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Abstract

Mutualism describes the biological phenomenon where two or more species are reciprocally ben-
eficial, regardless of their ecological intimacy or evolutionary history. Classic theory shows that
mutualistic benefit must be relatively weak, or else it overpowers the stabilizing influence of
intraspecific competition and leads to unrealistic, unbounded population growth. Interestingly,
the conclusion that strong positive interactions lead to runaway population growth is strongly
grounded in the behavior of a single model. This model—the Lotka-Volterra competition model
with a sign change to generate mutualism rather than competition between species—assumes
logistic growth of each species plus a linear interaction term to represent the mutualism. While
it is commonly held that the linear interaction term is to blame for the model’s unrealistic be-
havior, we show here that a linear mutualism added to many other models of population growth
will not lead to unbounded growth. We find that when density dependence is decelerative, the
benefit of mutualism at equilibrium is greater than when density dependence is accelerative.
Although there is a greater benefit, however, decelerative density dependence tends to desta-
bilize populations whereas accelerative density dependence is always stable. Incidentally, even
when we model density dependence in birth and death rates separately, as long as one of the
rates shows accelerative density dependence, populations will always be stable. We interpret
these findings tentatively, but with promise for the understanding of the population ecology of
mutualism by generating several predictions relating growth rates of mutualist populations and
the strength of mutualistic interaction.
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Highlights

• A Lotka-Volterra model relaxing intraspecific density dependence with mutualism is de-
veloped

• Accelerative density dependence—density dependence that occurs at high densities—is
always stabilizing

• A tradeoff between model stability and benefit from mutualism is revealed

1 Introduction

Mutualistic interactions describe the ecology of two or more species that reciprocally increase each
other’s fitness (Bronstein, 2015). These interactions are arguably the most common type of ecological
interaction, and they have profoundly shaped biodiversity as we understand it. Examples include
mutualisms between mycorrhizae and plants (van der Heijden et al, 2015), coral and zooxanthellae
(Baker, 2003), plants and pollinators (Willmer, 2011), tending ants and aphids or Lepidoptera larvae
(Rico-Gray and Oliveira, 2007; Stadler and Dixon, 2008), plants and seed-dispersing animals (Howe
and Smallwood, 1982; Levey et al, 2002), lichens (fungi and algae) (Brodo et al, 2001), and plants
and rhizobia (Sprent et al, 1987; Kiers et al, 2003). Despite mutualism’s obvious importance, it was
not until the latter part of the 20th century that the natural history of mutualism underwent rigorous
ecological study, the conceptual framework for mutualism was laid, and mutualism was no longer
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confounded with the concept of symbiosis. Thus, by the time mutualism was fully introduced to
the larger ecological community, theoretical ecology had been developing in its absence for decades.
This resulted in the paucity of theory for mutualisms still very much visible today.

Gause and Witt (1935) first used the Lotka-Volterra model of interspecific competition to inves-
tigate the case of facultative “mutual aid” between two species by reversing the sign of the linear
competition term from negative to positive. They noted that with enough “mutual aid” the zero-
growth isoclines no longer cross to give a positive equilibrium point and species grow exponentially
without bound—a biologically unrealistic scenario. More specifically, they found that if the product
of the strength of mutualism between the two species is ≥ the product of the strength of intraspecific
competition for each species, then the positive feedback of mutualism would overpower the nega-
tive feedback of intraspecific competition, resulting in unbounded growth. Following this pioneering
study, no development of theory around mutualism would happen for over 30 years and ecologists
were left lacking a basic theoretical explanation for what stabilizes mutualism in nature.

A key feature of the Lotka-Volterra model is its use of a linear functional response: the effect
of a mutualist on its partner’s per capita growth rate is linearly proportional to the mutualist’s
density. Early models of obligate mutualism also shared this feature. Albrecht et al (1974), May
(1976), Christiansen and Fenchel (1977), and Vandermeer and Boucher (1978) introduced the idea
of modeling mutualism through the intrinsic growth rate, shifting it from positive, in the case
of facultative mutualism, to negative for obligate mutualism. Using linear functional responses,
they generally found that, first, two obligate mutualists cannot stably coexist and, second, stable
coexistence is possible if one species is obligate and the other is not, depending on the strength of
the mutualism. These papers and others (e.g, Wolin, 1985; DeAngelis et al, 1986) further postulated
that mutualistic functional responses are nonlinear, and thus attributed the unrealistic behavior
of the Lotka-Volterra and similar models to their use of a linear functional response. Nonlinear
functional responses were later explicitly modeled (e.g., Wright, 1989; Holland et al, 2002; Holland
and DeAngelis, 2010; Revilla, 2015), confirming that nonlinear functional responses can indeed
stabilize mutualistic populations.

Each of the aforementioned mutualism models, regardless of the functional response, assumes
linear intraspecific density dependence; i.e., logistic within-species dynamics. However, nonlinear
density dependence has been observed in controlled laboratory populations of organisms with simple
life histories, such as Daphnia sp. and other Cladocera (Smith, 1963; Smith and Cooper, 1982) and
Drosophila spp. (Ayala et al, 1973; Gilpin and Ayala, 1973; Pomerantz et al, 1980), and in long-term
datasets on species with more complex life histories (Stubbs, 1977; Fowler, 1981; Sibly et al, 2005;
Coulson et al, 2008). Models that relax the assumption of linear intraspecific density dependence
have been proposed for single species (e.g., Richards, 1959; Schoener, 1973; Turchin, 2003; Sibly
et al, 2005) and communities with two or more competitors (Ayala et al, 1973; Gilpin and Ayala,
1973; Schoener, 1976; Goh and Agnew, 1977; Gallagher et al, 1990), but never for mutualism (but
see a recent analysis of a facultative-obligate mutualism, Wang, 2016). Given the prevalence of
nonlinear intraspecific density dependence, and its known influence on dynamics in other ecological
contexts, the dearth of mutualism models that assume anything besides logistic growth suggests
that our understanding of mutualistic dynamics may be quite incomplete.

In sum, the Lotka-Volterra mutualism model makes two separate assumptions that are likely
violated in many natural systems: a linear effect of mutualistic interactions, and linear intraspecific
density dependence. The former is widely thought responsible for the Lotka-Volterra mutualism
model’s unrealistic behavior, but since the latter has never been investigated in the context of mu-
tualisms, the relative importance of these two simplifying assumptions remains unclear. While we
agree that many mutualistic interactions are likely nonlinear, the same could be said of competitive
interactions, and yet Lotka-Volterra competition models endure. Is the need to eschew linear in-
teraction rates truly fundamental for mutualisms? We approached this line of inquiry by returning
to the original Lotka-Volterra mutualism model. To complement what is already known, we relax
the assumption of linear intraspecific density dependence while leaving the assumption of a linear
mutualistic functional response intact. We accomplish this by replacing the logistic term in the
Lotka-Volterra mutualism model with a pair of θ-logistic terms that represent density dependent
birth and death rates that can each decelerate or accelerate nonlinearly with intraspecific density.
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We found that most models with nonlinear intraspecific density dependence lead to stable coex-
istence, irrespective of the strength of mutualism. We therefore conclude that relaxing either of
the Lotka-Volterra model’s major simplifying assumptions is sufficient to prevent unrealistic model
behavior. Given that nonlinear intraspecific density dependence appears widespread, nonlinearity in
mutualistic interaction rates may be less important for stabilizing mutualisms than was previously
believed.

2 Methods

The Lotka-Volterra mutualism model for populations of two species, N1 and N2, takes the form

1

N1

dN1

dt
= f1(N1) + β1N2 = r1 − α1N1 + β1N2

1

N2

dN2

dt
= f2(N2) + β2N1 = r2 − α2N2 + β2N1.

(1)

That is, the per capita change in each population is a function of intraspecific density, fi (Ni), and
a linear function of mutualist partner density, βiNj . It is further assumed that intraspecific density
dependence, fi (Ni), is logistic. This means the per capita growth rate approaches ri when Ni
approaches 0, and linearly decreases as intraspecific density increases, with slope −αi. Assuming
positive parameter values, eq. (1) has the following behavior: each population grows when rare,
each population has a stable positive abundance in the absence its mutualist partner, a feasible 2-
species equilibrium exists if βiβj < αiαj , and unbounded exponential growth occurs if βiβj ≥ αiαj
(Vandermeer and Boucher, 1978).

We chose to use the Verhulst logistic equation (r-α) over the Pearl-Reed logistic equation (K)
because it is a simpler model with more clearly interpretable parameters (see Mallet (2012) for a de-
tailed comparison). Primarily relevant to us is that the Verhulst logistic formulation has parameters
that can be independently measured and independently statistically estimated. Also, it allows us to
avoid the terminological baggage of ‘carrying capacity’ (see Sayre (2008) for a historical review, and
references in Mallet (2012) for paradoxes and more modern disagreements), whose exact meaning is
ambiguous when the ‘maximum population density’ is increased by mutualism.

Unfortunately, there are pitifully few empirical studies on functional responses in mutualistic
systems, especially given the breadth of functional and taxonomic diversity of types of mutualistic
interactions; e.g., facultative and obligate; transient and permanent; species-specific and diffuse;
symbiotic and free-living; bi-product, invested, and purloined; direct and indirect; transportation,
protection, and nutritional; and bi- and unidirectional mutualisms. The few studies that have di-
rectly or indirectly focused on the functional responses of a population to its mutualist partner’s
population have found evidence for different functional forms, including linear (e.g., Fonseca, 1999;
Morales, 2011), saturating (e.g., Holland et al, 2002), and hyperbolic (e.g., Gange and Ayres, 1999;
Vannette and Hunter, 2011), albeit with some statistical limitations (e.g., Morales, 2011; Vannette
and Hunter, 2011). Nevertheless, linear responses can provide realistic descriptions in some settings.
For example, Fonseca (1999) found that population growth of Amazonian ants is limited by the
number of plant-produced domatia, and as the density of domatia increased, ant colonies propor-
tionally increased. As a second example, Morales (2011) found that the emigration of predators
from treehopper aggregations increased linearly with the density of the ants that defend the tree-
hoppers. As a third example, in by-product mutualisms (see Connor, 1995), where there is no cost
or a fixed cost to engage in a mutualism, the conferment of benefits are likely linear. Ultimately, if
linear responses can provide realistic descriptions in some settings, they will usually be preferable
because they are more easily tractable and have a straightforward biological interpretation, with
βi as an interaction coefficient. As explained in the Introduction, we do not yet know whether the
linear functional response uniquely explains the Lotka-Volterra model’s unrealistic description of
mutualisms, nor when its use can be justified on the grounds of tractability. This is one thing we
seek to discover with this study, and so we retain the Lotka-Volterra’s linear functional response in
our initial model before subsequently replacing it with a nonlinear response.
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The first terms in eq. (1) have not received the same scrutiny as the last terms. We suspect
this has more to do with the ubiquity of the logistic model than any careful evaluation of its
application here. To explore this, we relax the assumption of logistic growth—the assumption that
the difference between per capita births and deaths linearly decreases as density increases. We relax
this assumption by modeling per capita births and deaths as separate, nonlinear functions, using
the θ-logistic model for each. This causes the per capita birth (or death) rate to be a decelerating
function of density if the exponent is < 1 and an accelerating function if the exponent is > 1
(Fig. 1). An exponent of 0 yields a density independent model and an exponent of 1 recovers the
logistic model. We write each birth and death function as a density independent term, bi or di with
a density dependent term, µiN

ηi
i or νiN

θi
i .

Our first model pairs the θ-logistic birth and death functions with a linear functional response,
to arrive at

1

N1

dN1

dt
=
(
b1 − µ1N

η1
1

)
−
(
d1 + ν1N

θ1
1

)
+ β1N2

1

N2

dN2

dt
=
(
b2 − µ2N

η2
2

)
−
(
d2 + ν2N

θ2
2

)
+ β2N1.

(2)

Rearranged to group the density independent, density dependent, and mutualism terms, our model
with a linear functional response is

1

N1

dN1

dt
= (b1 − d1)−

(
µ1N

η1
1 + ν1N

θ1
1

)
+ β1N2

1

N2

dN2

dt
= (b2 − d2)−

(
µ2N

η2
2 + ν2N

θ2
2

)
+ β2N1.

(3)

In these eqs., bi − di is equal to ri in eq. (1). Similarly, when ηi = θi in eq. (3), − (µi + νi) is equal
to −αi in eq. (1).

Finally, to more fully understand the effect of relaxing the assumption of linear intraspecific
density dependence, we extend our approach to include a saturating functional response. Specifically,
we replace the βiNj in eq. (3) with a saturating function (following Wright, 1989; Holland et al,
2002; Holland and DeAngelis, 2010, and others), to create equations:

1

N1

dN1

dt
= (b1 − d1)−

(
µ1N

η1
1 + ν1N

θ1
1

)
+

γ1N2

δ1 +N2

1

N2

dN2

dt
= (b2 − d2)−

(
µ2N

η2
2 + ν2N

θ2
2

)
+

γ2N1

δ2 +N1
,

(4)

with γi being the maximum benefit species j can confer to species i and δi as the half-saturation
constant, which controls how quickly the saturation of benefits occurs. For a more mechanistic,
consumer-resource-based interpretation of the parameters in the saturating functional response for
mutualisms, see Revilla (2015).

2.1 Analyses

Our main experiment involved assessing stability of eq. (3) by modifying the four types of intraspecific
density dependence (density independent, decelerating, linear, accelerating) for births and deaths in
a model of mutualism with a linear functional response. Fig. 2 graphically depicts the 16 qualitatively
different combinations of types of birth and death rates. We refer to cases where ηi = θi, along the
diagonal of Fig. 2, as “symmetrical”; in these cases, the intraspecific part of our model is the familiar
θ-logistic equation. In our analysis, we consider the symmetrical cases first, before considering non-
symmetrical examples in which ηi 6= θi. In all analyses we assumed the same parameters between
species i and species j. Lastly, we compared our results to those obtained from model (4).

We analyzed eqs. (3) and (4) using a combination of analytical, numerical, and graphical tech-
niques to assess model behavior. Specifically, we (i) found equilibria and (ii) determined the behavior
around each equilibrium using local stability analysis. When analytical solutions were not possible
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(i.e., ηi or θi 6= 0 or 1), we solved for stable equilibria numerically using the Livermore Solver for
Ordinary Differential Equations, Automatic (LSODA) (Hindmarsh, 1983; Petzold, 1983) and solved
for unstable equilibria using Newton’s method. LSODA is an integrator that was used because of its
generality and ability to automatically handle stiff and non-stiff initial value problems, which were
properties of our models. Newton’s method is an iterative root-finding algorithm we used to find
unstable equilibria to a precision of 10−15, across state-space, from Ni = 0–10100 by orders of 10.
Analyses were conducted in the R language and environment (R Core Team, 2016), with LSODA im-
plemented in the deSolve package (Soetaert et al, 2010; Soetaert, 2010) and Newton’s method in the
rootSolve package (Soetaert and Herman, 2009; Soetaert, 2009). Code to run our numerical analysis
can be found at https://github.com/dispersing/Mutualism-NonlinearDensityDependence.

Parameter values for numerical analyses focused on the type of nonlinear per capita intraspecific
density dependence (i.e., ηi and θi) and the strength of mutualism (i.e., βi, but also the maximum
saturation in eq. (4), γi). For both of these types of parameters, we considered values ranging from
10−2–102. The other parameter values—bi, di, µi, and νi—did not qualitatively affect the model
behavior in terms of number or stability of equilibria (C. Moore, unpublished results), so we do not
discuss their effects in detail.

Graphical analyses were conducted using a modified version of the R package phaseR (Grayling,
2014a,b). Specifically, phase plots were created, using direction fields and zero-growth isoclines (i.e.,
nullclines) to corroborate and visualize our numerical findings.

3 Results

3.1 General results

For all analyses with linear functional responses we found between 3 and 5 non-negative equilibrium
population sizes (Fig. 3). Analytically, we found that (0,0) was always an equilibrium and always
unstable. Further, there were always two boundary equilibria (N1 > 0, 0) and (0, N2 > 0), both
of which were saddle nodes. The instability of the trivial and boundary equilibria means that
populations always grow when rare, as expected. Numerically, we found that in cases where interior
equilibria were present (N∗

1 > 0, N∗
2 > 0), there were either one or two points. In cases where there

was only one equilibrium point, it was always stable; in cases where there were two equilibrium
points, the point proximal to the origin (0,0) was always stable and the point distal to the origin
was a saddle node. Fig. 4 shows the six qualitatively different types of phase planes found in this
study: (i) a trivial density independent case ηi = θi = 0; (ii & iii) unstable and stable configurations
when intraspecific density dependence was decelerating, 0 < ηi = θi < 1; (iv & v) unstable and
stable configurations when intraspecific density dependence was linear, ηi = θi = 1; and (vi) a stable
configuration when intraspecific density dependence was accelerating, ηi = θi > 1.

In general, in the absence of mutualism, decelerating intraspecific density dependence increased
both species’ densities at equilibrium (βi = 0 plane in Fig. 5, left panel). Oppositely, accelerating
intraspecific density dependence decreased the equilibrium densities. Strong mutualism (high βi)
destabilized populations with decelerating intraspecific density dependence, but populations with
accelerating intraspecific density dependence were always stable (Fig. 5, center panel; note that only
stable equilibria are shown, so missing portions of the surface at high βi and low ηi and θi denote
loss of stability). Further, when a stable interior equilibrium was present, adding mutualism to pop-
ulations with decelerating intraspecific density dependence generated a larger benefit of mutualism
than with accelerating intraspecific density dependence (Fig. 5, right panel). Adding mutualism to
populations when birth and death rates were subject to independent intraspecific density depen-
dence (i.e., non-symmetrical, ηi 6= θi) was always stable if either ηi or θi was accelerating (> 1),
and destabilized populations if ηi 6= θi were both decelerating (< 1) if the mutualistic effect was
sufficiently large (Fig. 6). Below we describe results based on symmetrical cases when ηi = θi and
non-symmetrical cases when ηi 6= θi, in greater depth.
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3.2 Symmetrical density dependence, ηi = θi

3.2.1 Decelerating density dependence, 0 < ηi = θi < 1

When 0 < ηi = θi < 1, we found that there were 1–2 interior equilibria (3–5 total equilibria),
depending on the strength of mutualism. In the absence of mutualism, the interior equilibrium (and
consequently the boundary equilibria by setting either coordinate to 0) is at((

b1 − d1
µ1 + ν1

)η−1
1

,

(
b2 − d2
µ2 + ν2

)η−1
2

)
. (5)

Notice the η−1
i exponent. In these cases of decelerating density dependence, as ηi = θi decrease from

1, the greatest change in growth rate occurs at lower densities (Fig. 1). Furthermore, the equilibrium
density in the absence of mutualism grows larger as ηi = θi decreases.

Adding mutualism to populations with decelerating density dependence changed the dynamics
in either of two ways: (i) it destabilized the populations resulting in unbounded population growth
(Fig. 4, top-center panel) or (ii) it created both a stable and saddle node (Fig. 4, top-right panel).
For very small values of ηi = θi, populations were always unstable with mutualism added (i.e.,
βi > 0). As decelerating density dependence became more linear (i.e., as ηi = θi → 1), however,
weak mutualism (small values of βi) resulted in an alternative configuration in which zero-growth
isoclines crossed twice. Of these two equilibria, the stable equilibrium point was always larger than
in the absence of mutualism (βi = 0) and the saddle node was always larger than the stable point.
For the same values of ηi = θi with stable and saddle nodes, increasing βi increased the stable
point and decreased the saddle point. Continuing to increase βi ultimately resulted in a saddle-
node bifurcation, beyond which all configurations were unstable, illustrated as the light-dark gray
boundary in Fig. 3.

3.2.2 Linear density dependence, ηi = θi = 1

When ηi = θi = 1, there were either 0 or 1 interior equilibrium configurations (3 or 4 total equilibria)
that respectively corresponded to the absence of presence of an interior stable point. Linear density
dependence is equivalent to the most traditional formulation of mutualism, the Lotka-Volterra com-
petition model with the sign reversed of the effect of another population. Although the behavior of
this model is well-known, we summarize its properties briefly here for ease of comparison. In the
absence of mutualism, the interior equilibrium (and consequently the boundary equilibria by setting
either value to 0) is at (

b1 − d1
µ1 + ν1

,
b2 − d2
µ2 + ν2

)
.

The slope of the zero-growth isocline as it increases from the boundary equilibrium is
βiNj

µi+νi
, and

zero-growth isoclines form a stable interior equilibrium point anytime βiβj < (µi + νi) (µj + νj).
This is equivalent to the more traditional notation, αijαji < αiiαjj found in ecology texts (e.g.,
May, 1981; DeAngelis et al, 1986; Kot, 2001). The location of the stable interior equilibrium point
is (

b1 − d1
µ1 + ν1

+
β1(b1 − d1)(β1 + µ1 + ν1)

(µ1 + ν1)2((µ1 + ν1)− β2
1)
,
b2 − d2
µ2 + ν2

+
β2(b2 − d2)(β2 + µ2 + ν2)

(µ2 + ν2)2((µ2 + ν2)− β2
2)

)
.

3.2.3 Accelerating density dependence, ηi = θi > 1

When ηi = θi > 1, there was always one interior equilibrium (4 total equilibria), irrespective of
the strength of mutualism (Figs. 3, 5). In the absence of mutualism, the interior equilibrium is
again given by (5). Again, note the η−1

i in the exponent. In these cases of accelerating density
dependence, as ηi = θi increase from 1, the greatest change in growth rate occurs at higher densities
(Fig. 1). Furthermore, the equilibrium point in the absence of mutualism decreases as ηi = θi
increased (Fig. 5, left panel). With mutualism (βi > 0), in addition to always being stable, the
benefit decreased as ηi = θi increased.
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3.3 Non-symmetrical density dependence, ηi 6= θi

When ηi 6= θi, we found no dynamics qualitatively different from what we found in the symmetrical
cases. When either of the birth or death functions were density independent (ηi = 0 or θi = 0),
the population growth rates and model dynamics behaved according to the function without the
non-zero exponent. Further, when either of the birth of death functions responded linearly density,
or both of the birth and death functions responded at a decelerating rate, the population growth
rates and model dynamics were behaved similarly to cases with decelerating density dependence
(Fig. 6, ηi ≤ 1 and θi ≤ 1).

There was one important difference in non-symmetrical cases. Specifically, if either of the birth
and death functions were accelerating, then there was always one interior stable equilibrium (Fig. 6,
ηi > 1 and θi > 1). This finding is irrespective of the strength of mutualism.

3.4 Comparison of nonlinear density dependence with a saturating func-
tional response

We investigated relaxing the assumption of linear intraspecific density dependence and have thus far
focused on a linear functional response between mutualist partners (eq. (3)). We further compared
this model with a different functional response, a nonlinear saturating function (eq. (4)) (Fig. 7).
In general, our findings with respect to the benefit of mutualism were the same: as intraspecific
density dependence shifted from decelerating to accelerating, for a given strength of mutualism (γi
is roughly analogous to βi in the linear functional response), the benefit of mutualism decreased
(Fig. 7, right panel). Also, increasing the strength of mutualism (γi) always increased the benefit
of mutualism for any type of density dependence. There were three major differences between the
linear and saturating models. First, in the saturating model, there were no unstable configurations
(Fig. 5, center panel, compared with Fig. 7, center panel). Second, again in the saturating model,
across all values of strength of mutualism and density dependence there were always four equilibria,
with a single, stable interior equilibrium. Third, weak accelerating density dependence with a linear
functional response produced a disproportionally large spike in benefit from mutualism (Fig. 5, right
panel, compared with Fig. 7, right panel).

4 Discussion

4.1 Main findings

Lotka-Volterra models of mutualism assume that intraspecific density linearly decreases per capita
growth rates. Other population models of mutualism have inherited this assumption and have
generally concluded that 2-species models of mutualism are inherently unstable. In real populations,
however, not only do nonlinear per capita growth rates exist, but they seem to be the rule rather
than the exception (Stubbs, 1977; Fowler, 1981; Sibly et al, 2005). In this study, we examined how
relaxing the assumption of linearly dependent per capita birth and death rates affected stability
and mutualistic benefit in these models. We found that when per capita growth rates decrease
most strongly at low densities and are decelerating, mutualism usually destabilizes the model. In
contrast, when growth rates decrease most strongly at high densities and are accelerating, models
are always stable with mutualism. Despite the tendency for mutualism to destabilize the 2-species
equilibrium with decelerating density dependence, the benefit was greater compared to stabilizing,
accelerating density dependence. We additionally found that if either the birth or death functions
exhibited accelerating density dependence, the models always had a single, stable interior equilibrium
irrespective of the strength of mutualism.

4.2 Forms of intraspecific density dependence

Our paper presents an alternative way that the classic Lotka-Volterra mutualism model can be modi-
fied to stabilize mutualism. Simply put, we added a layer of biological realism (nonlinear intraspecific
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density dependence) to the Lotka-Volterra mutualism model and we found informative ways that
within-species properties could stabilize mutualism, even with a linear functional response modeling
the interaction between species. Support for decelerating and accelerating density dependence has
largely been based on large datasets from observational studies (e.g., 1750 species of mammals, birds,
fish, and insects in Sibly et al, 2005). Most of the data suggest that decelerating density dependence
is the most common form (Sibly et al, 2005). In our models, decelerating density dependence was
largely unstable with mutualism added. The reason that our decelerating models were unstable was
that for strong deceleration (i.e., ηi and θi → 0), after the initial steep decline in birth or death rates,
the population growth rate continues to decrease, but at decreasing rate. For biologically-realistic
densities, after the initial steep decline in birth or death rates, the population growth rate is asymp-
totic and therefore does not meaningfully decrease with increasing density, allowing the benefit of
mutualism to overpower and destabilize the system.

From an ecological perspective, species’ nonlinear responses to intraspecific density arise from
differences in ecological habits or population structure. Sedentary organisms, like many plants for
example, exhibit a more-or-less-constant death rate at low-to-intermediate population densities,
and then at higher densities death rates tend to rapidly increase (as in scramble competition or
self-thinning, Yoda et al, 1963) or increase linearly (as in contest competition, Crawley and Ross,
1990), resulting in accelerating density dependence. Subsets of populations, such as age or stage,
can experience different vital rates and generate nonlinear density dependence for populations as a
whole. In African ungulates, for example, increases in density led to increases in adult mortality,
while juvenile mortality remained relatively constant at all population densities (Owen-Smith, 2006).
In fact, many mutualisms occur between species with structured populations, so our study may lend
insights into these interactions. As examples, many plant-mycorrhizal associations are mutualistic
in the seedling stage (Grime et al, 1987; Jones and Smith, 2004; van der Heijden and Horton, 2009)
and adult plants engage in mutualistic interactions with pollinators when they reach a reproductive
stage.

From an evolutionary perspective, a long-standing theory about why we see nonlinear density
dependence comes from evolutionary theories of life-history strategies; i.e., r- and K-selected pop-
ulations (Gilpin and Ayala, 1973; Stubbs, 1977; Fowler, 1981), including θ-selection (Gilpin et al,
1976). Setting aside historical controversies, this body of theory has generated very useful quantities
like the specific growth rate of a population. The most general prediction made is that populations
with a high specific growth rate (commonly referred to as r-selected) should exhibit decelerating
density dependence since their survival probability drops off precipitously at relatively low densities.
On the other hand, populations with a low specific growth rate (commonly referred to as K-selected)
should exhibit accelerating density dependence since their survival probabilities drop off at relatively
high densities (see Figs. 1, 2 in Fowler, 1981). Another illuminating example of how traits associ-
ated with life-history strategies may be driving nonlinear density dependence was in a study of bird
populations (Sæther and Engen, 2002). Sæther and Engen (2002) found that intrinsic growth rate,
r, was correlated with the type of nonlinear density dependence exhibited by the population, as
well as metrics like clutch size and adult survival rates. Interestingly, they also found a correlation
between environmental stochasticity and intrinsic growth rate, suggesting that intrinsic growth rate
may be a confounding factor if studies try to find a relationship between environmental stochasticity
and the shape of a population’s density dependence (Sæther and Engen, 2002).

4.3 Comparison with a saturating mutualism

We compared both linear and saturating functional responses because the latter response is now
widely used as an alternative that prevents unrealistic outcomes of the Lotka-Volterra mutualism
model (e.g., Holland et al, 2002, 2006; Okuyama and Holland, 2008; Holland and DeAngelis, 2010;
Bastolla et al, 2009; Rohr et al, 2014). The effects of nonlinear per capita intraspecific density
dependence was largely the same for both models, with the mutualistic benefit being greatest with
decelerating density dependence. We postulate that this is a general phenomenon that we expect
to see with other types of mutualistic functional responses. As an example, in a hypothetical seed-
caching seed-dispersal mutualism, we can expect that the per capita effect of the seed-caching animals
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on the nut-producing plants will be constant; i.e., seed-caching animals disperse all nuts, regardless
of the density of seed-caching animals. In this case, we may model the functional response as a
constant function gi(Nj) = εi, with εi being the constant per capita benefit of having any amount
of seed-caching animals present. Coincidentally, this example is actually a special case of to the
saturating functional response, as the upper limit of the saturating function as Nj → ∞ or δi → 0
is a constant (εi would equal γi in eq. (4)).

The two major differences between the dynamics of our models with linear and saturating func-
tional responses were (i) the saturating functional response model always had a stable interior
equilibrium and (ii) there was a strong peak in the population densities with weak accelerating
density dependence with a linear functional response that was not present with a saturating func-
tional response (Fig. 5, center and right panels). Unlike the linear functional response, the model
with a saturating functional response withstood destabilization with linear and decelerative density
dependence when relatively strong mutualism was added. Indeed, persistent stabilization is one of
the most attractive features of the saturating functional response. Although it remained stable with
stronger deceleration, we found that the mutualistic benefit continued to increase, which does not
seem to be a realistic feature of our models. The peak in the mutualistic benefit in the model with a
linear functional response was the other difference compared with the saturating functional response
model, which also does not seem to be a realistic feature. This peak arose from parameter space
where accelerating density dependence was weak and the strength of the linear functional response
was strong (for 1 < ηi or θi < 2). We did not observe a similar peak in the models with a saturating
functional response because at higher densities the benefit of the mutualism is diminished.

4.4 Future directions

Mutualism is incredibly important in virtually every ecosystem, yet we are missing fundamental
theoretical and empirical information like the role of intraspecific density dependence in mediating
its effect. Very few empirical studies on the population ecology of mutualism exist, and we hope that
this will be remedied. This is especially true because ecologists are extending population models into
larger, more complex community models where functional forms can have important consequences
(see the exchange, for example: Bascompte et al, 2006a; Holland et al, 2006; Bascompte et al,
2006b). Most importantly, we need studies examining both the relationship between intraspecific
density and population growth rate and the functional and numerical responses of mutualist pairs
for the multifarious forms of mutualisms (e.g., interspecific-resource defense, tropic-resource, spatial-
resource mutualisms). As argued in the methods, there is no a priori reason to reject a linear
functional response for all mutualisms based on the few empirical studies of mutualism population
dynamics that exist. Identifying more examples of linear functional responses could help reveal what
other processes stabilize the interaction, and whether nonlinear intraspecific density dependence can
be a stabilizing process as suggested by our study.

There were many empirical predictions and questions that arose from relaxing linear per capita
intraspecific density dependence in this study. Foremost, we predict that in species with accelerating
intraspecific density dependence, the benefit of engaging in mutualism is less than in species with
decelerating intraspecific density dependence. Does this mean that we expect fewer species with
accelerating intraspecific density dependence to engage in mutualistic interactions than those with
decelerating intraspecific density dependence? Or do we expect more species with accelerating
intraspecific density dependence to engage in mutualistic interactions than those with decelerating
intraspecific density dependence because the interaction is inherently more stable? Contrasting
the trade-off between the benefit of mutualism and, at least in the models with a linear functional
response, stability may reveal which species with different life histories are involved with mutualisms
while others are not. We found this tradeoff with both the linear and saturating functional responses.

4.5 Conclusion

The linear functional response has historically been the scapegoat for theoretical studies of the
population dynamics of mutualism. For example, the eminent Lord Robert May (1976) writes:
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. . . the simple, quadratically nonlinear, Lotka-Volterra models . . . are inadequate for even
a first discussion of mutualism, as they tend to lead to silly solutions in which both
populations undergo unbounded exponential growth, in an orgy of mutual benefaction.
Minimally realistic models for two mutualists must allow for saturation in the magnitude
of at least one of the reciprocal benefits.

In this paper, we build on May’s idea of modifying the Lotka-Volterra mutualism model; not through
the saturation of benefits, but through intraspecific density dependence. We found that biologically-
realistic nonlinear density dependence significantly changes the dynamics of the original Lotka-
Volterra mutualism model, where we found that accelerative density dependence always stabilized
our models but with weaker mutualistic benefit relative to decelerative density dependence. We hope
that this study will further stimulate ecologists to consider all simplifying of assumptions of even the
most basic models and also to investigate more deeply into the relationships between intraspecific
density, interspecific density, and population growth to gain a better grasp on mutualistic population
dynamics.
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Figure 1: Values of ηi and θi used in eqs. (3) and (4) to represent nonlinear per capita birth and
death rates before accounting for the effects of mutualism. Panels show how the per capita birth
(left) and death (right) rates change as functions of intraspecific density, Ni. The actual values
used for numerical analyses are presented in light gray, with highlighted examples of decelerating
intraspecific density dependence (ηi or θi = 1/10; short dashes, ), linear intraspecific density
dependence (ηi or θi = 1; medium dashes, ), and accelerating intraspecific density dependence
(ηi or θi = 10; long dashes, ).
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Figure 2: The qualitative range of per capita birth and death functions used in this study to examine
how relaxing the assumption of linear per capita intraspecific density dependence could affect the
population dynamics of mutualism. Each panel’s x-axis is population density, Ni, and the y-axis is
the per capita birth, death, or growth rate. Per capita birth ( ) and death ( ) rates
respectively increase or decrease as a function of density. Across rows of panels the shape of density
dependent births changes as ηi increases and across columns of panels the shape of density dependent
deaths changes as θi increases. The difference between the birth and death rates, the per capita
population growth rate ( ), is superimposed to show that similar overall population growth
functions can arise from different birth and death processes.
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Figure 3: Number of equilibrium points (shades of gray) across all values of intraspecific density
dependence (ηi = θi) and strength of mutualism (βi), while holding the remaining parameters
constant at bi = 5, di = 1, µi = 1, and νi = 1. Across all analyses, there were always between 1
and 2 interior equilibria (3 and 5 total equilibria, including the trivial and boundary equilibria).
The light-gray regions corresponds to unstable configurations where no interior equilibrium existed,
the medium-gray regions correspond to stable configurations where one stable interior equilibrium
existed, and the dark-gray regions correspond to areas with two interior equilibria, one stable at low
densities and one saddle at high densities.

13

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 21, 2017. ; https://doi.org/10.1101/108175doi: bioRxiv preprint 

https://doi.org/10.1101/108175
http://creativecommons.org/licenses/by-nc/4.0/


0

0

● ● ●

●

0

● ●

●

●

●

0

● ●

●

0

0

● ●

●

●

0

● ●

●

●

0N1 N1 N1

N2

N2

N1 N1 N1

ηi = θi = 0 0 < ηi = θi < 1

ηi = θi = 1 ηi = θi > 1

Figure 4: Phase planes representing the qualitative dynamics of 2-species mutualistic interactions for
different models of per capita intraspecific density dependence. Each panel shows the densities of N1

and N2 on the x- and y-axes. Within each panel, zero-growth isoclines (nullclines) are shown for N1

(red) and N2 (blue): (i) when there is no mutualism (βi = 0) as solid, light lines ( or ) and
(ii) when mutualism is present (βi > 0) in dashed, red or blue ( or ). Arrows within panels
show the qualitative direction vectors for N1 (red), N2 (blue), and together (black) for all changes
in direction for each phase plane. Point within panels represent unstable (white), stable (black), or
saddle nodes (gray). The trivial intraspecific density independent result (ηi = θi = 0) is shown in
the top-left panel, the two results of decelerating intraspecific density dependence (0 < ηi = θi < 1)
are shown in the top-center and -right panels, linear intraspecific density dependence (ηi = θi = 1)
is shown in the bottom-left and -center panels, and accelerating intraspecific density dependence
(ηi = θi > 1) is shown in the bottom-right panel.
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Figure 5: For model (3), nonlinear per capita birth and death rates with a linear functional response
of mutualism, the location of the interior equilibrium in the absence of mutualism (βi = 0, left), stable
interior equilibrium with mutualism (center), and the benefit of mutualism as the difference between
the two (right). The locations of equilibria were identified as the Euclidian distance from the origin,√

(N∗
i )2 + (N∗

j )2, for identical parameters for each species: bi = 5, di = 1, µi = 1, and νi = 1.

Each panel shows the aforementioned response on the vertical axis, the type of intraspecific density
dependence (ηi = θi from 10−2–102) on the left horizontal axis, and the strength of mutualism (βi
from 10−2–102) on the right horizontal axis. Further, each panel shows the relative values of each
surface (colors), the absolute values of each surface (same axes across panels), and contour lines at
the base of each plot show changes in the surface. Further, in areas where there is no surface, there
was no stable interior equilibrium when βi 6= 0 (center). In the left panel without mutualism, there
there were stable interior equilibria across all values of ηi and θi, but we removed the same part of
the surface to aid comparison across panels. Because there is no mutualism in the left panel, if we
showed the entire surface is would be the same as Fig. 7, left panel.
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Figure 6: Number of equilibrium points given non-symmetrical intraspecific density dependent birth
(ηi; x-axis) and death (θi; y-axis) functions, for different strengths of a linear mutualism functional
response (βi; grayscale). If either birth (ηi) or death (θi) functions were accelerating (> 1), then
there was always one interior equilibrium and it was stable (black), irrespective of the strength of
mutualism (βi). We only show parameter space up to 102, but a stable interior equilibrium was
present for any value greater than 1. If both birth and death functions were decelerating (< 1), then
the strength of mutualism determined if there was no interior equilibrium or two interior equilibria.
Contours lines delineate the no-interior- (white) and two-interior-equilibrium (gray) boundaries for
several strengths of mutualism (10−1 ( , darkest gray), 10−2 ( , medium gray), and 10−3 ( ,
lightest gray)).
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Figure 7: For model (4), nonlinear per capita birth and death rates with a saturating functional
response of mutualism, the location of the interior equilibrium in the absence of mutualism (left),
stable interior equilibrium with mutualism (center), and the benefit of mutualism, as the difference
between the two (right). The locations of equilibria were identified as the Euclidian distance from the

origin,
√

(N∗
i )2 + (N∗

j )2, for identical parameters for each species: bi = 5, di = 1, µi = 1, and νi = 1.

Each panel shows the aforementioned response on the vertical axis, the type of intraspecific density
dependence (ηi = θi from 10−2–102) on the left horizontal axis, and the strength of mutualism (γi
from 10−2–102) on the right horizontal axis. Further, each panel shows the relative values of each
surface (colors), the absolute values of each surface (same axes across panels), and contour lines at
the base of each plot show changes in the surface.
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