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Abstract

The mean pairwise genetic distance among haplotypes is an estimator

of the population mutation rate θ and a standard measure of variation

in a population. With the advent of next-generation sequencing (NGS)

methods, this and other population parameters can be estimated under

different modes of sampling. One approach is to sequence individual

genomes with high coverage, and to calculate genetic distance over all

sample pairs. The second approach, typically used for microbial sam-

ples or for tumor cells, is sequencing a large number of pooled genomes

with very low individual coverage. With low coverage, pairwise genetic

distances are calculated across independently sampled sites rather than

across individual genomes. In this study, we show that the variance

in genetic distance estimates is reduced with low coverage sampling if

the mean pairwise linkage disequilibrium weighted by allele frequen-

cies is positive. Practically, this means that if on average the most

frequent alleles over pairs of loci are in positive linkage disequilibrium,

low coverage sequencing results in improved estimates of θ, assuming

similar per-site read depths. We show that this result holds under the

expected distribution of allele frequencies and linkage disequilibria for

an infinite sites model at mutation-drift equilibrium. From simula-

tions, we find that the conditions for reduced variance only fail to hold

in cases where variant alleles are few and at very low frequency. These

results are applied to haplotype frequencies from a lung cancer tumor

to compute the weighted linkage disequilibria and the expected error

in estimated genetic distance using high versus low coverage.
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1 Introduction

One of the defining empirical problems in evolutionary genetics is the mea-

surement and characterization of genetic heterogeneity in natural and ex-

perimental populations. The advent of next-generation sequencing (NGS)

provides researchers with a tool set for efficiently generating sequence data

from large numbers of genotypes and over extensive regions of the genome,

including whole-exome and whole-genome sequencing of multiple individu-

als. This data has the potential to provide the statistical power necessary

to make robust inferences of genotype frequencies and their distributions.

High-throughput NGS technology gives researchers choices between dif-

ferent approaches to sampling genotypes from a population. A standard

method, most widely used in studies of multicellular organisms, is to sample

individuals and sequence their genomes at high coverage, i.e. generating

reads containing most or all of the polymorphic sites of interest for each

genome. An alternative approach is to sequence from a pooled set of indi-

viduals at a read depth much smaller than the number of genomes in the

sample, e.g. Futschik and Schlötterer (2010); Anand et al. (2016), leading

to a very low average coverage per individual genome. Figure 1 illustrates

these two scenarios for a small model population: a sample of n individuals

sequenced with full coverage, versus low coverage sequencing at read depth

n from a pooled set of individuals.

FIGURE 1 HERE:

Sequencing at low coverage is typically used in population genetic studies

of microbial assemblages and in cancer genomic studies where genetically

heterogeneous assemblages of cancer cells are sampled from a single tumor.
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However, through single-celled sequencing techniques (Navin, 2015; Gawad

et al., 2016), individual sampling with high coverage is also possible for these

model systems. Similarly, while individual sampling has been standard in

population genetic studies of most multicellular organisms, NGS has made

pooled sampling with low coverage sequencing inexpensive and practical

in studies of animal and plant populations. For example, several recent

analyses of genetic variation in Drosophila populations (Schlötterer et al.,

2014) used low coverage pooled sequencing, drawing reads from a very large

pool of macerated flies rather than sequencing fly genomes individually with

high coverage.

Sequencing n individuals with full coverage is not statistically equivalent

to sequencing at read depth n from a large pool of individuals. High and

low coverage result in different estimation error for population parameters.

These include the population mutation rate θ = 4Nu (where N is the pop-

ulation size and u the genomic mutation rate, with θ = 2Nu for haploid

genomes), which is estimated either from the number of segregating sites

(Watterson, 1975) or from the average heterozygosity across sites (Tajima,

1989). Estimates of θ are the basis for a number of statistical tests that

distinguish the effects of natural selection and population dynamics from

neutral evolution at constant population size. These include the Tajima’s

D test (Tajima, 1989), which compares θ estimates from the number of seg-

regating sites to those derived from average heterozygosity. Consequently,

getting a handle on the variance in estimates of θ and for neutrality test

statistics generally is of broad interest and importance in evolutionary ge-

netics (Nielsen, 2001). Several studies have analyzed the contributions of

pooling, read depth, and coverage to bias and variance in θ estimates, e.g.

Pluzhnikov and Donnelly (1996); Lynch (2008). For example, given a con-
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stant read depth, pooling improves the accuracy in estimated θ due to ef-

fectively larger sample size (Futschik and Schlötterer, 2010; Ferretti et al.,

2013), while Korneliussen et al. (2013) have shown that low read depth can

lead to estimation bias in the Tajima D test statistics.

Considering the effects of coverage on parameter estimation, if the num-

ber of genomes sampled is held constant, lower coverage leads to smaller

sample size, and consequently greater error. However, Ferretti et al. (2014)

have shown that as long as the reduction in coverage is compensated by the

number of genomes represented in a sample, low coverage sequencing reduces

the error in estimates of θ and the Tajima D statistic. Specifically, if we es-

timate allele frequencies and θ from n sequences with complete coverage,

as opposed to a much larger number of sequences at very low per-genome

coverage (so that on average each site is represented by n samples, often

from different individuals per site, as shown in panel 2 of Fig. 1), low cover-

age sequencing reduces the error in estimated θ. Ferretti et al’s results are

explained by the fact that with low coverage sequencing, variant alleles from

different segregating sites tend to be sampled from different individuals, cor-

responding to an effective increase in the number of independent genealogies

from which variant allele samples are drawn for each locus. Consequently,

their results imply that the degree to which estimates of θ improve with low

coverage, large individual sample sequencing are expected to increase with

the strength and direction of linkage disequilibria among polymorphic sites.

In this study, we will consider limiting cases of high and low coverage

sequencing to investigate the contribution of linkage disequilbria to estimates

of θ. High coverage sequencing (HCS) is represented by complete coverage

of all polymorphic sites from n different genomes, as would typically be

the case for individual sampling (including single-cell sequencing). Low
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coverage sequencing (LCS) is represented by a case where a very large sample

of genomes is pooled and sequenced at a read depth n for each site, so

that allelic variants at different sites are almost always drawn from different

genomes. We will compute variances in the Tajima estimator E(π̂) = 4Nu =

θπ, which is calculated from the mean pairwise genetic distance in a sample

of n genotypes:

π̂ =
∑
i,j

πij/

(
n

2

)
(1)

where π̂i,j is the Hamming distance for the haplotype pair i, j summed over

all polymorphic sites.

We hypothesize that under most conditions, the variance in π̂ estimated

using HCS increases with greater linkage disequilibrium across polymorphic

sites, i.e. strong linkage disequilibria inflate the estimation error across sites

in a haplotype by reducing the number of independent genealogical sample

paths. We will investigate this hypothesis analytically, and will additionally

validate our results using individual-based simulations. We will also apply

these results to NGS data by analyzing allele and haplotype frequencies from

cancer cell genomes.

2 The Sampling Models

Consider a population of N organisms with mutations distributed over S

segregating sites. We wish to estimate the mean genetic distance π̂ for the

population and its sample variance var(π̂) under the high and low coverage

modes of sequencing. For HCS, we draw n � N individual organisms (or

cells) from the population and sequence their entire genomes, exomes, or

any regions containing the polymorphic sites of interest.
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For an idealized model of LCS, we assume a mean coverage depth n �

M , where M is the number of genotypes contributing to the pooled sample

(M may be � N or of the same order). If reads are short, the majority will

contain at most a single polymorphic site. Together, these conditions lead

to each polymorphic site being sampled independently of other polymorphic

sites with respect to the genome of origin (note that in the second panel

of Figure 1, multiple sites are sampled from the same genome simply be-

cause there are very few genomes to draw this random sample from). When

computing sample genetic distance, extreme HCS sums over the Hamming

distances of all haplotype pairs, while extreme LCS results in summing over

all pairs for each segregating site sampled from a different genome.

We assume an infinite sites model (Kimura, 1969; Tajima, 1996) so that

there are only two alleles per segregating site. This allows an unambiguous

binary classification of alleles, with mutations as ancestral "wildtype" vs.

"reference" genotype. This also allows us to specify the direction (sign) of

linkage disequilibria. For cancer cells, the reference corresponds to the nor-

mal germline genotype, with somatic mutations defining the variant geno-

types of the clonal lineages. Our methods and results also apply to multial-

lelic states provided that some allele, usually the most common, is designated

as a reference and all other alleles are aggregated to create a biallelic state.

Definitions. Throughout the paper, we use the following definitions and

terminology as a formal way of defining Eqn. (1) for high and low coverage

sequencing:

Variables: Let z denote a genotype, at either a single locus s or across

multiple loci. We define the frequency distribution of z over samples i as
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zi ∼ p(z), which are iid among i = 1...n. We use zis to denote site s in

haplotype i (for HCS). We write zis,s to denote sample i at site s when sites

are sampled by pooling at low coverage (LCS) when we wish to highlight

the fact that zis and zir are read from distinct haplotypes.

Pairs: For both HCS and LCS, the estimators of π̂ include an average∑
i<j φij/n(n− 1) of some function φij = φ(xi, xj) of pairs of i.i.d. random

variables xi, i = 1, . . . , n. In the case of LCS xi = zis and φ(xi, xj) = fijs

with fijs = I(zis 6= zjs)(and an additional sum appears over s, outside the

average). For HCS the random variables are xi = zi and φ(xi, xj) = gij =∑
s fijs. Importantly, while the xi are independent, pairs (xi, xj) and (xi, xk)

that share a common element are not, and thus the same for φij .

Moments of φij : We define E(φij) = µ, var(φij) = σ2. We also define an

expectation for the product E(φij , φjk) = κ for pairs of pairs with a shared

element.

Pairs of pairs: Let P denote the set of all ordered pairs of pairs, with P3 ⊂ P

defining the subset of ordered pairs of pairs with a single shared element,

P = {[(i, j), (k, `)] : i < j, k < ` and (i, j) < (k, `)}

P3 = {[(i, j), (k, `)] : i < j, k < ` and (i, j) < (k, `) and |{i, j, k, `}| = 3}

Numbers of pairs: The number of ordered pairs, and the number of ordered

pairs of pairs with a shared element are, respectively N2 = n(n − 1)/2

and N3 = n(n − 1)(n − 2)/2. The value of N3 follows from there being

n(n − 1)(n − 2)/6 ways to select a triplet i, j, k, and three ways to select a
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shared element from this triplet. In Appendix A1, we discuss the properties

of ordered pairs of pairs, including the derivation of the following relation

which we will use below to compute var(π̂) under low and high coverage

sequencing,

var(φ̂n) = σ2

N2
+ 2N3

N2
2

(κ− µ2). (2)

where φ̂n = 1
N2

∑
i<j φij is a sample estimate of E(φij) = µ. We will use this

result twice, once for LCS with φij = fijs, and once for HCS with φij = gij .

2.1 Case 1: Low Coverage Sequencing (LCS)

For LCS, we use the indicator function at a single site s, fij,s = I(zis,s 6=

zjs,s), where zis,s ∼ Bern(ps), i.e. p(zis,s) = p
zis,s
s (1 − ps)1−zis,s for zis,s ∈

{0, 1} such that

µs = E(fij,s) = hs = 2ps(1− ps)

σ2
s = var(fij,s) = hs(1− hs),

where hs is also known as the heterozygosity at locus s. Under LCS we

define the estimator for π̂ for Eqn. (1) as:

π̂LCS =
∑
s

 1
N2

∑
i<j

I(zis,s 6= zjs,s)

 =
∑
s

 1
N2

∑
i<j

fij,s

 .
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To evaluate the variance of π̂LCS , first note that the expectation of products

fij,s, fjk,s for ordered pairs is:

κs = E(fij,s fjk,s) = p(zis,s 6= zjs,s, zjs,s 6= zks) = p(zis,s = zks,s 6= zjs,s)

= p(zis,s = zks,s = 1, zjs,s = 0) + p(zis,s = zks,s = 0, zjs,s = 1)

= p2
s(1− ps) + (1− ps)2ps = hs/2.

From the assumption of statistical independence among sites s located on

different reads with pooling, it follows (Appendix A1) that for a sample of

size n,

var(π̂LCS) =
∑
s

var(f̂ns) =
∑
s

1
N2

hs

{
(1− hs) + N3

N2
(1− 2hs)

}
(3)

Approximate statistical independence across sites requires that the number

of possible samples of size n is much larger than the number of segregating

sites (i.e. N � n so that
(N
n

)
� SN ).

2.2 Case 2: High Coverage Sequencing (HCS)

Computing pairwise differences among samples of individuals genomes under

HCS involves calculating moments of sums rather than sums of moments.

For zi ∼ p(z) sampled independently under HCS, applying gij =
∑
s I(zis 6=

zjs) =
∑
s fij,s, we define

π̂HCS ≡ ĝn = 1
N2

∑
i<j

gij ,

and derive its variance below. For a sample of individual haplotypes i =

1...n, consider zis ∼ Bern(ps) as before, but with correlated zis, zir due

to linkage disequilibrium (LD) between sites. We define the LD Drs for
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(arbitrarily labeled) alleles R, r and S, s at the two sites as follows. Letting

qs, qr = 1− ps, 1− pr (Lewontin and Kojima, 1960),

p(RS) = p(R)p(S) + Dsr = prps + Dsr

p(rs) = p(r)p(s) + Dsr = qrqs + Dsr

p(Rs) = p(R)p(s) − Dsr = prqs − Dsr

p(rS) = p(r)p(S) − Dsr = qrps − Dsr.

As with LCS, we have, for hs = 2psqs,

µf = E(fij,s) = hs and σ2
f = var(fij,s) = hs(1− hs)

The probability of different identity among sites s, r in a sample pair i, j

is p(fijsfijr = 1) = p(RS, rs) + p(rs,RS) + p(Rs, rS) + p(rS,Rs), where

p(RS, rs) = p(zi,sr = RS, zj,sr = rs) etc. Therefore

γsr = E(fij,sfij,r) = 2(pspr +Dsr)(qsqr +Dsr) + 2(psqr −Dsr)(qspr −Dsr)

and similarly, considering triplet samples with shared element j paired with

i and k, the probability of different identity between i and j at site r and j

and k at site s is p(fijsfjkr = 1) = p(R, rS, s) + p(R, rs, S) + p(r,RS, s) +

p(r,Rs, S), where p(R, rS, s) = p(zir = R, zjr = r, zjs = S, zks = s) etc.

Using these terms, we compute the expectation:

δsr = E(fij,sfjk,r) = 2ps(qspr−Dsr)(qsqr +Dsr) + 2(psqr−Dsr)(qspr−Dsr)

At linkage equilibrium (Dsr = 0 for all s, r), high coverage sequencing of n

individuals and low coverage sequencing of pooled individuals at read depth

n are statistically equivalent, i.e. both equations simplify to γsr = δsr =

12
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4psqsprqr.

The mean and sample variance terms for the expected pairwise distances

are, respectively,

µ = E(gij) =
∑
s

hs,

σ2 = var(gij) =
∑
s

var(fij,s) + 2
∑
r<s

cov(fij,r, fij,s)

=
∑
s

hs(1− hs) + 2
∑
r<s

(γsr − hshr),

while the covariance κ for the ordered pair of pairs with a shared j element

is:

κ = E(gij gjk) = E

{∑
s

fij,s ·
∑
s

fjk,s

}

= E

{∑
s

I(zis = zks 6= zjs) + 2
∑
r<s

(I(zis 6= zjs)I(zjr 6= zkr)
}

=
∑
s

hs/2 + 2
∑
r<s

δsr

By incorporating κ, we construct the sample estimate and variances for gij .

Because we are now averaging over haplotypes zi (rather than independent

counts for each site), ĝn is itself an average across pairs, like f̂n in the LCS

case. Applying Eqn. (2), we find that

var(π̂HCS) = σ2

N2
+ 2N3

N2
2

(κ− µ2) =

1
N2

(∑
s

hs(1− hs) + 2
∑
r<s

(γsr − hshr)
)

︸ ︷︷ ︸
σ2

+2N3
N2

2


∑
s

hs/2 + 2
∑
r<s

δsr︸ ︷︷ ︸
κ

−
(∑

s

hs

)2


(4)
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2.3 Difference and Independence

Using the results in Eqns. (3) and (4), we derive the difference between the

sample variances in pairwise differences under HCS vs. LCS as

∆ = var(π̂HCS)− var(π̂LCS) = 2
N2

∑
r<s

(γsr − hshr) + 4N3
N2

2

∑
r<s

(δsr − hshr) (5)

By collecting terms, we can rewrite the above as

∆ = 2
N2

∑
r<s

Bsr + 4N3
N2

2

∑
r<s

Asr,

where

Asr = δsr − hshr = (pspr + qsqr − psqr − prqs)Dsr + 4psqsprqr − 4psqsprqr

= (ps − qs)(pr − qr)Dsr = (2ps − 1)(2pr − 1)Dsr

Bsr = γsr − hshr = 4D2
sr + 2(pspr + qsqr − psqr − prqs)Dsr + 4psqsprqr − 4psqsprqr

= 4D2
sr + 2Asr

For notational convenience, we define:

E(Asr) = 1
N2

∑
r<s

Ars

Without linkage disequilibria among pairs (Dsr = 0 and therefore Asr, Bsr =

0 for all s, r pairs), γsr = δsr = hshr and ∆ = 0, i.e. the sample variances

under HCS and LCS are equal. Because Bsr ≥ Asr for Asr > 0, E(Asr) > 0

is a sufficient condition for ∆ > 0. This condition is satisfied when the sum

of weighted linkage disequilibria Asr is positive, i.e.

∑
sr

Asr =
∑
sr

(2ps − 1)(2pr − 1)Dsr > 0 (6)
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We remark that E(Asr) > 0 is a sufficient but not necessary condition

for ∆ > 0. The variance in mean pairwise distance can be reduced with

pooled LCS even for E(Asr) < 0, because negative Asr may be offset by the

positive contributions of D2
sr to the Bsr term when pairwise LD values in

the population are sufficiently high. However, with large sample sizes, the

Asr term dominates because it scales as ∼ 1/n while the Bsr term scales as

∼ 1/n2; consequently, the sign of E(Asr) generally predicts that of ∆.

E(Asr) > 0 requires that most "major" alleles (those with ps, pr > 0.5)

at different loci are in positive LD, while major and minor allele pairs at

different loci (ps > 0.5, pr < 0.5 or vice-versa) are in negative LD. The

weighted LD Asr provides a measure of the extent to which major alleles

are in positive LD, regardless of whether the more common allele is a refer-

ence/wildtype or variant/mutant at a particular site. These results predict

that when the mean weighted LD is positive, the sample variance (error) in

estimated pairwise genetic distance will be reduced by LCS.

2.3.1 Possible Caveats: Random Read Depth and Fractional Cov-

erage

Our results are based on a comparison of two extreme-case scenarios: full

coverage sequencing of n sampled genomes versus low coverage sequencing of

M sampled genomes at a fixed read depth n�M , which is an idealization,

because in reality the actual read depth under NGS varies across sites.

Random Read Depth. We first consider the effect of having the read

depth as Poisson random variable rather than a constant. In Appendix A2,

we show that if the read depth ns ∼ Poiss(n) (for mean read depth n), then
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the variance of the estimated pairwise genetic distance under LCS is:

var(π̂LCS) =
∑
s

{
g(n) +O

( 1
n2

)}
=

∑
s

[ 1
N2

hs

{
(1− hs) + N3

N2
(1− 2hs)

}]
+O

( 1
n2

)

This result follows because a Poisson random variable with mean n has

variance = n (indeed, read depth variance across sites will be typically of

∼ n for most other plausible sampling distributions with a mean read depth

n), the contributions of the variance in read depth to the variance of the

estimate are ∼ O(1/n2), meaning that the var(π̂LCS) is essentially the same

as Eqn. (3) and Asr, so that ∆ remain essentially unchanged. Appendix A2

also presents numerical examples confirming these results.

Fractional Coverage. Our derivations for LCS assumed that the coverage

in LCS was sufficiently low that effectively only a single locus is sampled per

individual, which is an idealization for very short reads and for very large,

well mixed pooled sample size M relative to the read depth. With greater

coverage, LCS results in the sampling of several polymorphic loci from within

one genome, albeit far fewer than complete coverage sequencing of individ-

ual genomes. We show that the variances in π̂ with reduced coverage will be

between the limiting LCS case and HCS variances based on a continuity ar-

gument. To see the effect of a mode of sequencing where a fraction ρ of each

genome is covered, consider the covariance term γsr used in the derivation

of Eqn. (4), γsr = E(fij,sfij,r). Let ξi = I(zis and zir are phased) denote

an indicator for recording phased alleles identified from a single haplotype

(such as through the use of long reads).

Different (ξi, ξj) result in different expressions for γ. If both are on

the same haplotype, ξi = ξj = 1, we get the γrs in the HCS limit (see
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derivation of Eqn. (4)). If both are independent, ξi = ξj = 0, we get

2ps(1− ps) · 2pr(1− pr) = hshr in the LCS limit. We apply the law of total

probability to evaluate

γrs = E(fij,sfij,r) =
1∑

ξi=0

1∑
ξj=0

p(ξi)p(ξj)E(fij,sfij,r | ξi, ξj),

with p(ξi = 1) = p(ξj = 1) = ρ. The same argument from total probability

(applied over cases where i, j, k have s, r sites on various combinations of

shared vs. different reads) applies to continuity of δrs.

Let π̂ρ denote the estimator under a sampling scheme with fractional

coverage. It follows from the continuity of δ, γ and from the fact that the

marginal expectations E(fij) are the same under HCS and LCS that the

resulting var(π̂ρ) is a continuous function of ρ with var(π̂0) = var(π̂LCS)

and var(π̂1) = var(π̂HCS). This result is qualitatively consistent with the

relationship between the variance in θ and the fraction of missing sequence

data in Ferretti et al. (2014).

3 Dependence on Allele Frequencies and Linkage

Disequilibria

Low coverage sequencing reduces the error in estimates of π̂ when ∆ > 0,

which holds if the expected weighted linkage disequilibria defined by Eqn.

(6) are positive. Ferretti et al. (2014) observed a decrease in variance un-

der low coverage for populations at mutation-drift equilibrium - their re-

sult suggests that E(Asr) should be positive for equilibrium distributions

of allele frequencies in an infinite sites model. Below, we show that this

condition holds provided there is a sufficiently high probability density of
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high frequency mutations, i.e. sufficiently many haplotypes with multiple

mutations.

As noted above, E(Asr) > 0 requires positive linkage disequilibria among

pairs of alleles that are rare (p < 0.5) and among pairs of alleles that are

common (p > 0.5), and by symmetry, negative LD among most pairs of

major/minor alleles across loci. For a population of clonal, non-recombinant

genomes, we can determine the distribution of LD given a distribution of

allele frequencies. In an infinite sites model without recombination, letting

ps, pr be the frequencies of variant alleles S,R at loci s, r, where ps < pr, it

follows that all occurrences of S must be in S,R haplotypes (conversely, if S

co-occurs with r, there can be no S,R haplotypes). Therefore, if ps+pr > 1

and ps < pr, then p(S,R) = ps and the LD between loci s, r Dsr = ps(1−pr).

When ps+pr < 1, we can compute the expected LD by counting the number

of cases that S can co-occur with the R allele versus the r wildtype, since

the constraint of S either always or never co-occurring with R when ps < pr.

3.1 Computing Linkage Disequilibria and E(Asr)

Let N be the total number of haplotypes and let s, r denote any two loci.

We observe variant allele frequencies ps = k
N and pr = h

N at loci s and r for

k, h = 1, . . . , N . Without loss of generality, we assume k ≤ h (corresponding

to ps < pr). Let Csr denote the event that mutations S and R co-occur and

S and r don’t co-occur, while C̄sr denotes the event that S and R don’t

co-occur (i.e. S co-occurs with the "wildtype" allele at r). Let (Csr ∪ C̄sr)c

denote the complement of Csr ∪ C̄sr such that S and R co-occur on some

haplotype and S and r co-occur on some other haplotype. Because there is

no recombination and no multiple mutations per site, Csr ∪ C̄sr and (Csr ∪

C̄sr)c = ∅. We compute the probability of co-occurrence p(Csr|Csr ∪ C̄sr):

18

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2017. ; https://doi.org/10.1101/108928doi: bioRxiv preprint 

https://doi.org/10.1101/108928
http://creativecommons.org/licenses/by/4.0/


(1) N < h + k. Trivially, p(Csr|Csr ∪ C̄sr) = 1 and p(C̄sr|Csr ∪ C̄sr) = 0,

i.e. pr + ps > 1→ p(Csr) = ps.

(2) N ≥ h + k. We first derive p(Csr) and p(C̄sr) and then p(Csr|Csr ∪

C̄sr) = p(Csr)/(p(Csr) + p(C̄sr)).

Counting the possible combinations, we find

p(C̄sr) =
(N−h

k

)(N
k

) = (N − h) · · · (N − h− k + 1)
N · · · (N − k + 1)

p(Csr) =
(h
k

)(N
k

) = h · · · (h− k + 1)
N · · · (N − k + 1)

The numerators in the first and second equations give the number of ways

in which k S alleles can co-occur with r or with R, respectively, given
(N
k

)
possible positions for the S alleles. Therefore,

p(Csr|Csr ∪ C̄sr) = h(h− 1) · · · (h− k + 1)
h(h− 1) · · · (h− k + 1) + (N − h)(N − h− 1) · · · (N − h− k + 1)

p(C̄sr|Csr ∪ C̄sr) = (N − h)(N − h− 1) · · · (N − h− k + 1)
h(h− 1) · · · (h− k + 1) + (N − h)(N − h− 1) · · · (N − h− k + 1)

Given Csr, p(SR) = ps = k/N and hence Dsr = ps − pspr = k
N (1− h

N ).

Given C̄sr, p(SR) = 0 and hence Dsr = 0− pspr = − kh
N2 .

Therefore, for Csr ∪ C̄sr,

E(Dsr) = p(Csr|Csr ∪ C̄sr)
k

N

(
1− h

N

)
+ p(C̄sr|Csr ∪ C̄sr)

(
− kh
N2

)

=


k
N

(
1− h

N

)
for N < h+ k(

h(h−1)···(h−k+1)
h(h−1)···(h−k+1)+(N−h)(N−h−1)···(N−h−k+1) −

h
N

)
k
N for N ≥ h+ k

As expected, in the limiting cases of a new mutation (k = 1), Dsr = 0, while

for k + h > N , E(Dsr) = ps(1− pr).

To compute E(Asr), we evaluate the weighted linkage disequilibria over
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the distribution of ηk,ηh, the number of sites at which there are exactly k, h

copies of variant alleles. The expected weighted LD η = (η1, . . . , ηN ) is

E(Asr|η) =
[N

2 −1∑
k=1

N−k∑
h=k+1

ηkηh

(2h
N
− 1

)(2k
N
− 1

)

×
(

h(h− 1) · · · (h− k + 1)
h(h− 1) · · · (h− k + 1) + (N − h)(N − h− 1) · · · (N − h− k + 1) −

h

N

)
k

N

+
N∑

h= N
2 +1

h−1∑
k=N−h+1

ηkηh

(2h
N
− 1

)(2k
N
− 1

)
k

N

(
1− h

N

)
+
N/2∑
k=1

(
ηk
2

)(2k
N
− 1

)2

×
(

k!
k! + (N − k)(N − k − 1) · · · (N − 2k + 1) −

k

N

)
k

N

+
N∑

k= N
2 +1

(
ηk
2

)(2k
N
− 1

)2 k

N

(
1− k

N

)]/N−1∑
k=1

N∑
h=k+1

ηkηh +
N∑
k=1

(
ηk
2

)
:= ν(η)/δ(η) (7)

with the convention that
(1
2
)

= 0, so that the marginal expectation of Asr is

given by

E(Asr) = E{E(Asr|η)} = E(ν(η)/δ(η)) ≈ E(ν(η))/E(δ(η)). (8)

This approximation holds based on a Taylor expansion of the ratio of two

random variables, and the fact that ν(η) is much smaller than δ(η) due to

the typically small values of Asr for any pair s, r. The ratio of expectations
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is:

E(ν(η))
E(δ(η))

=
[N

2 −1∑
k=1

N−k∑
h=k+1

E(ηkηh)
(2h
N
− 1

)(2k
N
− 1

)

×
(

h(h− 1) · · · (h− k + 1)
h(h− 1) · · · (h− k + 1) + (N − h)(N − h− 1) · · · (N − h− k + 1) −

h

N

)
k

N

+
N∑

h= N
2 +1

h−1∑
k=N−h+1

E(ηkηh)
(2h
N
− 1

)(2k
N
− 1

)
k

N

(
1− h

N

)

+
N/2∑
k=1

E

{(
ηk
2

)}(2k
N
− 1

)2
×
(

k!
k! + (N − k)(N − k − 1) · · · (N − 2k + 1) −

k

N

)
k

N

+
N∑

k= N
2 +1

E

{(
ηk
2

)}(2k
N
− 1

)2 k

N

(
1− k

N

)]
/N−1∑

k=1

N∑
h=k+1

E(ηkηh) +
N∑
k=1

E

{(
ηk
2

)} ,
(9)

The expectations E(
(ηk

2
)
) = 1

2 [V ar(ηk) +E(ηk)2 − E(ηk)], while E(ηkηh) =

Cov(ηk, ηh) + E(ηk)E(ηh). Therefore, we can approximate the expectation

of E(Asr) (and at least obtain the correct sign from the numerator) to

determine if ∆ is positive when the expectations and second moments of an

allele frequency distribution are known. The same approach can be used to

compute the expectated linkage disequilibria over all ηk, E[E(Dsr|η)], by

substitution Dsr for Asr (i.e. no factor of (2ps−1)(2pr−1)) in the equations

above.

To calculate E(Asr) for an infinite sites model at mutation-drift equilib-
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rium, we use the expectations and variances of ηk (Fu, 1995):

E(ηk) = θ

k

V ar(ηk) = θ

k
+ σk,kθ

2

Cov(ηk, ηh) = σk,hθ
2

where the coefficients σk,k and σk,h are functions of harmonic series sums an

and Bn, i.e.

σk,k =



Bn(k + 1), if k + h < n/2

2an−ak
n−k −

1
k2 , if k = n/2

Bn(k)− 1
k2 , if k > n/2

while the covariance coefficients are (for h > k)

σk,h =



Bn(h+1)−Bn(h)
2 , if k + h < n

an−ak
n−k + an−ah

n−h −
Bn(h)+Bn(k+1)

2 − 1
kh , if k + h = n

Bn(k+1)−Bn(k)
2 − 1

kh , if k + h > n

where

an =
n−1∑
i=1

1
i

Bn(k) = 2n
(n− k + 1)(n− k)(an+1 − ak)−

2
n− k

Ferretti et al. (2014) used the expectations and covariances of ηk to derive

sample variances for θ and the Tajima D test statistic, showing that these

variances were reduced with LCS for equilibrium allele frequency distribu-

tions under an infinite sites model. Using the expectations for (weighted)
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linkage disequilibria, we show that these results follow as consequences of the

distributions of pairwise LD, and compare these predictions to simulation

results for representative parameters. We remark that numerical estimates

of E(Asr) computed from Eqn. (9) will be only approximate for several rea-

sons: first, because the expectations of ratios do not exactly equal ratios of

expectations (Eqn. (8)), and second, because the expectation and variance

of ηk are derived for sampling distributions where n� N (Watterson, 1975;

Fu, 1995). However, they usually provide a sufficiently good approximation

(Wakeley and Takahashi, 2003) as n→ N , so that our estimates of E(Asr)

should be of the correct sign and magnitude.

4 Comparison to individual-based simulations

To simulate Fisher-Wright genetic drift in an infinite sites model, we initial-

ized a population of N haploid genotypes at K = 108 sites with reference

genotypes. In every generation, N individuals were sampled with replace-

ment from the existing pool, with each individual sampled producing a single

progeny. The number of mutations m for each offspring is m ∼ Poiss(Ku),

with the mutations randomly distributed among the K sites. This process

was iterated over T generations; in order to approximate a near-equilibrium

distribution of allele frequencies, we ran the simulations for T ∼ 4N to

assure a coalescent among all lineages in each sample path genealogy. Simu-

lations were also run for a range of values T < N to generate non-equilibrium

distributions of allele frequencies and pairwise LD. For each combination of

parameters, the simulation cycle was replicated 100 times.

To simulate full coverage sequencing of individuals, n haplotypes were

randomly selected without replacement from the model population. The

Hamming distances were calculated for all pairs in a sample, variant allele
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frequencies and linkage disequilibria were calculated over all individuals and

all pairs in the model population. Sequencing of pooled samples at very low

coverage was simulated by selecting n alleles without replacement at every

segregating site and summing pairwise distances over all sites (correspond-

ing to sampling with replacement with respect to genomes, but without

replacement with respect to each locus). ∆ was estimated from the data as

the difference in the sample variances between the HCS and LCS pairwise

distances. In every replicate run, Asr was calculated from the mutation fre-

quencies ps, pr and Dsr using Eqn. (6). All simulations were implemented

using Python 2.7.3, the code is available from the corresponding author upon

request.

The simulation results for population sizes N = 200, 500, a sample size

of n = 20 and a range of generation times T are shown in Tables 1 and

2. The first table shows the estimated parameter values from which ∆ is

calculated, including the number of polymorphic sites SN in the population

(as opposed to the sample number of segregating sites Sn), the population

mean allele frequency across polymorphic sites, the sample mean pairwise

genetic distances under HCS and LCS (for n = 20), and their sample vari-

ances over 100 replicates.

TABLES 1a-b and 2a-b HERE

Over T � N generations, there are very few (∼ 100) polymorphic sites,

all of which have low variant allele frequencies. The mean and variance of

genetic distances are of the order ∼ 1, ∼ 0.1, respectively. For T ∼ 4N ,

allele frequencies and genetic distances are near the equilibrium values, e.g.

the estimated pairwise genetic distance π̂ converges to the Tajima estimator
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for haploids θ = 2Nu, which is π̂ = 150, 300 for N = 200, 500, respectively.

Table 2 shows the sum of weighted LD values
∑
Asr = ĀsrN2. The mean

values of Dsr are effectively 0 (∼ 10−7 − 10−6, either positive or negative,

not shown in table) even for large values of T and SN . However, the skewed

distribution results in a large postive weighted LD. Figures 2a-c show fre-

quency distributions of allele frequencies, pairwise LD and weighted LD for a

representative model population, specifically, for a single sample path where

N = 500, T = 2500.

FIGURE 2a-c HERE

From
∑
Asr, we compute the predicted difference between HCS and LCS

variances ∆P using Eqn. (5). The predicted value is compared to the sim-

ulation estimate ∆S = varHCS − varLCS . The consistency of observed and

predicted values of ∆ is confirmed by the fact that even the largest deviations

are within less than two standard error SE∆S
=
√
var(∆S)/n units with

respect to the point estimate ∆S . The fit between analytical predictions

and observed values improves for longer generation times as populations

approach a mutation-drift equilibrium distribution of allele frequencies.

Except for populations with very few mutations where weighted LD val-

ues are ∼ 0, we have ∆ > 0 for most of the simulations. These results

are consistent with LCS reducing the error in sample genetic distance ex-

cept when variant alleles are rare and at low frequency. This reduction of

error through low coverage sampling of many genomes is strongest for near-

equilibrium distributions of allele frequencies, for large numbers of segregat-

ing sites, and for small sample sizes (corresponding to low coverage depth

with NGS). ∆ scales approximately as ∼ 1/n for large n; consequently, for

25

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2017. ; https://doi.org/10.1101/108928doi: bioRxiv preprint 

https://doi.org/10.1101/108928
http://creativecommons.org/licenses/by/4.0/


sample numbers and coverage depths of the order ∼ 100, ∆ will be smaller

by nearly an order of magnitude relative to the values obtained for n = 20

(simulations were performed for n = 10, 50, the results are not shown due

to qualitative similarity to the data in Tables 1-2).

The two observed cases with Āsr < 0 are for T = 10, with a negative

predicted value ∆P for N = 500 (though not for N = 200). Here, the ∆

values are effectively zero within a standard error unit, so whether positive

or negative values are observed is of purely formal interest (note that for

even smaller time intervals T = 5 and even fewer polymorphic sites, both

Āsr and ∆ > 0, albeit very small). This suggests that at least under neutral

evolution, E(Asr) < 0 occurs under restrictive conditions corresponding to

very small absolute values of ∆ and negligible reduction of error in estimating

π̂ through either HCS or LCS, while for large numbers of segregating sites

and increasing allele frequencies, there will be considerable increases in error

when π̂ is estimated via high coverage sequencing.

For large T , the distribution of allele frequencies in the population ap-

proaches mutation-drift equilibrium, so that the mean Asr should approx-

imate E(Asr) computed from Eqns (7-9) using Mathematica 11.1. For

N = 200, 500 and genomic mutation rate u = 0.3 (θ = 120, 300), the es-

timated values of E(Asr) = 1.11×10−3, 1.06×10−3, respectively, consistent

in sign and magnitude with the mean values of Asr for the simulated pop-

ulations at T ∼ 4N . For comparison, evaluating Āsr = 2
∑
s,r Asr/S(S − 1)

for the number of polymorphic sites S (using the summed values of Asr

in Table 2, and the number of segregating sites S in Table 1), we obtain

Āsr = 1.40 × 10−3 for N = 200, T = 1000 and Āsr = 8.50 × 10−4 for

N = 500, T = 2500.

The positive values of E(Asr) result from the fact that even though
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E(ηk) ∼ θ/k suggests that high frequency alleles that contribute to large

positive LD are rare, the high variance in allele frequencies means that any

given sample path will usually contain several haplotypes characterized by

multiple variant alleles at very high frequency. This means that even though

the expectation for a particular ηk will be low for k ∼ N , most genealogies

will be characterized by a high count for some individual large value(s) of

k, as is seen in Figure 2a. This generates a positive skewed distribution

of pairwise linkage disequilibria (consistent with the distributions of Dsr

derived numerically for non-recombining loci in (Golding, 1984)), as is seen

in Figs. 2b-c. This contributes large positive Asr values for most individual

genealogies in the simulations, so consequently, Āsr > 0,∆ > 0. These

results hold not only for populations at mutation-selection equilibria, but

also for any populations where variant alleles have had time to accumulate

to sufficiently high frequencies, hence the positive (albeit lower) values of ∆

observed for all but the smallest time intervals.

5 Analysis of cancer sequence data

In this section, we apply the results of our derivations to genomic data by

computing
∑
Ars and ∆ for haplotype frequencies estimated from a lung

adenocarcinoma sequences. Unpublished data on variant frequencies was

provided to the authors by K. Gulukota and Y. Ji, who obtained their data

via whole-exome sequencing of 4 sections of a primary solid tumor taken

from a lung cancer patient. DNA from the samples was extracted using

Agilent SureSelect capture probes. The exome library was sequenced with

paired-end 100 bp reads on the Illumina HiSeq 2000 platform. Reads were

mapped onto the human genome HG19 using BWA (Li and Durbin, 2009),

giving a post-mapping mean 60-70 fold coverage across sites. Variant calls
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were performed with GATK (McKenna et al., 2010). Through the matching

of read ends, somatic mutations co-occurring within ∼ 100 bp in single

genomes were identified (Sengupta et al. 2015). These mutation pairs define

two locus haplotypes that can be tallied without the need for phasing, giving

estimates of haplotype frequencies (defined by two proximate polymorphic

sites) directly from the read counts.

Because reproduction in tumor cells is asexual and ameiotic, estimates

of Dsr and Asr using a subset of nearly adjacent sites is as representative

of other haplotype pairs as if they were located on different chromosomes

or on distant loci. The adenocarcinoma data contain estimated frequencies

of 69 two-locus haplotypes, and corresponding variant allele frequencies for

a total of 138 sites. This provides sufficient data to estimate the LD and

weighted LD, and consequently the expected error in estimates of π̂ under

high versus low coverage sequencing.

A naive application of Eqn. (5) to the distribution of mutation frequen-

cies and LD values gives ∆ ∼ 0.1 for coverage depth n = 65, suggesting much

lower error if π̂ were estimated for the tumor via low coverage sequencing

of pooled tumor cell genomes. However, several aspects of cancer genetics

complicate this estimate. First, because cancer cells reproduce clonally, so-

matic mutations appear in heterozygous genotypes in the absence of mitotic

recombination and gene conversion. A SNV frequency of p = 0.5 corre-

sponds to fixation of a somatic mutation in a population of asexual diploids.

Therefore, if we have heterozygous fixation at a single SNV site, a popu-

lation consisting of 0/1 (reference and variant) genotypes, a mean genetic

distance measure of π̂ = 1/2 is meaningless because the population is ho-

mogeneous with respect to the 0/1 genotype, and variant allele frequencies

must be rescaled to reflect this.
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Figure 3 shows the distribution of mutant allele frequencies in Sample 1;

note the high frequency of values near p = 0.5, the skew of the distribution

is presumably the result of a low rate of detection of rare variants.

FIGURE 3 HERE

Williams et al. (2016a,b) (see also Ling et al. 2015) address the issue

heterozygous genotype fixation by only considering polymorphic, segregat-

ing sites when comparing allele frequency spectra to neutral models, to the

exclusion of sites that are ≥ 0.5 within a margin of sampling error; which

also excludes sites whose frequencies p > 0.5 due to loss of heterozygosity.

For the truncated range of allele frequencies p = [0, 0.5], the frequencies are

rescaled to reflect heterozygosity, which for diploids means mapping p′ = 2p,

or more generally, p′ = p/fc where fc is the cutoff for the inference of fix-

ation. With this mapping, π̂ for a sample where all genotypes at a variant

site are 0/1 is 0.

Assuming diploidy at all of the genotyped SNV sites and defining fixa-

tion as p = 0.5, we find that for sample size n = 65, the binomial probability

of observing fewer than x = 26 mutant alleles is Bin(x ≤ 25|n = 65, p =

0.5) = 0.041, so we use fc = 0.4 as as a cutoff defining polymorphic sites. By

this criterion, and the rescaling p′ = p/fc, there are only between 6 (sample

4) and 10 (sample 3) adjacent segregating sites, and consequently between

3 and 5 haplotypes defined by such a pair out of the original 69. The LD

and ∆ values for this subset of haplotypes are summarized in Table 3. The

differences in variances ∆ remain positive, consistent with sample variance

being lower with pooling. ∆ is small (0.034 ≤ ∆ ≤ 0.070), implying that

in practice the estimation errors for π̂ would be negligibly different between
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high and low coverage sequencing for this data set. However, the small ∆ are

partly a result of the small number of segregating sites (i.e. π̂max = Sn/2)

while var(π̂) estimated by individual cell sampling may be expected to in-

crease for more segregating sites, as was the case in the simulation data for

larger time intervals.

TABLES 3a-b HERE

The values of ∆ are also sensitive to the choice of truncation, as many

of the SNVs occur in genotypes that are close to fixation in the tumor.

For example, if we use fc = 0.49, x = 32 as a cutoff to define segregat-

ing sites rather than fc = 0.40, we obtain Āsr < 0 and ∆ < 0 (of the

order ∼ 0.1). The sign reversal results from some lower frequency SNVs

uniquely co-occuring in genomes with other SNVs that are close to fixation.

The remaining allele and haplotype distributions contribute negative link-

age disequilibria between the high frequency SNVs at one locus and high

frequency reference alleles at the other site. The greater absolute value of

∆ is a consequence of the fact that with a cutoff of fc = 0.49, there are

now 21-28 haplotypes (and 42-56 segregating sites) rather than the 6-10 for

the fc = 0.40 cutoff. The negative weighted LDs and ∆ with this cutoff are

shown in the second panel Table 3b, illustrating that for some samples, the

variances in π̂ may actually be slightly higher with low coverage sequencing.

6 Discussion

The reduction of error in estimated genetic distance through low coverage

sequencing reflects the loss of information due to non-independence across

sites through linkage disequilibria. If the most frequent alleles at the ma-
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jority of sites are in positive LD, any error in the estimated frequency and

heterozygosity at one site covaries with the error at the other sites with

individual sampling. In contrast, with LCS, each site provides independent

information, so that the error across sites is uncorrelated. For Sn segregat-

ing sites in a sample of n and a variance in estimated distance per site σ2,

with independent sampling the error across sites will approach σ2/Sn. In the

extreme case where allele frequencies across sites are nearly identical (com-

plete linkage), the sample variance is σ2 independent of the number of sites.

Another way to think of this is to consider the information gain that comes

from sampling different loci from different subclasses of individuals in a sam-

ple under LCS, so that each polymorphic site has its own sample genealogy.

This is analogous to the results of Pluzhnikov and Donnelly (1996), who

found that in the presence of recombination, the optimal sequence length

per genome for estimating allele frequencies and θ was sufficiently high to

provide a large sample size while sufficiently short to provide low coverage

per genome when recombination rates are low. With greater recombination

rates, there is no information gain through low coverage because all but the

closest loci have their own coalescent genealogy.

Conversely and by symmetry, a negative association of major allele fre-

quencies across pairs of sites means that an error in estimated distance at

one site will on average be compensated by an error in the opposite direc-

tion at another site, leading to reduction in variance under high coverage

sequencing of individual genomes (analogous to improved estimation of the

mean by sampling positive and negative extremes of a distribution). Both

heuristic considerations and simulation results suggest that such a scenario

is unlikely except for distributions of allele frequencies that give very small

error values regardless, at least under neutral evolution. This was further
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confirmed by numerical calculation of the expected distribution of pairwise

linkage disequilibria in an infinite sites model for clonal, ameiotic organisms.

Our results, like those of Ferretti et al. (2014) suggest that low cover-

age sequencing over pooled samples should be used to estimate the genetic

distance (and consequently, population mutation rate parameter θ and the

Tajima D statistic) under most conditions if reduction of estimation error

is the sole criterion. However, there are several caveats to this conclusion,

some theoretical, others practical. For example, we know that when most

pairwise LD are approximately 0, the difference ∆ between HCS and LCS

estimates will be very small. A number of recent studies have shown that

LD are generally among sites that are not physically linked in the genomes

of sexually reproducing model organisms, including Drosophila (Andolfatto

and Przeworski, 2000) and humans (Peterson et al., 1995; Reich et al., 2001).

This suggests that any error introduced by sampling alleles from genomes

individually with high coverage rather than pooled low coverage may be

negligible for non-clonal genomes.

In contrast, in clonal organisms, or for regions of genome under very

low recombination in sexually reproducing organisms, LD values will be

high. Depending on the distribution of allele frequencies, ∆ will be large

when evaluated over many polymorphic sites. In the cases of cancer and

microbial genomics, the standard NGS approach to sequencing reads from

large numbers of cells at low coverage suggests an improved estimation of

π̂ (and consequently, θ and Ne) relative to what would be obtained from

more expensive single cell sequencing approaches. Furthermore, single-cell

sequencing usually entails a much smaller sample size n than the coverage

depths of 100-1000 that are standard for pooled sequencing. Moreover, ∆ is

defined on the assumption of the same effective sample size n for both LCS
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and HCS, when in fact LCS is associated with pooling and high read depth

n, as is often the case, then this is often sufficient to reverse the sign of

var(π̂HCS)− var(π̂LCS) even in the rare cases when ∆ < 0 for HCS sample

size equal to LCS read depth n. This is because LCS combined with pooling

increases the sample size per segregating site.

Finally, we remark that this study was to a large part motivated by

efforts to apply the methods and theory of population genetics to cancer

biology, where individual cell sequencing at high coverage versus pooled

sampling with low coverage are often presented as alternative approaches.

The case study computing ∆ from lung cancer data in the previous sec-

tion was used as proof of principle. A more accurate and refined analysis

would have to take into consideration a number of potentially confounding

variables. These include polyploidy and aneuploidy (so that with ploidy X,

fixation corresponds to p = 1/X), as well as accounting for the loss of het-

erozygosity through mitotic recombination, reflected in frequencies p > 0.5.

The sensitivity of var(π̂) to the choice of cutoff fc defining fixation for both

the diploid and polyploid cases is of interest as an area for future research.
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8 Figures and Tables

Figure 1. Illustration of high coverage sequencing (HCS) versus low cov-

erage sequencing (LCS). In this example, the population consists of 8 hap-

lotypes G1...G8 characterized by 4 segregating sites S1...S4. We assume

a sampling depth of n = 3 and sufficiently many reads to capture all seg-

regating sites. In the left panel, we have a random instance of HCS via

the complete sequencing of G2, G4, G5 (gray ovals representing sampling),

giving a mean pairwise distance of π̂ = 2. In the right panel, we have a

random instance of LCS, such that G1, G3, G8 are sequenced at S1, G4,G5

and G8 at S2, etc, giving a mean genetic distance π̂ = 8/3. Note that E(π̂)

is the same under both modes of sampling, the differences are due to var(π̂).

Figures 2a-c. Figures 2a,b,c show, respectively, a representative distri-

bution of variant allele frequencies ps, pairwise linkage disequilibria Dsr,

and weighted linkage disequilibrium Asr for a simulated population with

N = 500 haplotypes following T = 2500 generations of mutation and Fisher-

Wright genetic drift. This is a single sample path (genealogy) rather than an

averaged over all replicates, hence the outlier of high frequency mutations

associated with a high frequency haplotype with a high density of mutations

(Fig 2a). These in turn account for the positive skew (and positive mean

value) of Asr in a typical sample path (Fig 2c)

Figure 3. Distribution of allele frequencies p in the first lung adenocarci-

noma sample, for Sn = 138 polymorphic sites. Values of p near 0.5 indicate

heterozygous variant genotypes near fixation. Values p > 0.5 are a conse-

quence of loss of heterozygosity via gene conversion during mitotic recom-

bination, these are excluded from our analyses.
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Tables 1a-b. A summary of population parameters for a simulated Fisher-

Wright model of genetic drift with infinite sites. The table shows a compar-

ison of ∆P values predicted from Eqn. (5) with simulation the values ∆S

for N = 200 (Table 1a) and N = 500 (Table 1b) and sample size/coverage

depth n = 20 for a range of time intervals, including values near T = 4N

close to equilibrium. The standard error of ∆S is also shown, estimated

∆P is within < 2(SE) units from ∆S even for small T and few mutations.

Mean population pairwise LD values (not shown) are all essentially zero for

all simulations, while the magnitudes of Asr increase with T as predicted. p

is the mean variant allele frequency across all segregating sites.

Table 2a-b. These tables show the number of segregating sites Sn in a sam-

ple of n = 20, the mean pairwise genetic distances π̂HCS , π̂LCS (for high and

low coverage sequencing, respectively), and the variances in pairwise genetic

distance for HCS vs. LCS. The latter are used to compute ∆S in Table 1.

Table 2a shows these summary statistics for N = 200, Table 2b for N = 500.

Table 3. This table summarizes estimates of ∆ from haplotype and allele

frequencies in the lung adenocarcinoma sequence data, where haplotype fre-

quencies for sites on individual long reads are known. Note that Āsr > 0

and ∆ > 0 for all 4 samples, indicating that the error in pairwise genetic

distance estimates for this data set are greater under HCS than under LCS,

albeit weakly given the small number of unique haplotypes. ∆ is computed

from the mean read depth n = 65 for two cutoff values defining polymorphic

sites. The upper panel shows the values for a cutoff of fc = 0.40, selected

based on a binomial probability. We use p′ = p/fc, rescaled with respect
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to the diploid cutoff value. The lower panel shows the same for fc = 0.49,

selected arbitrarily close to p = 0.5 to show the sensitivity of ∆ to the cutoff.

The fc = 0.40 calculations are based on 6-10 remaining polymorphic sites,

the fc = 0.49 on 42-56 sites, depending on the sample.

Table A2. This table summarizes the same parameter estimates as in Table

2a (for N = 200, T = 1000), however, the LCS read depth is now a Poisson

random variable with mean n = 20 rather than a constant. Note that the

simulation values for the means and variances of π̂ and of Asr,∆ are largely

unchanged due to the negligible contribution of variance in read depth to

the error in parameter estimation.
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9 Appendix A1: Ordered Pairs of Pairs

Recall the definitions µ = E(φij), σ2 = var(φij) and κ = E(φij , φjk).

Lemma 1. Let µ = E(φij) where the expectation is over pairs xi ∼ p(x)

and xj ∼ p(x), independently. Let φ̂n = 1
N2

∑
i<j φij, denote a sample esti-

mate for µ, averaging over all pairs (i, j) of samples. Then φ̂n is unbiased,

E(φ̂n) = µ, and

var(φ̂n) = σ2

N2
+ 2N3

N2
2

(κ− µ2).
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Proof. Unbiasedness is straightforward:

E(φ̂n) = E( 1
N2

∑
i<j

φij) = 1
N2

∑
i<j

E(φij) = µ.

For the variance, note that

cov(φij , φkl) = E(φijφkl)−E(φij)E(φkl) =


0 when {i, j} ∩ {k, `} = ∅

κ− µ2 when |{i, j, k, `}| = 3

Then

var(φ̂n) = σ2

N2
+ 1
N2

2

∑
P

cov(φij , φkl) = σ2

N2
+ 2
N2

2
N3(κ− µ2).

Proof of Eqn. (3). Let f̂ns = 1
N2

∑
i<j fij,s. From the statistical indepen-

dence among sites s located on different reads under LCS, it follows that for

a sample of n,

var(π̂1) =
∑
s

var(f̂ns)

with

var(f̂ns) = σ2
s

N2
+ 2N3

N2
2

(κs − µ2
s) = 1

N2
hs(1− hs) + 2N3

N2
2

(hs/2− h2
s)

= 1
N2

hs

{
1− hs + N3

N2
(1− 2hs)

}

where the first equality is due to Eqn. (2).
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10 Appendix A2: Poisson Distribution of Read

Depth

In practice, the read depth with LCS is not constant and varies considerably

across sites. Assuming the read depth follows a Poisson distribution with

mean n equal to the number of haplotypes in HCS. Computing the Taylor

expansion of the variance of genetic distance estimator, we find the difference

between fixed and Poisson read depth is O( 1
n2 ).

Let ns denote the read depth at locus s which follows a Poisson distribution

ns ∼ Poi(n) with mean n. Let

N
(s)
2 = ns(ns − 1)

2

N
(s)
3 = ns(ns − 1)(ns − 2)

2

Let π̂LCS =
∑
s

1
N

(s)
2

∑
is<js φij and n = (ns)s. The variance of π̂LCS condi-

tioned on the sampling depths n is given by

var(π̂LCS |n) =
∑
s

1
N

(s)
2
hs

{
(1− hs) + N

(s)
3

N
(s)
2

(1− 2hs)
}
.

By the law of total variance, we have

var(π̂LCS) = E{var(π̂LCS |n)}+ var{E(π̂LCS |n)}.

The second term is zero because the expectation is independent of n,

E(π̂LCS |n) =
∑
s

1
N

(s)
2

∑
is<js

E(φij) =
∑
s

E(φij).
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The first term is non-trivial. Let g(ns) = 1
N

(s)
2
hs

{
(1− hs) + N

(s)
3

N
(s)
2

(1− 2hs)
}

and expand E(g(ns)) at n,

E{g(ns)} ≈ E{g(n)}+ E{g′(n)(ns − n)}+ 1
2E{g

′′(n)(ns − n)2}

= g(n) + 0 + 1
2E{g

′′(n)(ns − n)2}

with

g(n) = 1
N2

hs

{
(1− hs) + N3

N2
(1− 2hs)

}
g′′(n) = 2(an3 + 3bn2 − 3bn+ b)

(n− 1)3n3

where a = 2hs(1− 2hs) and b = −2h2
s + 6hs. So

1
2E{g

′′(n)(ns − n)2} = 1
2g
′′(n)var(ns) = 1

2g
′′(n)n = O

( 1
n2

)
.

Therefore,

var(π̂LCS) =
∑
s

{
g(n) +O

( 1
n2

)}
=

∑
s

[ 1
N2

hs

{
(1− hs) + N3

N2
(1− 2hs)

}]
+O

( 1
n2

)

where the first term of the last equality is the variance of π̂LCS given the

read depth is fixed at n across all loci. This result holds for any sampling

distribution of read depths where the variance is of the order ∼ n.

The very small ∼ O( 1
n2 ) contribution of non-constant read depth to the

error in estimated π̂ is confirmed using simulation results. Compare the vari-

ances and other parameter estimates observed in Table 2 forN = 200, n = 20

where the read depths are constant to those in Table A1, where the read

depth is a Poisson random variable with parameter n.
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TABLE A2 HERE
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Figure 2a: Variant Allele Freqs
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Figure 2b: Dsr
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Figure 2c: Asr
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Figure 3
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N=200 T 𝑺N 𝒑 ′ 𝝅 𝑯𝑪S 𝝅 𝑳𝑪𝑺 varHCS 

 

varLCS 

5 112.7 0.012 2.94 2.94 0.249 0.241 

10 181.5 0.016 5.82 5.81 0.468 0.476 

20 250.1 0.024 11.47 11.47 0.878 0.819 

50 351.2 0.043 26.79 26.80 2.27 1.58 

800 770.6 0.170 115.59 114.58 272.0 3.70 

1000 847.7 0.178 122.90 122.77 415.7 3.97 

Table 1a 
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Table 1b 

N=500 T 𝑺N 𝒑 ′ 𝝅 HCS 𝝅 𝑳𝑪𝑺 varHCS varLCS 

5 308.4 0.0049 2.96 2.96 0.279 0.271 

10 455.9 0.0066 5.97 5.97 0.537 0.543 

20 616.9 0.0096 11.61 11.60 1.04 1.04 

50 875.5 0.0172 28.61 28.68 2.53 2.27 

100 1078.3 0.0281 54.67 54.67 6.23 3.71 

2000 2202.4 0.144 301.16 301.22 1532.1 9.09 

2500 2395.1 0.153 316.06 315.64 2089.8 10.53 
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N=200 T 
 𝑨𝒔𝒓 

ΔP ΔS SE(ΔS) 
 

5 4.18x10-3 -9.57 x 10-4 8.01x10-3 4.58x10-3 

10 0.0997 0.0129 -7.85x10-3 0.012 

20 0.0529 0.0482 0.0587 0.0226 

50 1.14 0.766 0.687 0.0927 

800 660.5 297.96 268.34 44.56 

1000 1009.0 444.94 411.68 51.51 

Table 2a 
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Table 2b 

N = 500 T 
 𝑨𝒔𝒓 

ΔP ΔS SE(ΔS) 
 

5 4.58x10-3 2.13x10-3 8.08x10-3 3.00x10-3 

10 -0.0242 -7.92x10-3 -6.23x10-3 7.53x10-3 

20 0.393 0.00 0.0269 0.0213 

50 0.269 0.256 0.259 0.0546 

100 4.35 2.74 2.52 0.182 

2000 3362.8 1606.1 1523.0 213.90 

2500 4871.9 2241.3 2079.3 273.37 
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Pr=0.40 S 𝒑  𝑫 sr  𝑨𝒔𝒓 
Δ 

Sample 1 8 0.492 0.223 0.321 0.045 

Sample 2 8 0.423 0.555 0.225 0.034 

Sample 3 10 0.457 0.408 0.380 0.054 

Sample 4 6 0.328 0.500 0.510 0.070 

Pr=0.49 S 𝒑  𝑫 sr  𝑨𝒔𝒓 
Δ 

Sample 1 42 0.753 -0.713 -1.951 -0.653 

Sample 2 56 0.760 0.0352 -3.077 -1.040 

Sample 3 46 0.754 -0.0907 -1.998 -0.653 

Sample 4 56 0.759 -0474 -2.422 -0.778 

Table 3b 

Table 3a 
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N=200 T 
 𝑨𝒔𝒓 

ΔP ΔS SE(ΔS) 
 

5 2.82x10-3 5.76 x 10-4 3.71x10-4 0.071 

10 0.0541 0.0250 0.0242 0.014 

20 0.0181 0.0696 0.0704 0.034 

50 1.232 0.792 0.620 0.080 

800 754.33 341.14 296.18 42.59 

1000 827.67 373.24 337.70 57.88 

Table A2 
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