at least one of 205 

the 44 tissue-specific GTEx annotations, and added a 100bp and 500bp window. No windows were 206 

specified for the tissue-specific GTEx annotations. Using GWAS summary statistics for schizophrenia, 207 

we then ran one SLDSR model containing only the baseline categories and the union of GTEx eQTLs, 208 

and 44 additional models with the two previous annotations and one of the tissue-specific GTEx 209 

annotations at a time. We repeated the procedure using summary statistics for rheumatoid arthritis. 210 

GTEx has relative small sample sizes for the brain eQTL discovery (mean=89 sample size, 211 

range=72-103) compared to other tissues (mean=160 sample size, range=70-361) (GTEx Consortium 212 

2015; Aguet et al. 2016). To investigate the effect of differences in sample size on estimates of 213 

enrichments in GWAS signal, we collapsed the union of individual brain eQTL annotations into a 214 

shared brain eQTL annotation (i.e. an eQTL found in at least one of the GTEx brain annotations was 215 

included in the shared brain eQTL annotation). This annotation was then analyzed as an additional 216 

GTEx eQTL annotation. We further tested the relationship between tissue sample size and tissue 217 

eQTL enrichment.  218 

 219 

Enrichment of the intersection between eQTLs and histone marks 220 

The availability of annotations based on tissue-specific histone marks made it possible to create an 221 

annotation that represents the intersection between eQTLs and this type of epigenetic modification 222 

related to enhancers and promoters of actively transcribed genes. We obtained LD score 223 

annotations of SNPs in regions that bare histone marks in cells from the CNS or immune system from 224 

Finucane et al (2015). Out of the 220 cell-type-specific histone mark that were available, 101 were 225 

found in the CNS or immune tissues. For each of the 101 annotations of SNPs in cell-type-specific 226 

histone marks, we extracted its intersection with the union of GTEx eQTLs and made a new 227 

annotation of eQTLs which intersected with histone marks (i.e. SNPs found in both annotations). We 228 

then analyzed each of the intersection annotations individually in a model together with the baseline 229 
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categories, the union of GTEx eQTLs, and the corresponding cell-type-specific histone marks. 230 

Enrichments in GWAS signal of the intersection should be interpreted as enrichment of genome-231 

wide SNP effects on a complex trait beyond the additive effects which work on all SNPs that are a 232 

cis-eQTL and histone mark in question. In fact, we test whether the interaction between tissue-233 

specific chromatin state and eQTLs are enriched in their genome-wide effect on complex traits.  234 

 235 

Results 236 

Blood and brain eQTL enrichment 237 

We fitted an SLDSR model containing the baseline categories; the complete annotation for both 238 

brain and blood eQTL tissues, their 100 and 500bp windows, and gene-centric annotations to all 239 

traits (Crohn’s disease, rheumatoid arthritis, ulcerative colitis, BMI, educational attainment, 240 

schizophrenia, age at menarche, coronary artery disease, height, LDL levels, and smoking behavior). 241 

We found significant effects of brain eQTLs on educational attainment, rheumatoid arthritis, 242 

smoking behavior, and schizophrenia, and significant effect of blood eQTLs on height and smoking 243 

behavior (see S3 Table). We then meta-analyzed the results for all annotations, both in the baseline 244 

model, and those associated with eQTLs across the 11 traits. Our analyses revealed significant effect 245 

of both blood (p < 0.001) and brain (p < 0.001) eQTL effects on all traits (Figure 1, S4 Table), 246 

exceeding, in terms of significance, all the baseline categories considered by Finucane et al (2015) 247 

but conserved genomic regions. The gene-centric annotation for both blood and brain eQTLs showed 248 

no effect on any trait. We further observed no evidence for depletion of blood-specific eQTLs 249 

(relative to all blood eQTLs) on brain-related traits, nor do we find significant depletion of effect on 250 

immune-related traits of eQTLs associated with genes for which eQTLs were solely identified in brain 251 

tissue (Table I).  252 

 253 

Enrichment of eQTLs from 44 tissues in GTEx 254 
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We interrogated the enrichment of the union of GTEx eQTLs and 44 tissue-specific GTEx annotations 255 

in their effect on schizophrenia and rheumatoid arthritis. Figure 2 shows the coefficient Z-scores of 256 

the 45 GTEx annotations, sorted from largest to smallest. In both cases, the union of GTEx eQTLs had 257 

a substantial Z-score (Z=5.501 and Z=3.802 for schizophrenia and rheumatoid arthritis, respectively, 258 

both p<0.001, S5 Table), indicating that eQTLs were significantly enriched in their effects on complex 259 

traits. The tissue-specific annotations, however, performed notably worse and in some cases even 260 

suggested depletion of genome-wide effects of tissue-specific eQTLs on schizophrenia and 261 

rheumatoid arthritis. For rheumatoid arthritis, the coefficient Z-scores of the whole blood 262 

annotation reached nominal significance (Z=2.036, p=0.021), but failed correction for multiple 263 

testing. None of the other annotations reached nominal significance. The union of all GTEx brain 264 

annotations did not contribute significantly to explaining h2
SNP (Z=0.147, p=0.441). Sample size in the 265 

eQTL discovery phase appears to be a strong determinant of tissue-specific enrichment in GWAS 266 

signal. The correlation coefficients between the coefficient Z-scores and sample sizes were 0.6453 267 

(p=2.253*10-6) and 0.4247 (p=0.004) for schizophrenia and rheumatoid arthritis, respectively. 268 

 269 

Enrichment of the intersection between eQTLs and histone marks 270 

We interrogated the intersection of eQTLs and histone marks found in specific CNS and immune cells, 271 

and estimated the enrichment of the intersection in its effect on rheumatoid arthritis and 272 

schizophrenia. We found significant enrichment in GWAS signal for eQTLs that intersect with 273 

histones that bare modification H3K4me1, a modification thought to be present in the enhancer of 274 

actively transcribed genes (Zhou et al. 2011; Allis and Jenuwein 2016), in CNS cells for schizophrenia 275 

(see Figure 3). There was some evidence for significant enrichment of eQTLs that intersected with 276 

genomic regions in immune cells baring the H3K4me1 mark in their effect on schizophrenia, but not 277 

on rheumatoid arthritis. Specifically, none of the intersecting annotations showed evidence of 278 

enrichment for rheumatoid arthritis. For the separate annotations, we found significant enrichment 279 

in GWAS signal across all histone marks found in CNS cells and three significant immune cell-types 280 
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that bare the H3K4me3 modification, a modification associated with transcriptional start sites and 281 

promoters of actively transcribed genes (Zhou et al. 2011; Allis and Jenuwein 2016), for 282 

schizophrenia (S6 Figure). The opposite picture was seen for rheumatoid arthritis: a wide variety of 283 

immune-cell specific histone marks showed significant enrichments in GWAS signal, while all marks 284 

found in CNS cells were below zero. The union of GTEx eQTLs reached statistical significance for all 285 

models (S6 Figure). 286 

 287 

Discussion 288 

Stratified Linkage Disequilibrium Score Regression provides a way to partition h2
SNP into parts 289 

explained by (functional) parts of the genome (Finucane et al. 2015). A “full baseline model” 290 

containing 24 non-cell-type-specific annotations of SNPs, such as SNPs located in promoters or 291 

coding regions, was developed previously for analysis using SLDSR. Here, we added annotations 292 

containing eQTLs derived from whole blood and brain tissue into the model, and showed that eQTLs 293 

were substantially stronger enriched in their effect on complex traits compared to all categories 294 

considered by Finucane et al (2015). The complete brain eQTL annotation was significantly enriched 295 

in GWAS signal for educational attainment, rheumatoid arthritis, smoking behavior, and 296 

schizophrenia. This finding is consistent with previous estimates of eQTL effect enrichment (Davis et 297 

al. 2013). Considerable enrichment for eQTLs, even for traits not apparently linked to the brain or 298 

immune system (e.g. smoking behavior), suggested that non-trivial eQTL overlap across tissues 299 

might be present. 300 

Inclusion of both brain and blood eQTLs into the SLDSR model did not separate the signal 301 

into tissue-specific effects. In general, we are not able to clearly identify tissue-specific eQTL signals 302 

using these datasets and SLDSR. Our second analysis of eQTL enrichment based on 44 tissue-specific 303 

cis-eQTL sets, obtained from the GTEx consortium (2015; Aguet et al. 2016), confirms the lack of 304 

tissue-specific eQTL enrichment. While an annotation containing all eQTLs identified in GTEx is 305 

significantly enriched in its effect on schizophrenia and rheumatoid arthritis (Z=5.501 and Z=3.802, 306 
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respectively, both p<0.001), none of the analyzed brain tissues are enriched beyond all eQTLs in 307 

their effect on schizophrenia. Similarly, whole blood eQTLs are not significantly enriched beyond all 308 

GTEx eQTLs taken together in their effect on rheumatoid arthritis. Again, these findings are not 309 

consistent with the hypothesis of abundant tissue-specific cis-eQTLs with effects on complex traits 310 

related to the specific tissue in question. Especially, when contrasted with tissue-specific gene 311 

expression levels and tissue-specific histone modifications (Liu et al. 2016; Finucane et al. 2017), 312 

tissue-specific eQTLs are of limited value in relating complex traits to a tissue. Our conclusions are 313 

limited to cis-eQTLs and it is not unlikely that trans-eQTLs behave differently in terms of tissue-314 

specificity. We do, find evidence for possible enrichment for eQTLs that intersect with tissue-specific 315 

H3K4me1 histone marks in the brain, but also immune cells, in their effect on schizophrenia but not 316 

rheumatoid arthritis. This means that eQTLs in H3k4me1 marks are enriched in their effect on 317 

schizophrenia above the expected enrichment based on the fact that these SNPs are both eQTLs and 318 

located in H3K4me1 histone marks. What is of substantial interest is that the enrichment in GWAS 319 

signal appears specific to H3K4me1 marks, and no other histone marks, suggesting that these marks 320 

specifically can aid in prioritizing genomic regions in which tissue-specific eQTLs may reside. Though, 321 

again, the totality of evidence is inconclusive on the relevance of tissue-specific eQTLs to variation in 322 

complex traits. 323 

Our results are consistent with, and complimentary to, a study investigating the genetic 324 

correlation between gene expression levels across 15 tissues (Liu et al. 2016). This study revealed 325 

substantial correlations between cis-genetic effects on gene expression across 15 tissues (Liu et al. 326 

2016). Our analyses confirmed the value of using whole blood as discovery tissue for detection of 327 

cis-eQTLs and further demonstrated the usefulness of techniques that use cis-eQTLs discovered in 328 

whole blood to study the etiology of complex traits related to different tissues (Gamazon et al. 2015; 329 

Gusev et al. 2016). The results presented here highlight the overlap of cis-eQTL effects across tissues 330 

on a genome-wide level. However, the effect of a cis-eQTL might vary substantially across tissues for 331 

individual genes (Grundberg et al. 2012). Our conclusions are based on genome-wide enrichments 332 
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and therefore should not be interpreted as limited evidence for tissue-specific eQTL effects for 333 

individual genes. Therefore, eQTL discovery in the tissue most relevant to a specific trait or disorder 334 

remains important to further our understanding of the genetic regulation of tissue-specific gene 335 

expression. What is also clear is that, to discover those tissue-specific eQTLs that are of relevance to 336 

the interpretation of GWAS of complex traits, tissue-specific eQTL discovery needs to be refined. The 337 

practice of, as a post-hoc analysis to GWAS, performing eQTL lookup in a specific tissue linked to a 338 

trait, when larger dataset for other accessible tissues are available, may be suboptimal. In fact, one 339 

may prefer to perform a lookup in the overlap between histone modifications in a relevant tissue 340 

and eQTLs regardless of tissue. One can further consider utilizing eQTLs to link GWAS findings to a 341 

gene, and subsequently consider the differential expression of a gene to identify the tissue in which 342 

the gene is most likely to act in effecting the trait. Tissue-specific differential gene expression vastly 343 

outperforms eQTLs in tagging regions of the genome enriched in their effect on complex traits 344 

(Finucane et al. 2017).  345 

It is also evident that a limited dichotomous definition of eQTL/no-eQTL may be insufficient 346 

to identify tissue-specific eQTL effects. An evident improvement would be to compute the difference 347 

in eQTL effect on expression of the gene between tissues, and perform inference based on this 348 

difference in effect. eQTLs are strongly enriched SNPs, with clear biological function and utility for 349 

the translation of GWAS findings, though tissue-specific eQTL mechanisms remain elusive. The 350 

discovery of tissue-specific eQTL effects, which can aid in linking complex trait to tissue, may require 351 

novel research strategies. 352 

 353 
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Full baseline model LD scores, http://data.broadinstitute.org/alkesgroup/LDSCORE/ 383 

GTEx dataset, http://www.gtexportal.org/home/datasets 384 

Height and BMI summary statistics, 385 

www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files  386 

LDL levels summary statistics, www.broadinstitute.org/mpg/pubs/lipids2010/ 387 

Rheumatoid arthritis summary statistics, http://plaza.umin.ac.jp/yokada/datasource/software.htm 388 

Schizophrenia and smoking behavior summary statistics, www.med.unc.edu/pgc/results-and-389 

downloads 390 

SLDSR software, https://github.com/bulik/ldsc/ 391 
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 492 

Figure Titles and Legends 493 

Figure 1. Average enrichment in GWAS signal of the 24 baseline annotations, 4 brain eQTL 494 

annotations and 4 blood eQTL annotations. 495 
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Bar plot of the average enrichment in GWAS signal across all traits for the 24 main baseline 496 

annotations and 8 main eQTL annotations. Grey beans represent the baseline categories. Blue beans 497 

represent eQTLs. Black bars indicate average enrichment. Boxes show upper- and lower-bounds of 498 

the 95% confidence interval of the mean. Red dots show enrichments for immune-related traits. 499 

Horizontal red line indicates enrichment of 1, i.e. no enrichment.  500 

 501 

Figure 2. Coefficient Z-scores of the 45 GTEx annotations  502 

Barplot of coefficient z-scores for all GTEx annotations for schizophrenia (grey) and rheumatoid 503 

arthritis (red). Bars are sorted from highest to lowest based on the results from schizophrenia. 504 

Horizontal dotted line indicates Bonferroni threshold for 45 tests. Two asterisks indicate bars passing 505 

Bonferroni correction for multiple testing. 506 

 507 

Figure 3. Coefficient Z-score of intersection between union of GTEx eQTLs and cell-type-specific 508 

histone marks 509 

Top two graphs show coefficient Z-scores for schizophrenia. Bottom two graphs show the same for 510 

rheumatoid arthritis. Grey bars indicate histone marks found in cells from the central nervous 511 

system. Red bars represent histone marks found in cells from the immune system. From dark to light, 512 

shades of the bars indicate histone marks H3K27ac, H3K4me1, H3K4me3, and H3K9ac. Vertical 513 

dotted lines indicate separation between histone marks. One asterisk above the bars indicate 514 

annotations passing FDR correction for multiple testing. Two asterisks indicate bars passing 515 

Bonferroni correction for multiple testing. Horizontal dotted line indicates Bonferroni threshold for 516 

101 tests.  517 

 518 

 519 

Tables 520 

Table I. (see attachments) 521 
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