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Abstract	

One	of	the	major	challenges	in	visual	neuroscience	is	represented	by	foreground-

background	segmentation.	Data	from	nonhuman	primates	show	that	segmentation	leads	to	two	

distinct,	but	associated	processes:	the	enhancement	of	neural	activity	during	figure	processing	(i.e.,	

foreground	enhancement)	and	the	suppression	of	background-related	activity	(i.e.,	background	

suppression).	To	study	foreground-background	segmentation	in	ecological	conditions,	we	

introduce	a	novel	method	based	on	parametric	modulation	of	low-level	image	properties	followed	

by	application	of	simple	computational	image-processing	models.	By	correlating	the	outcome	of	

this	procedure	with	human	fMRI	activity	measured	during	passive	viewing	of	334	natural	images,	

we	reconstruct	easily	interpretable	“neural	images”	from	seven	visual	areas:	V1,	V2,	V3,	V3A,	V3B,	

V4	and	LOC.	Results	show	evidence	of	foreground	enhancement	for	all	tested	regions,	while	

background	suppression	specifically	occurs	in	V4	and	LOC.	“Neural	images”	reconstructed	from	V4	

and	LOC	revealed	a	preserved	spatial	resolution	of	foreground	textures,	indicating	a	richer	

representation	of	the	salient	part	of	natural	images,	rather	than	a	simplistic	model	of	object	shape.	

Our	results	indicate	that	scene	segmentation	is	an	automatic	process	that	occurs	during	natural	

viewing,	even	when	individuals	are	not	required	to	perform	any	particular	task.		
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Introduction	

In	the	scientific	journey	toward	a	satisfying	understanding	of	the	human	visual	system,	

scene	segmentation	represents	a	central	problem	“for	which	no	theoretical	solution	exists”	(Wu	

MC	et	al.	2006).	Segmentation	into	foreground	and	background	is	crucial	to	make	sense	of	the	

surrounding	visual	environment,	and	its	pivotal	role	as	an	initial	step	of	visual	content	

identification	has	long	been	theorized	(Biederman	I	1987).	Indeed,	according	to	Fowlkes	and	

colleagues	(2007),	humans	can	produce	consistent	segmentations	of	natural	images.	However,	

even	though	more	recent	approaches	based	on	deep	convolutional	networks	produced	promising	

results	(He	K	et	al.	2017),	both	the	computational	and	neurophysiological	processes	that	underlies	

scene	segmentation	are	still	a	matter	of	debate.		

To	date,	numerous	studies	found	evidence	of	texture	segmentation	and	figure-ground	

organization	in	the	early	visual	cortex	of	nonhuman	primates	(Lamme	VA	1995;	Lee	TS	et	al.	1998;	

Poort	J	et	al.	2012;	Self	MW	et	al.	2013)	and	humans	(Kastner	S	et	al.	2000;	Scholte	HS	et	al.	2008;	

Kok	P	and	FP	de	Lange	2014).	In	particular,	a	recent	study	on	monkeys	attending	artificial	stimuli	

revealed	an	early	enhancement	of	V1	and	V4	neurons	when	their	receptive	fields	covered	the	

foreground,	and	a	later	response	suppression	when	their	receptive	fields	were	located	in	the	

stimulus	background	(Poort	J	et	al.	2016).	This	demonstrates	that	foreground	enhancement	and	

background	suppression	are	distinct	but	associated	processes	involved	in	segmentation.		

In	addition,	from	an	experimental	viewpoint,	the	role	of	visual	segmentation	has	been	

demonstrated	only	by	means	of	non-ecological	stimuli	(e.g.,	binary	figures,	random	dots,	oriented	

line	segments	and	textures).	Although	two	recent	studies	investigated	border-ownership	in	

monkeys	with	both	artificial	and	natural	stimuli	(Hesse	JK	and	DY	Tsao	2016;	Williford	JR	and	R	von	

der	Heydt	2016),	a	proof	of	the	occurrence	of	foreground-background	segmentation	in	the	human	

brain	during	visual	processing	of	naturalistic	stimuli	(e.g.,	natural	images	and	movies)	is	still	lacking.	
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In	light	of	this,	we	specifically	investigated	foreground	enhancement	and	background	

suppression,	as	specific	processes	involved	in	scene	segmentation,	during	passive	viewing	of	

natural	images.	We	used	fMRI	data,	previously	published	by	Kay	and	colleagues	(Kay	KN	et	al.	

2008),	to	study	brain	activity	from	seven	visual	regions	of	interest	(ROIs):	V1,	V2,	V3,	V3A,	V3B,	V4	

and	lateral	occipital	complex	(LOC)	during	the	passive	perception	of	334	natural	images,	whose	

“ground-truth”	segmented	counterparts	have	been	included	in	the	Berkeley	Segmentation	Dataset	

(BSD)	(Arbelaez	P	et	al.	2011).	

Notwithstanding,	as	a	reliable	description	of	computational	and	neurophysiological	

processes	involved	in	scene	segmentation	has	not	been	achieved	yet,	we	developed	a	novel	pre-

filtering	modeling	approach	to	study	brain	responses	to	complex,	natural	images	without	relying	

on	explicit	models	of	scene	segmentation,	and	adopting	a	validated	and	biologically	plausible	

description	of	activity	in	visual	cortices.	Our	method	is	similar	to	other	approaches	where	explicit	

computations	are	performed	on	representational	features	rather	than	on	the	original	stimuli	

(Naselaris	T	et	al.	2011).	For	instance,	these	methods	have	been	recently	used	to	investigate	

semantic	representation	(e.g.	Huth	AG	et	al.	2012;	Handjaras	G	et	al.	2016)	or	boundary	and	

surface-related	features	(Lescroart	M	et	al.	2016).	However,	as	opposed	to	the	standard	modeling	

framework	–	according	to	which	alternative	models	are	computed	from	the	stimuli	to	predict	

brain	responses	–	here,	low-level	features	of	the	stimuli	are	parametrically	modulated	and	simple	

descriptors	of	each	filtered	image	(e.g.,	edges	position,	size	and	orientation)	are	aggregated	in	a	

fixed	model	(Figure	1).	The	correspondence	between	the	fixed	model	and	fMRI	patterns	evoked	by	

the	intact	images,	was	then	assessed	using	representational	similarity	analysis	(RSA)	(Kriegeskorte	

N	et	al.	2008).	Notably,	this	approach	can	also	be	exploited	to	obtain	highly	informative	“neural	

images”	representing	the	putative	computations	of	different	brain	regions	and	may	be	generalized	

to	investigate	different	phenomena	in	visual	neuroscience.		
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To	summarize,	by	examining	the	correlation	between	biologically	plausible	features	

extracted	from	manipulated	stimuli	and	brain	activity	of	different	visual	cortices	during	passive	

perception	of	natural	intact	images,	we	believe	that	new	and	relevant	information	on	scene	

segmentation	processing	can	be	inferred.	

	

Figure	1.	Comparing	the	Standard	Modeling	Approach	and	the	Pre-Filtering	Modeling	Approach.	
A)	In	the	standard	modeling	pipeline,	different	models	are	compared.	After	extracting	features	from	the	stimuli,	
competing	feature	vectors	can	be	used	in	order	to	predict	brain	activity	in	an	encoding	procedure,	or	stimuli	
dissimilarities	can	be	used	in	a	representational	similarity	analysis.	Finally,	the	model	that	better	predicts	brain	
responses	is	discussed.		
B)	In	our	pre-filtering	modeling	approach,	different	filtered	versions	of	the	original	stimuli	are	compared.	Various	
biologically	plausible	filtering	procedures	are	applied	to	the	stimuli	prior	to	compute	a	unique	feature	space	according	
to	a	given	fixed	and	easily	interpretable	model.	In	our	approach	a	single	model	is	employed	and	the	best	step	of	each	
filtering	procedure	is	used	to	build	a	post-hoc	“neural	image”,	to	visually	interpret	the	results.	While	the	standard	
modeling	approach	is	theoretically	more	advantageous,	as	its	output	is	a	fully	computable	model	of	brain	activity,	it	
can	not	be	applied	when	reliable	explicit	models	of	the	perceptual	process	do	not	exist	yet,	as	in	the	case	of	scene	
segmentation.	Alternative	attempts	to	reconstruct	visual	stimuli	from	brain	activity	have	been	previously	reported	
using	decoding	techniques	(e.g.	Stanley	GB	et	al.	1999;	Thirion	B	et	al.	2006;	Miyawaki	Y	et	al.	2008;	Nishimoto	S	et	al.	
2011).		
	

Materials	and	Methods	

To	assess	differences	between	cortical	processes	involved	in	foreground-background	

segmentation,	we	employed	a	low-level	description	of	images,	defined	by	averaging	the	

representational	dissimilarity	matrices	(RDMs)	of	four	well-known	computational	models	(Figure	

2D).	These	models	are	based	on	simple	features	–	such	as	edge	position,	size	and	orientation	–	

whose	physiological	counterparts	are	well	known	(Marr	D	1982).	The	averaged	model	was	kept	

constant	while	the	images	were	parametrically	filtered	and	iteratively	correlated	with	brain	
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activity	through	RSA.	For	each	ROI,	this	pre-filtering	modeling	approach	led	to	a	pictorial	and	easily	

interpretable	representation	of	the	optimal	features	(contrast	and	spatial	frequencies)	of	

foreground	and	background	of	natural	images	(i.e.,	“neural	images”).	The	analytical	pipeline	is	

schematized	in	Figure	2.	

	

 

	
Figure	2.	Analytical	Pipeline.	
A)	An	example	of	intact	image	and	its	behaviorally	segmented	counterparts	B)	The	set	of	segmented	stimuli	is	tested	
against	a	null	distribution	of	1,000	permutations.	Each	permutation	is	built	by	randomly	shuffling	the	334	behavioral	
foreground	masks	C)	Three	steps	(20,	50	and	80	out	of	100)	for	the	contrast,	Gaussian	or	spatial	frequencies	filtering.	
D)	In	clockwise	order:	features	for	each	model	were	extracted	from	the	stimuli;	the	dissimilarity	(1	-	Pearson’s	r)	
between	each	stimulus	pair	was	computed	and	aggregated	in	four	representational	dissimilarity	matrices	(RDMs);	the	
obtained	RDMs	were	normalized	in	a	0-1	range;	finally,	the	four	RDMs	were	averaged	in	the	fixed	model	RDM,	which	
was	correlated	to	brain	activity	patterns	in	the	subsequent	analyses.		
	

Stimuli	and	behavioral	segmentation	of	foreground	and	background.		

We	selected	from	the	1870	images	used	by	(Kay	KN	et	al.	2008)	a	sub-sample	of	334	

pictorial	stimuli	which	are	also	represented	in	the	Berkeley	Segmentation	Dataset	500	(BSD)	

(Arbelaez	P	et	al.	2011).	For	each	BSD	image,	5-7	subjects	manually	performed	an	individual	

“ground-truth”	segmentation,	which	is	provided	by	the	authors	of	the	dataset	

(http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html).	Although	

figure-ground	judgement	is	rather	stable	across	subjects	(Fowlkes	CC	et	al.	2007),	we	selected	the	
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largest	patch	-	manually	labeled	as	foreground	-	among	the	5-7	behavioral	segmentations,	in	order	

to	build	a	foreground	binary	mask	(Figure	S1).	For	each	image,	this	mask	was	then	down-sampled	

and	applied	to	the	original	stimulus	to	isolate	the	foreground	and	the	background	pixels	(Kay	KN	et	

al.	2008-	http://crcns.org/data-sets/vc/vim-1).		

fMRI	Data.		

The	fMRI	data	used	in	this	study	are	publicly	available	at	http://crcns.org/data-sets/vc/vim-

1.	Two	subjects	were	acquired	using	the	following	MRI	parameters:	4T	INOVA	MR,	matrix	size	

64x64,	TR	1s,	TE	28ms,	flip	angle	20°,	spatial	resolution	2	x	2	x	2.5	mm3.	For	each	subject	five	

scanning	sessions	(7	runs	each)	were	performed	on	five	separate	days.	The	stimuli	were	1870	

greyscale	natural	images	with	diameter	20°	(500px),	embedded	in	a	grey	background,	and	were	

presented	for	1s,	flickering	at	5Hz,	with	an	ISI	of	3s.	Subjects	were	asked	to	fixate	a	central	white	

square	of	0.2°(4px).	Seven	visual	regions	of	interest	(ROIs)	-	V1,	V2,	V3,	V3A,	V3B,	V4	and	LOC	-	

were	defined	and	brain	activity	related	to	stimulus	presentation	was	extracted	from	these	regions.	

For	additional	details	on	pre-processing,	retinotopic	mapping	and	ROIs	localization,	please	refer	to	

(Kay	KN	et	al.	2008).		

	

Computational	Models.	

In	accordance	with	a	previous	fMRI	study,	we	selected	four	well-assessed	untrained	

computational	models,	which	showed	significant	correlations	with	brain	activity	patterns	in	early	

visual	areas	as	well	as	LOC	(Khaligh-Razavi	SM	and	N	Kriegeskorte	2014).	The	four	models	

comprise:	GIST	(Oliva	A	and	A	Torralba	2001),	Dense	SIFT	(Lazebnik	S	et	al.	2006),	Pyramid	

Histograms	of	Gradients	(PHOG)	(Bosch	A	et	al.	2007)	and	Local	Binary	Patterns	(LBP)	(Ojala	T	et	al.	

2001).	For	an	exhaustive	description	of	the	four	models	–	and	links	to	Matlab	codes	–	see	the	work	

by	Khaligh-Razavi	(2014)	and	Khaligh-Razavi	and	Kriegeskorte	(2014).		
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Representational	Similarity	Analysis	(RSA).		

For	each	filtered	image,	we	collected	feature	vectors	from	the	four	computational	models	

(GIST,	PHOG,	LBP	and	Dense	SIFT),	and	RDMs	were	then	obtained	(1	minus	the	Pearson	correlation	

metric).	These	four	RDMs	were	normalized	in	a	range	between	0	and	1,	and	averaged	to	obtain	

the	fixed	biologically	plausible	model	of	the	stimuli	(for	a	graphical	representation	of	the	process,	

see	Figure	2D).	Single	subject	RDMs	were	similarly	computed	using	fMRI	activity	patterns	for	each	

of	the	seven	ROIs,	and	then	averaged	across	the	two	subjects.	We	used	Spearman’s	rho	(ρ)	to	

assess	the	correlation	between	the	RDM	from	each	step	of	the	image	filtering	procedures	and	the	

RDM	of	each	brain	ROI.	For	each	correlation	value,	the	standard	error	was	estimated	with		

bootstrapping	of	the	stimuli	–	1,000	iterations	(Efron	B	and	R	Tibshirani	1993).		

In	addition,	as	each	ROI	may	show	a	distinct	signal-to-noise	ratio,	we	computed	a	noise	

estimation	by	correlating	the	brain	RDMs	extracted	from	the	two	subjects.	This	estimation	of	ROI-

specific	noise	was	used	to	normalize	the	correlation	coefficients	(normalized	Spearman’s	rho,	Nρ).	

The	same	normalization	procedure	has	been	already	employed	in	fMRI	studies	based	on	voxel-

wise	encoding	(Huth	AG	et	al.	2016).	

	

Foreground	enhancement	testing	

A	permutation	test	was	performed	to	statistically	assess	the	enhancement	of	the	

information	retained	in	the	behavioral	segmented	foreground,	and	to	rule	out	the	possible	

confound	due	to	a	“fovea-to-periphery”	bias	that	characterizes	natural	images	(Figure	S2).	For	

each	iteration	of	this	procedure,	the	334	foreground	masks	were	shuffled	and	a	random	

foreground	segmentation	was	associated	to	each	stimulus.	Of	note,	this	set	of	randomly-

segmented	images	had	the	same	distribution	of	masked	portions	of	the	visual	field	as	the	one	

from	the	behavioral	segmentation,	so	the	same	amount	of	information	was	isolated	at	each	

permutation	step.	This	procedure	was	repeated	1,000	times,	to	build	a	null	distribution	of	
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alternative	segmentations:	four	examples	of	random	segmentation	are	shown	in	Figure	2B.	For	

each	permutation	step,	features	were	extracted	from	each	randomly	segmented	image	and	RSA	

was	performed	using	the	procedure	described	above.	

	

Parametric	filtering	procedures	

In	order	to	investigate	differential	processing	of	foreground	and	background	in	the	visual	

system,	we	employed	three	different	filtering	procedures	(contrast	-	through	alpha	channel	

modulation	-	low-	and	high-pass	filtering	of	spatial	frequencies)	applied	parametrically	(99	steps	

each)	to	the	foreground	or	the	background.	For	each	filtering	procedure,	three	examples	of	

manipulated	images	are	represented	in	Figure	2C.	For	low-	and	high-pass	filtering,	we	employed	a	

Butterworth	filter	(5th	order),	linearly	sampling	from	a	log-transformed	distribution	of	frequencies	

ranging	from	0.05	to	25	cyc/°,	while	keeping	the	root	mean	squared	(RMS)	contrast	fixed.		

	

Background	suppression	testing	

To	test	background	suppression,	we	performed	three	separate	Welch	t-tests.	For	contrast,	

low-pass	and	high-pass	filtering	we	compared	the	maximum	Nρ	obtained	by	filtering	out	(i.e.,	

suppressing)	the	background	information	with	the	Nρ	value	corresponding	to	the	same	filtering	

step	obtained	by	suppressing	the	foreground	information	(p	<	0.05,	one-tailed).	The	three	

resulting	p-values	were	aggregated	using	the	Z-transform	method.	In	this	way,	we	tested	whether	

applying	the	optimal	filtering	level	for	the	background	(ranging	from	intact	to	completely	

suppressed)	to	the	foreground	part	of	the	image	would	lead	to	a	lower	correlation	value	with	

brain	activity,	thus	revealing	a	specific	mechanism	of	background	rather	than	foreground	

suppression.		

	

	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 26, 2017. ; https://doi.org/10.1101/109496doi: bioRxiv preprint 

https://doi.org/10.1101/109496


	 9	

Gaussian	filtering	of	the	foreground	masks		

In	order	to	test	to	what	extent	the	exactness	of	foreground	borders	explains	the	similarity	

between	the	isolated	foreground	mask	and	brain	activity,	an	additional	filtering	procedure	was	

computed.	The	selected	behavioral	masks	were	processed	using	a	parametric	Gaussian	filter,	

whose	sigma	increased	by	2	pixels	at	each	step	while	keeping	the	segmented	area	constant.	

Therefore,	the	resulting	masks	provided	an	approximate	segmentation	of	the	foreground	figure	

depending	on	the	sigma	of	the	filter.	These	masks	were	then	applied	to	the	original	stimuli,	and	

for	each	of	these	steps	the	correlation	with	fMRI	activity	patterns	was	computed.	Three	examples	

of	this	procedure	are	represented	in	Figure	2C	and	the	results	are	shown	in	Figure	5G.	

	

Neural	images	

For	each	ROI,	the	effects	of	the	filtering	procedures	were	then	combined,	to	build	“neural	

images”.	To	this	aim	we	used	the	filtering	step	with	the	highest	correlation	between	the	fixed	

model	and	brain	activity,	for	foreground	and	background.	In	detail,	we	averaged	the	best	images	

for	the	low-	and	high-pass	filters,	and	multiplied	each	pixel	for	the	preferred	alpha-channel	value	

(contrast).	Lastly,	the	foreground	mask	employed	for	the	neural	images	was	chosen	as	the	best	

step	in	Gaussian	filtering	procedure	described	above.		

	

Significance	testing	

To	asses	the	statistical	significance	of	the	correlations	obtained	with	RSA	in	all	the	above	

mentioned	filtering	procedures,	we	built	a	robust	ROI-specific	permutation	test	(1,000	iterations),	

by	randomly	sampling	voxels	of	the	occipital	lobe	not	located	in	any	of	the	seven	ROIs.	We	labeled	

these	voxels	as	‘control-voxels’.	This	procedure	has	the	advantage	to	be	resilient	to	biases	in	fMRI	

data	(Schreiber	K	and	B	Krekelberg	2013),	instead	of	simply	taking	into	account	the	distribution	of	

the	RDM	values,	as	in	Khaligh-Razavi	S-M	and	N	Kriegeskorte	(2014).	In	addition,	the	procedure	
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that	we	developed	is	also	useful	to	control	for	the	effects	related	to	number	of	voxels	and	to	the	

signal-to-noise	of	each	ROI.		

First,	for	each	ROI	we	computed	the	standard	error	of	the	ROI-specific	noise	estimation	

with	bootstrap	resampling	of	the	stimuli	(1,000	iterations).	Second,	a	number	of	control	voxels	

equal	to	the	number	of	voxels	was	randomly	selected	within	each	ROI,	and	the	activity	of	these	

control	voxels	in	response	to	the	stimuli	were	used	to	build	a	null	RDM.	Third,	the	correlation	

between	the	null	RDMs	of	the	two	subjects	was	computed.	However,	since	we	aimed	at	matching	

the	signal-to-noise	ratio	of	the	null	distribution	to	that	of	each	ROI,	the	null	RDM	was	counted	as	a	

valid	permutation	only	if	the	single	subject	RDMs	correlated	to	each	other	within	a	specific	range	

(i.e.,	ROI-specific	noise	estimation	±	standard	error).	Finally,	for	each	step	of	the	filtering	

procedures,	each	of	the	1,000	ROI-specific	null	RDMs	were	correlated	with	the	fixed	model	RDM	

to	obtain	a	null	distribution	of	1,000	Nρ	values.	A	signed-rank	test	was	used	to	assess	the	

significance	of	the	Nρ	of	the	fixed	model	with	brain	activity.	For	each	ROI,	we	controlled	for	

multiple	comparisons	(696	tests),	using	the	False	Discovery	Rate	procedure	(Benjamini	Y	and	Y	

Hochberg	1995).	

All	analyses	have	been	performed	using	Matlab	(The	Mathworks	Inc.).	

	

Results	

Comparison	of	intact	and	behaviorally	segmented	images.	

Three	fixed	descriptions	of	the	stimuli	were	created	(Figure	2A).	RSA	results	show	a	

significant	correlation	(p	<	0.05	FDR	corrected)	between	the	intact	description	of	images	and	brain	

activity	in	all	the	ROIs	but	V3A	(V1:	Nρ	=	0.65;	V2:	Nρ	=	0.74;	V3:	Nρ = 0.57;	V3B:	Nρ =	0.54;	V4:	Nρ		

=	0.51;	LOC:	Nρ =	0.59).	Similarly,	the	segmented	foreground	RDM	shows	a	significant	correlation	

in	all	the	ROIs,	but	V3	and	V3A	(V1:	Nρ	=	0.26;	V2:	Nρ		=	0.34;	V3B:	Nρ =	0.52;	V4:	Nρ		=	0.59;	LOC:	
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Nρ =	0.64),	while	the	segmented	background	achieves	significant	correlations	in	V1	and	V2	only	

(V1:	Nρ	=	0.31;	V2:	Nρ	=	0.42).	

Foreground	Enhancement.	

To	test	whether	the	behavioral	

foreground	segmentation	from	BSD	was	more	

tied	to	brain	activity	as	compared	to	alternate	

configurations	obtained	by	shuffling	the	

segmentation	patterns	across	stimuli	(Figure	2B),	

we	performed	a	specific	analysis	based	on	a	

permutation	test.	

As	depicted	in	Figure	3B,	the	correct	foreground	

configuration	yielded	a	significantly	higher	

correlation	as	compared	to	the	examples	from	

the	shuffled	dataset,	thus	suggesting	that	the	

enhancement	of	foreground-related	

information	occurs	during	passive	perception	of	

natural	stimuli	in	all	the	tested	ROIs	(V1:	p	=	

0.002;	V2:	p	<	0.001;	V3:	p	<	0.001;	V3A:	p	<	

0.001;	V3B:	p	<	0.001;	V4:	p	<	0.001;	LOC:	p	<	

0.001).		

	

	
Figure	3.	Foreground	Enhancement	in	the	Human	Visual	System.	
A)	Correlation	between	the	intact	and	segmented	versions	of	the	images	and	brain	activity	(*	=	p	<	0.05,	FDR	
corrected).	Bars	represent	the	standard	error	estimated	with	bootstrapping.		
B)	To	test	foreground	enhancement	and	rule	out	a	“fovea-to-periphery”	bias,	the	behavioral	segmentation	was	tested	
against	a	null	distribution	of	shuffled	masks.	All	the	tested	ROIs	yielded	a	significant	correlation	(p	<	0.01,	permutation	
test).		
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In	addition,	this	analysis	rules	out	a	potential	confounding	effect	related	to	a	"fovea-to-

periphery	bias"	in	our	image	set	-	depicted	in	Figure	S2.	In	fact,	as	already	observed	in	literature,	

natural	images	are	typically	characterized	by	objects	located	at	the	center	of	the	scene	-	see	for	

instance	the	object	location	bias	represented	in	Figure	3B	in	(Alexe	B	et	al.	2010).	However,	since	

the	spatial	distribution	and	number	of	pixels	were	kept	constant	at	each	permutation	step,	we	

replicated	the	same	"fovea-to-periphery	bias"	in	the	null	distribution.	Thus,	we	reject	the	

possibility	that	foreground	enhancement	is	driven	by	differences	between	the	representation	of	

fovea	and	periphery	across	the	image	set.		

	

Filtering	procedures.		

As	the	correlation	between	the	background	RDM	and	brain	activity	is	significant	in	V1	and	

V2	only	(Figure	3A),	we	hypothesized	that	background-related	information	is	suppressed	in	

“higher”	visual	cortices.	Notably,	Poort	and	colleagues	(2016)	described	background	suppression	

as	a	different,	but	associated,	phenomenon	with	respect	to	foreground	enhancement.	Thus,	in	

order	to	better	characterize	where	and	how	background	suppression	occurs	in	humans	attending	

to	natural	images,	a	further	analysis	was	performed	by	parametrically	filtering	out	the	background	

of	each	image,	varying	its	contrast	or	spatial	frequencies	(low-	and	high-pass	filtering;	Figure	2C).	

RSA	results	for	the	parametric	filtering	approach	are	depicted	in	Figure	4.	The	correlation	between	

manipulated	images	and	the	activity	of	V3A	is	not	significant	for	any	of	the	filtering	steps,	thus	is	

not	further	discussed.	Of	note,	this	result	is	in	agreement	with	the	lack	of	significance	for	the	

correlation	between	the	intact	version	of	the	image	and	brain	activity	of	this	region.		

For	the	contrast	filtering	procedure	applied	to	the	background,	the	activity	of	V3	is	

significantly	associated	to	degrees	of	filtering	lower	than	43%.	All	the	other	ROIs	retain	significant	

correlations	for	all	the	filtering	steps.	The	maximum	correlation	with	brain	activity	in	each	ROI	is	
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reached	at	the	filtering	degree	of:	0%	in	V1;	0%	in	V2;	35%	in	V3;	80%	in	V3B;	80%	in	V4;	74%	in	

LOC.		

When	the	same	procedure	is	applied	to	the	foreground,	the	correlation	is	significant	for	

degrees	of	filtering	lower	than	83%	in	V3B,	82%	in	V4	and	28%	in	LOC.	All	the	other	ROIs	retain	

significant	correlations	for	all	the	filtering	steps.	The	maximum	correlation	with	brain	activity	is	

reached	at	the	filtering	degree	of:	19%	in	V1;	19%	in	V2;	0%	in	V3;	0%	in	V3B;	0%	in	V4;	0%	in	LOC.	

For	the	high-pass	filtering	procedure	applied	to	the	background,	correlation	in	V3	is	

significant	until	spatial	frequencies	higher	than	6.6	cyc/°	are	filtered	out.	Correlation	in	LOC	is	

always	significant	but	at	a	single	step,	when	frequencies	between	0.26-0.28	cyc/°	are	filtered	out.	

For	all	the	other	ROIs	correlation	is	always	significant.	The	maximum	correlation	with	brain	activity	

in	each	ROI	is	obtained	when	spatial	frequencies	in	the	range	between	25	cyc/°	and	0.05	cyc/°	in	

V1,	0.06	cyc/°	in	V2,	0.10	cyc/°	in	V3,	0.11	cyc/°	in	V3B,	19.37	cyc/°	in	V4,	0.51	cyc/°	in	LOC	are	

retained.		

When	the	same	procedure	is	applied	to	the	foreground,	the	correlation	is	significant	until	

spatial	frequencies	higher	than	13.25	cyc/°	in	V3,	4.81	cyc/°	in	V3B,	0.56	cyc/°	in	V4	and	1.20	

cyc/°in	LOC	are	filtered	out.	For	all	the	other	ROIs	correlation	is	significant	at	each	step.	The	

maximum	correlation	with	brain	activity	is	obtained	when	spatial	frequencies	in	the	range	

between	25	and	0.84	cyc/°	in	V1,	0.69	cyc/°	in	V2,	0.69	cyc/°	in	V3,	0.22	cyc/°	in	V3B,	0.22	cyc/°	in	

V4,	0.19	cyc/°	in	LOC	are	retained.	

For	the	low-pass	filtering	procedure	applied	to	the	background,	correlation	in	V3	is	

significant	until	spatial	frequencies	lower	than	3.7	cyc/°	are	filtered	out.	An	exception	is	

represented	by	the	correlation	between	the	V3	RDM	and	the	fixed	model	RDM	that	retains	a	

significant	value	when	only	frequencies	between	0.11	-	0.12	cyc/°	are	included.	Correlation	in	V3B	

is	significant	unless	only	frequencies	in	the	0.5	-	7.0	cyc/°	range	are	included.	For	all	the	other	ROIs	

correlation	is	always	significant.	The	maximum	correlation	with	brain	activity	is	obtained	when	
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spatial	frequencies	in	the	range	between	0.05	and	24.94	cyc/°	in	V1,	23.41	cyc/°	in	V2,	24.94	cyc/°	

in	V3,	0.30	cyc/°	in	V3B,	0.34	cyc/°	in	V4,	0.72	cyc/°	in	LOC	are	retained.	

	When	the	same	procedure	is	applied	to	the	foreground,	the	correlation	is	significant	until	

the	spatial	frequencies	lower	than	0.72	cyc/°	in	V3B,	0.72	cyc/°	in	V4	and	2.39	cyc/°in	LOC	are	

filtered	out.	For	all	the	other	ROIs	correlation	is	always	significant.	The	maximum	correlation	with	

brain	activity	is	obtained	when	spatial	frequencies	in	the	range	between	0.05	and	2.72	cyc/°	in	V1,	

2.11	cyc/°	in	V2,	1.98	cyc/°	in	V3,	1.86	cyc/°	in	V3A,	5.13	cyc/°	in	V3B,	23.41	cyc/°	in	V4,	24.94	cyc/°	

in	LOC	are	retained.	

	

Background	Suppression.	

To	test	the	significance	of	background	suppression	we	compared,	for	each	ROI	and	each	

filtering	procedure,	the	maximum	Nρ	achieved	by	filtering	the	background	against	the	correlation	

value	for	the	same	degree	of	filtering	applied	to	the	foreground.	Results	show	a	significant	effect	

only	in	V4	and	LOC,	indicating	that	background	suppression	occurs	only	in	these	regions	(V4:	p	<	

0.01;	LOC:	p	=	0.04).	

	

Exactness	of	foreground	borders	

To	test	to	what	extent	the	exactness	of	foreground	borders	explains	the	similarity	between	

the	BSD	masks	and	brain	activity,	a	Gaussian	filter	was	parametrically	applied	to	the	foreground	

masks	and	the	resulting	correlation	was	measured	for	each	ROI	(Figure	4	G).	The	exact	or	nearly	

exact	version	of	the	foreground	segmentation	showed	the	maximum	correlation	with	brain	

activity	in	all	the	ROIs	(V1:	max	step	=	6	out	of	100;	12px	sigma;	V2:	max	step	=	1	out	of	100;	0px	

sigma;	V3:	max	step	=	1	out	of	100;	0px	sigma;	V3A:	max	step	=	1	out	of	100;	0px	sigma;	V3B:	max	

step	=	1	out	of	100;	0px	sigma;	V4:	max	step	=	4	out	of	100;	8px	sigma;	LOC:	max	step	=	3	out	of	

100;	6px	sigma).	Specifically,	the	correlation	with	brain	activity	is	significant	for	sigma	values	lower	
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than	2.9°	(72px)	in	V1	and	lower	than	7.3°	(184px)	in	V2.	For	all	the	other	ROIs	the	correlation	is	

always	significant.		

	

Figure	4.	Results	of	the	Filtering	Procedures.	
Correlation	between	brain	activity	and	contrast,	high-	and	low-pass	filtering	applied	to	the	foreground	(A,	C,	E)	and	to	
the	background	(B,	D,	F).	Panel	G	shows	the	correlation	pattern	for	the	Gaussian	filter.	Gray	regions	mark	not	
significant	correlations	(p	>	0.05,	FDR	corrected)	while	colored	shaded	areas	represent	the	standard	error	estimates.	
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Figure	5.	Neural	Images	Reveal	Background	Suppression	in	the	Human	Visual	System.		
Neural	images	have	been	obtained	as	the	combination	of	steps	for	different	filtering	procedures	(contrast,	Gaussian,	
low-	and	high-pass	filtering),	showing	the	highest	correlation	with	brain	activity	for	each	ROI.	Background	suppression	
is	significant	in	V4	and	LOC	(*:	p	<	0.05;	**:	p	<	0.01).	
	

Discussion	

	

In	the	present	study,	we	illustrated	how	the	manipulation	of	low-level	properties	of	natural	

images,	and	the	following	correlation	with	brain	responses	during	passive	viewing	of	the	intact	

stimuli,	could	disclose	the	behavior	of	different	brain	regions	along	the	visual	pathway.		

Employing	this	pre-filtering	modeling	approach,	we	were	able	to	collect	three	different	

evidence	indicating	that	scene	segmentation	is	an	automatic	process	that	occurs	during	passive	

perception	in	naturalistic	conditions,	even	when	individuals	are	not	required	to	perform	any	

particular	tasks,	or	to	focus	on	any	specific	aspect	of	images.		

First,	we	demonstrated	that	the	correlation	of	fMRI	patterns	with	foreground-related	

information	is	significant	in	V1,	V2,	V3B,	V4	and	LOC,	while	background-related	information	is	

significant	in	V1	and	V2	only.	

Second,	our	analyses	specifically	found	that	foreground	enhancement	is	present	in	all	the	

selected	visual	ROIs,	and	that	this	effect	is	driven	neither	by	the	foreground	extent,	nor	by	its	

location	in	the	visual	field.	Thus,	indirect	evidence	of	figure-ground	modulation	of	natural	images	

could	be	retrieved	in	the	activity	of	multiple	areas	of	the	visual	processing	stream.	This	is	

consistent	with	a	recent	study,	which	reported	that	border-ownership	of	natural	images	cannot	be	

resolved	by	single	cells,	but	requires	a	population	of	cells	in	monkey	V2	and	V3	(Hesse	JK	and	DY	

Tsao	2016).		
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Finally,	a	proof	of	segmentation	can	be	represented	by	the	significant	suppression	of	

background-related	information	in	V4	and	LOC.	On	the	contrary,	earlier	regions	across	the	visual	

stream	-	from	V1	to	V3	–	have	a	uniform	representation	of	the	whole	image,	as	evident	at	first	

glance	in	the	obtained	neural	images	(Figure	5).	Overall,	these	results	further	support	the	idea	that	

foreground	enhancement	and	background	suppression	are	distinct,	but	associated,	processes	

involved	in	scene	segmentation	of	natural	images.		

	

Foreground	segmentation	as	a	proxy	for	shape	processing	

The	observed	behavior	of	V4	and	LOC	is	consistent	with	several	investigations	on	shape	

features	selectivity	in	these	regions,	and	in	their	homologues	in	monkey	(Carlson	ET	et	al.	2011;	

Hung	CC	et	al.	2012;	Lescroart	MD	and	I	Biederman	2013;	Vernon	RJ	et	al.	2016).	In	fact,	the	

extraction	of	shape	properties	requires	segmentation	(Lee	TS	et	al.	1998),	and	presumably	occurs	

in	brain	regions	where	background	is	already	suppressed.	Notably,	“neural	images”	reconstructed	

from	V4	and	LOC	are	characterized	by	a	strong	background	suppression,	while	the	foreground	is	

preserved.	This	is	consistent	with	a	previous	neuropsychological	observation:	a	bilateral	lesion	

within	area	V4	led	to	longer	response	times	in	identifying	overlapping	figures	(Leek	EC	et	al.	2012).	

Hence,	this	region	resulted	to	be	crucial	for	accessing	foreground-related	computations,	and	

presumably	plays	a	role	in	matching	the	segmented	image	with	stored	semantic	content	in	figure	

recognition.	In	accordance	with	this,	a	recent	hypothesis	suggests	a	role	of	V4	in	higher-level	visual	

functions,	such	as	features	integration	or	contour	completion	(Roe	AW	et	al.	2012).	

The	preserved	spatial	resolution	of	foreground	descriptive	features	(i.e.,	texture)	in	V4	and	

LOC	–	as	shown	in	figures	4	and	5	-	represents	an	additional	noteworthy	aspect	that	arises	from	

our	data.	The	progression	from	V1	towards	higher-level	regions	of	the	cortical	visual	pathway	is	

associated	with	a	relative	increase	in	receptive	fields	size	(Dumoulin	SO	and	BA	Wandell	2008;	

Freeman	J	and	EP	Simoncelli	2011;	Kay	KN	et	al.	2015).	However,	it	should	be	kept	in	mind	that	
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regions	such	as	V4	demonstrate	a	complete	representation	of	the	contralateral	visual	hemifield,	

rather	than	selective	responses	to	stimuli	located	above	or	below	the	horizontal	meridian	

(Wandell	BA	and	J	Winawer	2011).	The	evidence	that	the	foreground	portion	of	“neural	images”	

maintains	fine-grained	details	in	V4	and	LOC	seems	to	contrast	the	traditional	view	according	to	

which	these	regions	are	more	tuned	to	object	shape	(i.e.,	silhouettes),	instead	of	being	selective	

for	the	internal	configuration	of	images	(e.g.	Malach	R	et	al.	1995;	Grill-Spector	K	et	al.	1998;	

Moore	C	and	SA	Engel	2001;	Stanley	DA	and	N	Rubin	2003).	However,	it	has	been	shown	that	

foveal	and	peri-foveal	receptive	fields	of	V4	do	accomodate	fine	details	of	the	visual	field	

(Freeman	J	and	EP	Simoncelli	2011)	and	that	the	topographic	representation	of	the	central	portion	

of	this	area	is	based	on	a	direct	sampling	of	the	primary	visual	cortex	retinotopic	map	(Motter	BC	

2009).	Therefore,	given	the	"fovea-to-periphery"	bias	found	in	our	stimuli	and	in	natural	images,	it	

is	reasonable	that	an	intact	configuration	of	the	foreground	may	be	more	tied	to	the	activity	of	

these	brain	regions,	and	that	a	richer	representation	of	the	salient	part	may	overcome	simplistic	

models	of	objects	shape	(i.e.,	silhouettes).	Our	result	is	also	consistent	with	a	recent	study	on	

monkeys	that	demonstrates	a	role	of	V4	in	texture	perception	(Okazawa	G	et	al.	2015).	

Moreover,	it	is	well	known	that	selective	attention	represents	one	of	the	"active"	cognitive	

mechanisms	supporting	figure	segmentation	(Qiu	FT	et	al.	2007;	Poort	J	et	al.	2012),	as	suggested,	

for	instance,	by	bistable	perception	phenomena	(Sterzer	P	et	al.	2009)	or	by	various	

neuropsychological	tests	(e.g.	De	Renzi	E	et	al.	1969;	Bisiach	E	et	al.	1976).	In	the	present	

experiment,	participants	were	asked	to	simply	gaze	a	central	fixation	point	without	performing	

any	overt	or	covert	tasks	related	to	the	presented	image.	Nonetheless,	we	found	evidence	of	a	

clear	background	suppression	and	foreground	enhancement,	suggesting	that	scene	segmentation	

is	mediated	by	an	automatic	process	that	may	be	driven	either	by	bottom-up	(e.g.,	low-level	

properties	of	the	foreground	configuration),	or	top-down	(e.g.,	semantic	knowledge)	attentional	

mechanisms.	
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Facing	the	challenge	of	explicit	modeling	in	visual	neuroscience	

As	predicting	brain	responses	in	ecological	conditions	is	one	the	major	goals	of	visual	

neuroscience,	our	study	showed	that	the	sensitivity	of	fMRI	pattern	analysis	can	represent	an	

adequate	tool	to	investigate	complex	phenomena	through	the	richness	of	natural	stimuli.		

The	standard	approach	in	investigating	visual	processing	in	ecological	conditions	implies	

testing	the	correlation	of	brain	responses	from	a	wide	range	of	natural	stimuli	with	features	

extracted	by	different	alternative	computational	models.	This	approach	facilitates	the	comparison	

between	the	performances	of	competing	models	and	could	ultimately	lead	to	the	definition	of	a	

more	plausible	model	of	brain	activity.	However,	the	development	of	explicit	computational	

models	for	many	visual	phenomena	in	ecological	conditions	is	difficult,	as	testified	by	the	

extensive	use	of	artificial	stimuli	in	visual	neuroscience	(e.g.	Carandini	M	et	al.	2005;	Wu	MC	et	al.	

2006).	

Actually,	even	if	computer	vision	is	a	major	source	of	computational	models	and	feature	

extractors,	often	its	objectives	hardly	overlap	with	those	of	visual	neuroscience.	Computer	

scientists	are	mainly	interested	in	solving	single,	distinct	tasks	(e.g.,	segmentation,	recognition,	

etc.),	while,	from	the	neuroscientific	side,	the	visual	system	is	considered	as	a	general-purpose	

system	that	could	adapt	itself	to	perform	different	behaviors	(Medathati	NVK	et	al.	2016).	

Consequently,	while	computer	science	typically	employs	solutions	that	rely	only	seldom	on	

previous	neuroscientific	knowledge,	and	its	goal	is	to	maximize	task	accuracy	(e.g.,	with	deep	

learning),	visual	neuroscience	somehow	lacks	of	solid	computational	models	and	formal	

explanations,	ending	up	with	several	arbitrary	assumptions	in	modeling,	especially	for	mid-level	

vision	processing,	such	as	scene	segmentation	or	shape	features	extraction	(for	a	definition	see:	

Kubilius	J	et	al.	2014).	
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In	light	of	this,	we	believe	that	the	manipulation	of	a	wide	set	of	natural	images,	and	the	

computation	of	a	fixed	model	based	on	low-level	features,	can	offer	a	simple	and	biologically	

plausible	tool	to	investigate	brain	activity	related	to	higher-order	computations.	In	fact,	the	results	

of	this	procedure	can	be	depicted	and	are	more	intuitive	as	compared	to	descriptions	obtained	

through	formal	modeling	(Figure	5),	thus	highlighting	interpretable	differences	rather	than	data	

predictions.		
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