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Abstract

Chemical signals are arguably the oldest and most fundamental means of animal 1

communication and play a fundamental role in mate choice and kin selection. A key 2

tool for uncovering broad patterns of chemical similarity is gas chromatography (GC). 3

However, downstream analyses rely on the correct alignment of homologous substances, 4

represented by peaks, across samples. Here we present GCalignR, a user-friendly R 5

package for aligning GC data based on retention times. The package also implements a 6

suite of dynamic visualisation tools to facilitate inspection of the resulting alignments 7

and can be integrated within a broader workflow in R to facilitate downstream 8

multivariate analyses. We demonstrate an example workflow using a chemical dataset 9

from Antarctic fur seals, show that the resulting alignments are relatively insensitive to 10

realistic levels of randomly introduced noise, and also test the package on three 11

pre-validated datasets to reveal generally rather low alignment error rates. We hope 12

that GCalignR will help to simplify the processing of chemical datasets and contribute 13

towards improved standardization and reproducibility. 14

Introduction 15

Chemical cues are arguably the most common mode of communication among 16

animals [18]. Patterns in complex chemical signatures can therefore yield information 17

about phylogenetic relatedness [11], sexual maturation [4], kinship [3, 8, 15] and genetic 18

quality [5, 9, 15]. One of the most common approaches for resolving the chemical 19

composition of samples is gas-chromatography (GC), which can rapidly detect and 20

quantify molecules within a sample to generate a characteristic chromatogram or 21

chemical profile [10]. Although GC is relatively rapid and inexpensive, making it 22

attractive for studies of non-model organisms, individual molecules are characterised 23

according to their retention times, making them effectively anonymous. An additional 24

mass-spectrometry step (GC-MS) can provide further details of the chemical 25

composition of individual molecules, allowing them to be compared to existing 26

databases where available. 27

GC provides a fast and effective means of resolving broad patterns of chemical 28

similarity, but relies heavily on the correct alignment of homologous substances, 29

represented by specific peaks, across samples. However, peak alignment is not 30

necessarily straightforward as it is necessary to account for perturbations in retention 31

times caused by subtle, random and often unavoidable experimental variation including 32

changes in ambient temperature, flow rate of the carrier gas and column ageing [13, 14]. 33

Variation in peak intensities both within and among samples can also contribute 34

towards errors in characterising chemical profiles. 35
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GC is widely used in behavioural and ecological studies of (usually) non model 36

organisms, such as birds, mammals and insects, where the goal is often to investigate 37

broad chemical patterns. These studies tend to use GC-MS less often than studies of 38

humans and other model organisms, both because GC-MS is relatively expensive and 39

because many of the chemicals that are resolved often reveal limited homology to 40

currently available databases. However, aligning GC data is non-trivial due to the 41

anonymous nature of the many peaks. Consequently, although a number of programs 42

are available for aligning GC-MS data, which make use of mass spectrograms, we are 43

only aware of a single program that can handle GC data [6]. As a result, most studies of 44

mammalian and avian chemical communication have relied on manual alignment and 45

peak calling [7], which is time-consuming, particularly for large samples of individuals, 46

can be biased and subjective, and is not strictly reproducible. 47

Here, we introduce GCalignR, an R package that implements a simple algorithm to 48

align peaks based on retention time data obtained by GC and provides sophisticated 49

visualisations for the evaluation of alignment quality. First of all, the check input 50

function is used to ensure that the data are formatted correctly (Fig 1, step 1). Second, 51

the align chromatograms function is used to align the data (Fig 1, step 2) as follows: 52

(i) systematic shifts of chromatograms are corrected by applying appropriate linear 53

shifts to whole chromatograms based on a single reference sample; (ii) retention times of 54

individual peaks are grouped iteratively together with homologous peaks of other 55

samples and aligned within the same row in a retention time matrix; and (iii) rows with 56

similar retention times are merged where appropriate. Third, diagnostic plots allow the 57

resulting alignments to be visually inspected (Fig 1, step 3), thereby facilitating 58

optional pre-processing or re-alignment of the data (Fig 1, step 4). Finally, to 59

compensate for differences in total chemical concentrations among samples, measures of 60

peak abundance (e.g. peak area or peak height) can be normalised using the function 61

norm peaks (Fig 1, step 5). 62

Implementing GC alignment and checking within R brings several advantages over 63

currently available stand-alone programs. First, the code is open source, which 64

facilitates flexibility and transparency in data analysis. Second, all computational steps 65

can be integrated into R Markdown documents [1], thereby enhancing reproducibility. 66

Finally, our package provides a seamless transition from the processing of the peak data 67

through to downstream analysis within other widely used R packages for multivariate 68

analysis, e.g. vegan [12]. 69

The package 70

GCalignR contains functions to align peaks from GC and GC-MS data based on 71

retention times and evaluate the resulting alignments. The main aim of the package is 72

to provide a simple tool that guides the user through the alignment of large datasets 73

prior to the statistical analysis of multivariate chemical data. A typical workflow for the 74

analysis of chemical signatures in GCalignR is shown in Fig 1 and described below. The 75

package vignette provides a detailed description of all of the functions and their 76

arguments and can be accessed via browseVignettes("GCalignR") after the package 77

has been installed. The workflow is described below and the standard input format of 78

GCalignR is a tab-delimited text file, as illustrated in the vignette. 79

Example dataset 80

The functionality of GCalignR is illustrated using GC data from skin swabs of 41 81

Antarctic fur seal Arctocephalus gazella mother-pup pairs from two neighbouring 82
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breeding colonies at South Georgia in the South Atlantic [15]. The chemical data 83

associated with these samples are provided in the file peak data.txt, which is 84

distributed with the package. Additional data on colony membership and age-class are 85

provided in the data frame peak factors.RData. 86

Alignment of GC peaks among samples 87

As outlined briefly above, the core algorithm in align chromatograms (see Table for a 88

list of parameters) implements three consecutive manipulations of the peak data (Fig 2 89

i-iii) together with two further optional manipulations (Fig 2 iv and v). These are 90

described in detail below. 91

Table 1. Parameters for the function align chromatograms

Paramter Description
blanks Character vector containing the names of negative control samples (blanks) that are used to

identify and remove contaminants
data Path to a tab-delimited text file containing the chemical data. See the vignette for an

example and alternative input formats
delete single peak Logical that implements the optional functionality to remove unique substances from the

aligned dataset
max diff peak2mean Numeric value (in minutes) defining the allowed deviation of the retention time of a focal

peak from the mean of the corresponding row during peak alignment
max linear shift Numeric value (in minutes) that defines the range that is considered for the adjustment of

linear shifts in peak retention times among samples
min diff peak2peak Numeric value (in minutes) defining the expected minimum difference in retention times

among substances. Rows that are more similar than the threshold value will be merged, if no
conflict emerges due to the presence of peaks in more than one row within a single sample.

rt cutoff low Threshold value defining the minimum retention time (in minutes). All peaks with retention
times below the threshold value will be removed from the chemical dataset prior to alignment

rt cutoff high Threshold value defining the maximum retention time (in minutes). All peaks with retention
times exceeding the threshold value will be removed from the chemical dataset prior to
alignment

rt col name Name of the variable containing retention times of peaks. The name needs to correspond to
a variable included in the chemical data

reference Name of a sample that will be used as reference to adjust linear shifts in peak retention
times across samples. By default, a reference is automatically selected

sep Field separator character. See ?read.table for a list of separators
write output Character vector of variable names that correspond to variables included in the chemical

dataset. If specified, aligned datasets are exported as tab-delimited text files for each of the
variables

(i) Linear adjustments of chromatograms 92

First, all peaks within a chromatogram are shifted with respect to a reference 93

chromatogram to account for systematic shifts in retention times among homologous 94

chemicals shared among samples (Fig 2 i). This procedure is implemented for all of the 95

samples in such a way that the number of shared peaks is maximised. The parameter 96

max linear shift defines the maximum range of linear shifts that are considered by 97

the function. This approach clearly relies on their being a sufficient number of 98

substances shared among the samples. In the absence of shared substances, the function 99
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will be unlikely to find a suitable shift and consequently the chromatograms will remain 100

untransformed. By default, a reference is selected automatically by searching for the 101

sample with the highest average similarity to all other samples based on the number of 102

shared peaks prior to alignment. Optionally, the alignment can be implemented using 103

an internal standard (labelled ”reference”) containing substances that are known a 104

priori to occur in most or all of the samples. 105

(ii) Peak alignment 106

Individual peaks are aligned across samples by comparing the peak retention times of 107

each sample consecutively with the mean of all previous samples (Fig 2 ii). If the focal 108

cell within the matrix contains a retention time that is larger than the mean retention 109

time of all previous cells within the same row plus a user-defined threshold (Eq (1)), 110

that cell is moved to the next row. 111

rtm >

(

∑m−1
i=1 rti
m− 1

)

+max diff peak2mean (1)

where rt = retention time; m = focal cell and max diff peak2mean defines the 112

user-defined threshold deviation from the mean retention time (see Table 1). 113

If the focal cell contains a retention time that is smaller than the mean retention 114

time of all previous cells within the same row minus a user-defined threshold (Eq (2)), 115

all previous retention times are then moved to the next row. 116

rtm <

(

∑m−1
i=1 rti
m− 1

)

−max diff peak2mean (2)

After the last retention time of a row has been evaluated, this procedure is repeated 117

for the next row until the end of the retention time matrix is reached. 118

(iii) Merging rows 119

Occasionally, due to minor variation in retention times, homologous peaks can be sorted 120

into different, but adjacent, rows in different samples. However, this results in a clear 121

pattern whereby some of the samples will have a retention time in one of the rows while 122

the other samples will have a retention time in an adjacent row. Consequently, the 123

function merges adjacent rows when this does not cause any loss of information (i.e. no 124

sample exists that contains substances in both rows, (Fig 2 iii). Again, the user can 125

define the threshold for the minimal difference in the retention time between two 126

mergeable peaks with min diff peak2peak. 127

(iv) Removal of contaminants 128

After aligning peaks, the package offers several optional post-processing steps for 129

cleaning up the data. First of all, negative control samples, if available, can be used to 130

remove potential contaminants, including unwanted chemical substances in laboratory 131

reagents or within the gas chromatography column. Chemical data for negative controls 132

can be included in the input file and, by specifying these samples as blanks, 133

align chromatograms will remove all substances present in the controls from the 134

aligned dataset (Fig 2 iv). 135
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(v) Removal of single peaks 136

Frequently, substances occur only within a single sample. For comparative approaches 137

based on similarity matrices, these substances are often not informative and can be 138

removed from the dataset. align chromatograms implements the removal of unique 139

substances (Fig 2 v) when the delete single peak argument is set to TRUE. 140

Workflow 141

Here, we demonstrate a typical workflow in GCalignR using the fur seal dataset as an 142

example. All of the alignment steps described above are implemented within the 143

function align chromatograms. A list of user-defined parameters and their 144

descriptions can be accessed from the documentation in the helpfile by typing 145

?align chromatograms. Prior to peak alignment, the check input function 146

interrogates the input file for typical formatting errors and missing data. We encourage 147

the use of unique names for samples consisting only of letters, numbers and underscores. 148

If the data fail to pass this quality test, indicative warnings will be returned to assist 149

the user in error correction. As this function is executed internally prior to any 150

alignment, the data need to pass this check before the alignment can begin. 151

l ibrary (GCalignR ) 152

fpath <− system . f i l e ( dir = ”extdata ” , 153

f i l e = ”peak data . txt ” , 154

package = ”GCalignR” ) 155

check input ( fpath ) 156

In order to begin the alignment procedure, the following code needs to be executed: 157

a l i gned peak data <− a l i g n chromatograms (data = peak data , 158

rt col name = ”time” , 159

max d i f f peak2mean = 0 .02 , 160

min d i f f peak2peak = 0 .08 , 161

max l i n e a r s h i f t = 0 .05 , 162

delete single peak = TRUE, 163

blanks = c ( ”C2” , ”C3” ) ) 164

Afterwards, a summary of the alignment process can be retrieved using the printing 165

method, which summarises the function call including defaults that were not altered by 166

the user. This provides all of the relevant information to retrace every step of the 167

alignment procedure. 168

print ( a l i gned peak data ) # ve r ba l summary o f the a l ignment 169

As alignment quality may vary with the parameter values selected by the user, the 170

plot function can be used to output four diagnostic plots. These allow the user to 171

explore how the parameter values affect the resulting alignment and can help flag issues 172

with the raw data. 173

plot ( a l i gned peak data ) # crea t e s Fig . 3 174

Fig 3 A shows the distribution of peak numbers across samples both before and after 175

the alignment. In this example dataset, we specified two negative controls (blanks): 176

”C2” and ”C3”. After the removal of substances shared with the controls as well as 177

unique substances, the number of post-alignment peaks is significantly reduced across 178

all samples. For details of the number of removed substances, type 179

print(aligned peak data). Fig 3 B shows a histogram of linear shifts of entire 180

samples implemented by the function align chromatograms. The majority of samples 181
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were not shifted at all, whereas a small number were shifted between -0.01 and 0.01 182

minutes. Fig 3 C shows a histogram of the amount of variation among the samples in 183

the retention times of single substances (defined as retention times that were aligned 184

based on user-defined criteria). In this example, the distribution shows a left-skew, 185

indicating that the majority of substances vary by less than 0.05 minutes. Finally, Fig 3 186

D shows the extent of sharing of substances across samples. This reveals a typical 187

pattern whereby most of the substances are found in a small number of samples but a 188

number of substances are also present in most of the samples. 189

Additionally, the full alignment can be visualised using a heat map with the function 190

gc heatmap. 191

gc heatmap ( a l i gned peak data , type = ”binary ” , th r e sho ld = 0 . 05 ) 192

The resulting heatmap for the example dataset (Fig 4) shows all of the 193

post-alignment peaks across all samples and substances. Filled cells represent peaks 194

whereas empty cells indicate the absence of a given substance within a sample. 195

Substances that deviate by less than a user-defined threshold value (in this case, 0.05 196

minutes) from the mean retention time across all samples are shown in light blue. Red 197

cells indicate a deviation that is larger than 0.05 minutes and thereby flag potentially 198

problematic alignments. For the example dataset, only a scattering of larger deviations 199

are observed and these do not appear to be clustered within samples or substances. 200

Peak normalisation 201

In order to account for differences in the total concentration of samples, we provide an 202

additional function normalise peaks that can be used to normalise peak abundances. 203

The abundance measure (e.g. peak area) needs to be specified as conc col name in the 204

function call. By default, the output is returned in the format of a data frame. 205

s cent <− norm peaks (data = al i gned peak data , 206

rt col name = ”time” , 207

conc col name = ”area ” , 208

out = ”data . frame” ) 209

Downstream analyses 210

The output of GCalignR is compatible with other functionalities in R, thereby providing 211

a seamless transition between packages. For instance, downstream multivariate analyses 212

can be conducted using the package vegan [12]. To visualise patterns of chemical 213

similarity within the fur seal dataset in relation to breeding colony membership, we 214

implemented non-metric-multidimensional scaling (NMDS) based on a Bray-Curtis 215

dissimilarity matrix in vegan using the normalised and log-transformed chemical data: 216

# log + 1 trans format ion 217

s cent <− log ( s c ent + 1) 218

# so r t i n g by row names 219

s cent <− s cent [match(row .names( peak f a c t o r s ) , 220

row .names( s c ent ) ) , ] 221

# NMDS 222

s cent nmds <− vegan : : metaMDS(comm = scent , distance = ”bray” ) 223

s cent nmds <− as . data . frame ( s c ent nmds [ [ ” po in t s ” ] ] ) 224

s cent nmds <− cbind ( s c ent nmds , 225

co lony = peak f a c t o r s [ [ ” co lony ” ] ] ) 226

The results of the NMDS approach along with the accompanying factors are stored 227

in the data frame scent nmds and can be visualised using ggplot2 [16]. 228
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l ibrary ( ggp lot2 ) 229

ggp lot (data = scent nmds , aes (MDS1,MDS2, c o l o r = colony ) ) + 230

geom point ( ) + 231

theme void ( ) + 232

scale c o l o r manual ( va lue s = c ( ” blue ” , ” red ” ) ) + 233

theme (panel . background = element rect ( co l ou r = ”black ” , 234

s i z e = 1 .25 , f i l l = NA) , 235

aspect . r a t i o = 1 , 236

legend . p o s i t i o n = ”none” ) 237

Fig 5 reveals a clear pattern in which seals from the two colonies cluster apart based 238

on their chemical profiles, as shown also by Stoffel et al. (2015). Although a sufficient 239

number of standards were lacking in this example to calculate the internal error rate (as 240

shown below for the bumblebee datasets), the strength of this pattern, together with 241

the rarity of substances invoking large deviations from the mean retention time (Fig 4), 242

suggests that the alignment implemented by GCalignR is of high quality. 243

Validation based on error rates of known substances and 244

strength of effects 245

We next explored the ability of the algorithm to cope with randomly introduced noise in 246

the fur seal chemical dataset. Errors were introduced at random into the raw dataset 247

following a Gaussian profile with -0.02 to 0.02. The resulting datasets were re-aligned 248

and we then quantified the strength of clustering by colony using the function adonis 249

from the package vegan, which performs a permutation-based multivariate analysis of 250

variance (“permutational manova” [2]). For each error rate value, defined as the 251

proportion of peaks within each sample with random errors, we generated 10 datasets. 252

The frequency of introduced errors affected both the total number of scored substances 253

as well as the strength of the detected pattern (Fig 6). The total number of substances 254

scored gradually increased with increasing error rate (Fig 6 a) as higher variation in 255

retention times caused peaks to be split into more than one substance. In parallel, 256

Adonis R2 values fell linearly up to an error rate of 0.5 before levelling off at around 257

0.07. This suggests both that the original dataset is clearly structured and that the 258

results of the alignment procedure within GCalignR are relatively robust to low to 259

moderate (i.e. < 0.2) rates of peak calling error. 260

To further assess the performance of GCalignR, we calculated alignment error rates 261

based on three previously published bumblebee datasets comprising known substances 262

identified using GC-MS [6]. The first dataset comprises 24 Bombus bimaculatus 263

individuals characterised for 32 substances (total = 717 retention times). The second 264

comprises 20 B. ephippiatus individuals characterised for 42 substances (total = 782 265

retention times) and the third comprises 11 B. flavifrons individuals characterised for 44 266

substances (total = 457 retention times). We calculated the error rate as the ratio of 267

the number of incorrectly assigned retention times to the total number of retention 268

times (Eq (3)). 269

Error =

[

Number of missaligned retention times

Total number of retention times

]

(3)

where retention times that are not assigned to the row that defines the mode of a 270

given substance are defined as being misaligned. By systematically changing the two 271

parameters max diff peak2mean and min diff peak2peak, we explored 100 parameter 272

combinations to investigate how parameter values affect the alignment accuracy. All 273

three datasets show generally low error rates, typically between 3–5% for most 274
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parameter combinations, although low values of the parameter min diff peak2peak 275

tend to be associated with somewhat higher error rates, especially when 276

max diff peak2mean is also low (Fig 7). 277

Additionally, we simulated the effect of noise by introducing errors at random into 278

each of the bumblebee datasets as described above for the fur seal dataset. As expected, 279

error rates were initially low for all three species but increased with progressively 280

increasing levels of noise (Fig 8). B. bimaculatus and B. ephippiatus both showed 281

approximately linear responses whereas B. flavifrons appeared to be relatively 282

insensitive until and additional noise level of around 0.7 was exceeded. 283

Final remarks 284

GcalignR is primarily intended as a pre-processing tool in the analysis of complex 285

chemical signatures of organisms where overall patterns of chemical similarity are of 286

interest as opposed to specific (i.e. known) chemicals. We have therefore prioritised an 287

objective and fast alignment procedure that is not claimed to be free of error. However, 288

our error rate calculations suggest that the algorithm performs well, at least for most 289

parameter combinations, while realistically low levels of noise appear to have a modest 290

effect on the resulting alignments. Importantly, GCaligner also implements a suite of 291

diagnostic plots that allow the user to visualise the influence of parameter settings on 292

the resulting alignments, allowing fine-tuning of both the pre-processing and alignment 293

steps (Fig 1). 294

Availability 295

The current stable version requires at least R 3.2.5 and is available on CRAN. 296

in s ta l l . packages ( ”GCalignR” ) 297

We aim to extend the functionalities of GCalignR in future and the developmental 298

version can be downloaded from GitHub within R using devtools [17]. 299

l ibrary ( dev too l s ) 300

in s ta l l github ( ”mas t o f f e l/GCalignR” , bu i ld v i gn e t t e s = TRUE) 301

The raw fur seal chemical dataset is included in this R package and the bumblebee 302

datasets [6] can be downloaded here http://onlinelibrary.wiley.com/store/10. 303

1002/jssc.201300388/asset/supinfo/jssc3437-sup-0001-TableS1.zip?v=1&s= 304

57d5d58273d1d4207e70c72cecd5bba4b1fe95a1. 305

Supporting information 306

File S1. R code. The code and accompanying documentation for all simulations 307

presented in this manuscript are provided in a PDF file. 308

Data S2. Datasets used to generate the results presented in this 309

manuscript. This is a compressed zip archive that includes all the raw data that were 310

used for the simulations presented in this manuscript. 311
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Fig 1. GCalignR workflow. In addition to the alignment of substances across
samples, the GCalignR package (shapes in orange) provides functions for checking and
inspecting the data. The aligned data are ready to use for analyses within other
packages. Each function is shown in italics and is explained within the main text.
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Fig 2. Overview of the alignment algorithm implemented in GCalignR
using a hypothetical dataset. Within each matrix, rows correspond to substances
and columns correspond to samples and the colouring of cells refers to the substance
identity in the final alignment. Consecutive manipulations of the matrices are shown
from left to right. Here, black rectangles indicate conflicts that are solved by
manipulations of the matrices. Zeros indicate absence of peaks and are therefore not
considered in computations. i. Chromatograms are linearly shifted with respect to a
reference (here S2). ii. Peaks are aligned row by row. Initially, always the second
sample is compared to the first. Then the next sample is compared to all of the samples
in previous columns until the last column is reached. iii. If merging does not result in
the loss of any data, rows are merged. iv. If specified, all peaks found in one or more
blanks (negative controls) are removed as well as the blank itself. v. Optionally, unique
peaks present in a single sample can be removed as well.
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Fig 3. Diagnostic plots summarising the aligned dataset. A shows the number
of peaks both prior to and after alignment; B shows a histogram of linear shifts across
all samples; C shows the variation across samples in peak retention times defined by the
difference between maximum and minimum retention time; and D shows a frequency
distribution of substances shared across samples.
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Fig 4. Heatmap of the final alignment highlighting potentially problematic
alignments. Substances on the horizontal axis are ordered by retention times,
increasing from left to right. Blue cells indicate aligned peaks with retention times that
deviate from the mean retention time of that substance by less than 0.05 minutes. Red
cells highlight aligned peaks with retention times that fall outside the threshold.
Parameters of the function are explained in the corresponding helpfile and the package
vignette.
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Fig 5. A NMDS plot shows the similarity of individuals within colonies.
Individuals are colour coded based on the breeding colony. Blue and red points refer to
the ’special study beach’ and ’freshwater beach’ respectively (see [15] for details).
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Fig 6. The influence of additional random noise on the detectability of
patterns within the fur seal chemical dataset. Random errors following a
Gaussian profile were introduced into the raw fur seal chemical dataset. A. The total
number of scored substances in the aligned dataset increased linearly with additional
noise levels. B. Contrastingly, the strength of the colony effect, determined by Adonis
R2 values, decreased in response to increased noise levels.
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Fig 7. Effects of alignment parameters on error rates Error rates were
calculated for three bumblebee datasets [6] (A-C) based on known substances. Each
point shows the aligment error rate for a given combination of max diff peak2mean

and min diff peak2peak.
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Fig 8. The effect of introduced random noise on alignment error rates for
three bumblebee datasets.
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