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Abstract

Background

Simple mechanistic epidemic models are widely used for forecasting and parame-

ter estimation of infectious diseases based on noisy case reporting data. Despite

the widespread application of models to emerging infectious diseases, we know little

about the comparative performance of standard computational-statistical frameworks

in these contexts. Here we build a simple stochastic, discrete-time, discrete-state epi-

demic model with both process and observation error and use it to characterize the

effectiveness of different flavours of Bayesian Markov chain Monte Carlo (MCMC)

techniques. We use fits to simulated data, where parameters (and future behaviour)

are known to explore the limitations of different platforms and quantify parameter

estimation accuracy, forecasting accuracy, and computational efficiency across com-

binations of modeling decisions (e.g. discrete vs. continuous latent states, levels of

stochasticity) and computational platforms (JAGS, NIMBLE, Stan).
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Results

Models incorporating at least one source of population-level variation (i.e., dispersion

in either the transmission process or the observation process) provide reasonably good

forecasts and parameter estimates, while models that incorporate only individual-level

variation can lead to inaccurate (or overconfident) results. Models using continuous

approximations to the transmission process showed improved computational efficiency

without loss of accuracy.

Conclusion

Simple models of disease transmission and observation can be fitted reliably to simple

simulations, as long as population-level variation is taken into account. Continuous

approximations can improve computational efficiency using more advanced MCMC

techniques.

Keywords: MCMC HMC TSIR Dispersion Moment-matching

1 Introduction

Simple homogeneous population models have been widely used to study emerging

infectious disease outbreaks. Although such models can provide important insights

— including estimated epidemic sizes and predicted effects of intervention strategies,

as well as short-term forecasts — they neglect important spatial, individual-level

and other heterogeneities. Decades of work have created frameworks that enable

researchers to construct models that capture many of these more realistic aspects of

infectious disease epidemics. But many challenges remain. In particular, estimating

parameters (and associated uncertainties) is always challenging, especially for models

incorporating multiple forms of heterogeneity, and especially during the early stages

of an epidemic when data are limited. Using complex models that are insufficiently
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supported by data can lead to imprecise and unstable parameter estimates (Ludwig

and Walters, 1985) — in such cases, researchers often revert to simpler models for

practical purposes.

In the past few decades, researchers have begun to adopt Bayesian approaches

to disease modeling problems. Bayesian Markov Chain Monte Carlo (MCMC) is a

powerful, widely used sampling-based estimation approach. Despite the widespread

use of MCMC in epidemic modeling (Morton and Finkenstädt, 2005; O’Neill, 2002),

however, there have been relatively few systematic studies of the comparative perfor-

mance of statistical frameworks for disease modeling O’Neill et al. (2000).

In this paper, we apply relatively simple MCMC approaches to data from simu-

lated epidemics that incorporate stochasticity in both transmission and observation,

as well as variable generation-interval distributions (not assumed to be known when

fitting). We compare model approaches of varying complexity, including an estima-

tion model that matches the simulation model. For each model we quantify parameter

estimation accuracy and forecasting accuracy; this sheds light on which phenomena

are most important to include in models to be used for estimation and forecasting.

We also compare three different MCMC platforms: JAGS (Plummer et al., 2003),

NIMBLE (de Valpine et al., 2016) and Stan (Carpenter et al., 2016). In principle,

for any given model, any valid method of MCMC sampling should eventually con-

verge on the same (correct) posterior distribution. However, even with the relatively

simple models considered here, a theoretically valid software package can experience

problems in practice: we wanted to investigate this phenomenon. Furthermore, even

when different platforms converge to essentially the same result, they may show large

differences in computational efficiency: we therefore also quantify efficiency for the

models we study.
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2 Methods

We generated test data using a simple framework that combines a transmission pro-

cess based on a simple discrete-time model with an observation process to account for

incomplete reporting. Both processes are assumed to be stochastic. We then fit the

observed cases from these simulations using Bayesian methods that model the under-

lying true number of infections as a latent (i.e., unobserved) variable. Our Bayesian

fitting models explore an approach that matches the assumptions of the simulation

model, as well as various simplifications: in particular, we explore simpler methods

of accounting for variation in both the transmission process and the observation pro-

cess, and the use of continuous rather than discrete latent variables. For simplicity,

we have here assumed that data are reported on the same discrete time scale on which

the disease process is simulated (but not that the reported period is the same as the

generation time of the disease; see below). This assumption requires that the gener-

ation time be at least as the reporting period. It would be relatively straightforward

to relax this assumption, for example by assuming that the epidemic dynamics occur

on a finer time scale than the reporting interval, or by simulating in continuous time

but fitting with a discrete-time model; we do not explore these questions here.

2.1 Simulation Model

The transmission process of our dual-process framework is based on the Reed-Frost

chain binomial model, which can also be described as a discrete-time, stochastic com-

partmental SIR model (Ludwig, 1973). To account for the possibility that some

fraction of the population may be beyond the scope of the epidemic — geographi-

cally or socially isolated, genetically resistant, vaccinated or immune due to previous

exposure — we assume that only a proportion Peff of the total census population is

actually susceptible to infection. We further assume that, in every time step, only a

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/110767doi: bioRxiv preprint 

https://doi.org/10.1101/110767
http://creativecommons.org/licenses/by-nc-nd/4.0/


proportion (randomly chosen with mean Prep) of new infections are actually observed.

We model both transmission and observation using a beta-binomial (rather than bino-

mial) distribution to account for additional sources of variation (i.e., overdispersion)

in both processes. The equations are:

Neff = PeffN (1)

S1 = Neff − I1 (2)

Φt =
∑̀
i=1

k(i)It−`+i (3)

It+1 ∼ BetaBin(1− e−Φt , St, δP ) (4)

St+1 = St − It+1 (5)

Obst ∼ BetaBin(Prep, It, δobs). (6)

where Φt is the force of infection at time t; Neff is the effective population size; and `

is the number of lags.

The most common parameterization of the beta-binomial comprises three param-

eters: the binomial size parameter N plus two additional shape parameters (α and

β) that describe the Beta distribution of the per-trial probability. Uses of the beta-

binomial in statistical modeling instead typically transform the shape parameters into

a pair of parameters that describe the per-trial probability and a dispersion param-

eter Morris (1997); larger values of the dispersion parameter δ correspond to less

variability. We use a slight modification of this parameterization (see figure 1)

We extend the Reed-Frost model by allowing the infectious period to last longer

than one step, and the infectivity to vary based on how long an individual has been

infected; we do this by parameterizing a transmission kernel that describes the force of

infection coming from individuals who were infected ` time steps ago. For convenience,

we assumed a fixed maximum window length (` = 5). We then based our transmission
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kernel on a negative binomial distribution, truncated to fit this window:

k̃(i) = i(GS−1) × exp

( −i
GP × `

)
, i = 1, ..., ` (7)

k(i) =
R0

Neff

× k̃(i)∑`
i=1 k̃(i)

, i = 1, ..., ` (8)

Here, R0 represents the basic reproductive number and GS and GP are shape and

position parameters, respectively.

2.2 Fitting Model

2.2.1 Transmission and Observational Process Errors

The transmission (eq. 4) and observation (eq. 6) processes in the simulation model

are both defined as beta-binomial (BB) processes. In fitting, we used the BB to

match the simulation model, but also tried several simpler alternatives: binomial

(B), Poisson (P), and negative-binomial (NB) processes. Process B does not allow

for overdispersion, while NB does not incorporate the size of the pool from which a

value is chosen; that is, it is theoretically possible for a NB sample of the number

of infections to be larger than the current susceptible population (although this is

extremely unlikely when the per capita infection probability is small). Process P

neglects both of these phenomena. Figure 1 illustrates the relationship of the four

discrete distributions.

2.2.2 Multiple Scale Decorrelation

The proportion of the population assumed to be effectively susceptible (Peff) and

the reporting proportion (Prep) have very similar effects on observed incidence. We

therefore reparameterized the model so that it uses a single parameter Peffrep for their
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Poisson Negative Binomial

Binomial Beta Binomial

Figure 1: Discrete distribution relationships. For beta-binomial distribution (bottom
right panel), we used an alternative parameterization α and β, where α = δB

1−p and

β = δB
p

. Moving from the top to bottom row adds a size parameter (replacing µ with

np). Moving from left to right adds a dispersion parameter δP and δB for Poisson
and Binomial distribution respectively.

product, and a second to govern how the product is apportioned between the two

quantities:

P̂eff = P 1−ρ
effrep (9)

P̂rep = P ρ
effrep (10)

We expected a priori that this parameterization would improve statistical conver-

gence, since it makes it possible to sample different values of the poorly constrained

value of ρ without changing Peffrep. It is straightforward to back-calculate Peff and

Prep once the model is fitted. For similar reasons, we experimented with measuring

infected individuals on a “reporting” scale in our continuous-variable models (see

below).
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2.2.3 Continuous latent variables

Continuous Approximation (Hybridization) 

Poisson Negative Binomial

Binomial Beta Binomial

Figure 2: Continuous approximation of discrete distributions via moment matching.
Distributions in Figure 1 were matched to a Gamma distribution with equivalent first
and second moments.

Another simplification we considered was treating the unobserved number of un-

derlying cases as a continuous variable. To do this, we matched the first two moments

of the discrete distribution to a Gamma distribution (Figure 2).

Eq. 4 and 6 can be rewritten as:

Ît+1 ∼ Gamma(a,
r

Prep

) (11)

Obst ∼ NB(Ît, δobs). (12)

One advantage of this continuous approximation approach is that it allows us to

scale our latent variable to help with model convergence, so that infected individuals

are measured on the reporting scale. Another advantage is that it allows us to use

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/110767doi: bioRxiv preprint 

https://doi.org/10.1101/110767
http://creativecommons.org/licenses/by-nc-nd/4.0/


MCMC sampling procedures such as Hamiltonian Monte Carlo (HMC), which cannot

easily use discrete latent variables.

2.3 Bayesian Markov Chain Monte Carlo

In Bayesian MCMC, model parameters are sampled from the posterior distribution

by a reversible Markov chain whose stationary distribution is the target posterior

distribution. Classical MCMC techniques include the Metropolis-Hasting algorithm

(Hastings, 1970), Gibbs sampling (Geman and Geman, 1984), and slice sampling

(Neal, 2003). Recently, convenient implementations of a powerful MCMC technique

called Hamiltonian Monte Carlo (HMC: also called hybrid MC) (Duane et al., 1987)

have become available. HMC uses the concept of Hamiltonian dynamics to create a

proposal distribution for the M-H algorithm, together with the leap-frog algorithm

and the No U-Turn sampler (Hoffman and Gelman, 2014). HMC requires more com-

putational effort per sample step compared to other MCMC techniques, but because

subsequent steps are less strongly correlated it also produces more effective samples

per sample step (Carpenter et al., 2016; Hoffman and Gelman, 2014).

2.3.1 Platforms

Many software platforms implement the automatic construction of MCMC samplers

for user-defined models. One of the most widely used platforms is JAGS (Just a Gibbs

Sampler); despite its name, it combines a variety of MCMC techniques to fit models.

NIMBLE (Numerical Inference for Statistical Models for Bayesian and Likelihood Es-

timation) is a more recent platform that allows users to flexibly model and customize

different algorithms and sample techniques for MCMC. Neither JAGS nor NIMBLE

has yet implemented HMC. One of the relatively few platforms that currently imple-

ments HMC is Stan, which provides full Bayesian inference for continuous-variable

models based on the No-U-Turn sampler, an adaptive form of HMC.
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2.3.2 Simulation and Evaluations

A typical frequentist statistical simulation scheme fits multiple realizations to data

generated from a fixed set of parameters that is determined a priori and evaluates

the match of the parameter estimates to the true values. When we fit our Bayesian

model using informative priors, frequentist coverage is generally higher than nominal

values (i.e. 90% posterior intervals will contain the true parameter values with > 90%

probability). For validation, we therefore used a Bayesian simulation scheme where

we first draw parameters from their prior distribution, generate data given the drawn

parameters, and then fit the Bayesian model with the same prior distributions; by

construction, this scheme should match the nominal coverage if the model fits are

correct under their own assumptions (Cook et al., 2006). We sampled 100 sets of

the parameters from the same prior distribution that was used in the fitting process;

for each parameter set, we simulated one realization of 15 time steps (10 for fitting

and 5 to compare to forecasts). All model variants were used to fit each realization

(Table 1 and 2 in the appendix give more detail about parameters and priors). We

added two convergence criteria to assess convergence for the main parameters (R0,

Peff , Prep): we required a value of the Gelman and Rubin statistic R̂ < 1.1 and an

effective sample size (ESS) greater than 400 for each replication. For each replication

we sample four chains starting with 4000 iterations; we repeatedly double the number

of iterations (with a upper threshold of one million iterations) until the convergence

criteria are met. Forecasts were made by simulating incidence 5 time steps forward

using parameters sampled from the fitted posterior distributions.

We evaluated our estimates of (1) total cases predicted over the forecast window

(disaggregated forecasts are analyzed in the supplementary material) and (2) key

model parameters (including the estimated mean generation interval (MGI: defined

as
∑`
i=1 ik̂(i)∑`
i=1 k̂(i)

)). We used bias, root mean square error (RMSE), and coverage to assess

model fit. Bias and RMSE are based on proportional errors, defined as the log
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ratio of our estimate (taken as the median of the posterior sample) to the known true

parameter value from our simulations. Errors were compared on the log scale in order

to allow comparison of the accuracy of estimation of different parameters that may

be on very different scales. The median is a scale-invariant, robust, summary statistic

for the location parameter of a Bayesian posterior distribution Minsker et al. (2014).

Thus in order to compare different parameters in a consistent, unitless fashion, the

errors were calculated as εi = log(med(θ̂i)/θi). We then calculated bias (median(ε))

and RMSE (
√

mean(ε2i )).

3 Results

The full model (which matches the simulation model) provides generally good fore-

casts and parameter estimates as assessed by bias (Figure 3) or RMSE (Figure 4),

except for estimates of Peff using JAGS.

In general, models with any kind of dispersion in the transmission process, or

with negative binomial dispersion in the observation process, did well. The exception

is that models that combined negative binomial transmission dispersal with beta

binomial observation dispersal produced biased forecasts and estimates of Prep.

There are no clear differences in the quality of model fit due to multi-scale decor-

relation, latent continuous transmission process or platform.

Figure 5 shows the statistical coverage of our estimates. Similar to the results for

bias and RMSE (Figure 3 and 4), we find generally good coverage (i.e., close to the

nominal value of 0.9) for models with dispersion in the transmission process, except

that the negative-binomial transmission process model undercovers across the board

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/110767doi: bioRxiv preprint 

https://doi.org/10.1101/110767
http://creativecommons.org/licenses/by-nc-nd/4.0/


Transmission:
beta-binomial

Transmission:
neg binomial

Transmission:
binomial

Transmission:
Poisson

Forecast

R0

Mean
generation
interval

proportion
susceptible

(Peff)

proportion
reported
(Prep)

bb nb b p bb nb b p bb nb b p bb nb b p

0.00

0.25

0.50

0.75

-0.1

0.0

0.1

-0.6

-0.4

-0.2

0.0

-0.10

-0.05

0.00

0.05

-0.4

-0.2

0.0

0.2

Observation process

B
ia
s

Method

Discrete

Dis. Decorrelation

Continuous

Cont. Decorrelation

Platform

JAGS

NIMBLE

Stan

Figure 3: Comparison of bias (based on proportional errors) for forecasts and pa-
rameters using models described in Sect. 2.2 across different platforms described in
Sect. 2.3.1. Models with overdispersion in the transmission process (BB and NB,
leftmost and second-left columns of panels) and models with overdispersion in the
observation process (BB and NB, leftmost and second-left x-axis ticks within each
panel) have generally low bias. Continuous latent-state models (solid points) are only
implemented for negative binomial and Poisson observational processes.

(coverage ≈ 0.8 for all observation process models and platforms) for forecasts and

Prep. For models without dispersion in transmission, models with dispersion in the

observation process have low coverage (≈ 0.8) for most parameters, while the beta-

binomial process model has low coverage (≈ 0.4) for Prep and models without any

dispersion have uniformly low coverage.
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Figure 4: Comparison of RMSE (based on proportional errors) for all fitting model
variants. The layout matches that of Figure 3. Patterns across models and platforms
are similar to those seen in Figure 3. Short-term forecasts have generally high error,
even when bias is low, reflecting inherent uncertainty in the system. The highly
correlated parameters Peff and Peffrep also show high error but not high bias.

There are substantial efficiency differences between transmission-process approaches

(continuous vs. discrete), as measured by time per effective sample size, shown in

Figure 6. For a given platform, models using continuous latent variables are generally

more efficient than discrete latent processes. Comparing models with continuous la-

tent variables between platforms (Figure 5, second and fourth column of every panel),
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Figure 5: Comparison of coverage probability for forecast and parameters. Models
with overdispersion in the transmission process (BB and NB, leftmost and second-left
columns of panels) and models with overdispersion in the observation process (BB
and NB, leftmost and second-left x-axis ticks within each panel) have coverage near
the nominal value of 0.9 for all parameters and model variants. The black line shows
the nominal coverage, and the grey ribbon the 95% binomial confidence interval based
on 100 simulated fits. Vertical axis is plotted on a logit scale.

Stan (using HMC) is sightly more efficient for majority of the parameters, followed

by NIMBLE and JAGS. Furthermore, continuous latent-variable models (especially

using HMC in STAN) use fewer iterations (when meeting all convergence criterion

described in section 2.3.2) than discrete latent-variable models.
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Figure 6: Comparison of efficiency for all fitting model variants: layout of models and
platforms as in Figure 3.

4 Discussion

We have fitted models varying in complexity to simulated epidemic data with mul-

tiple sources of heterogeneity, using several different platforms. Using models that

include some form of overdispersion is necessary for robust fits, but models that in-

clude overdispersion only in the transmission process can work as well as or better
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than the full model. Including overdispersion only in the observation process (if im-

plemented as a negative binomial distribution) also provides relatively robust fits to

these data. Simplifying the models by using continuous rather than discrete latent

variables increased efficiency with little effect on the quality of the fits.

4.1 Ceilings

The effects of using distributions with ceilings (i.e. binomial and beta-binomial dis-

tributions) instead of their less realistic counterparts without ceilings (Poisson and

negative binomial) was relatively small. In our framework, ceilings only apply in

models with discrete latent variables; the primary effect of such ceilings is to reduce

variance as probabilities (of infection or of sampling) become large. (Reporting-

process models without ceilings also allow for false positives or over-reporting, which

may be important in some contexts.)

4.2 Overdispersion

Accounting for overdispersion had more impact on our fits than the presence or ab-

sence of ceilings. In particular, models with no overdispersion in either process lacked

flexibility and tended to be over-confident (that is, they showed low coverage). How-

ever, models that account for overdispersion in only one process (either transmission

or observation) tended to be reliable for estimating parameters such as R0, mean

generation interval, and short-term forecasts, particularly when overdispersion was

implemented through negative binomial (a less constrained distribution than the beta

binomial). However, parameters that are closely tied to the details of a particular

model structure (such as the overdispersion parameters for the observation and trans-

mission processes) must change when the overdispersion model changes, in order to

compensate for missing sources of variability.

Several authors (e.g., (King et al., 2015; Taylor et al., 2016)) suggest that ac-
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counting for process as well as observation error in estimates of R0 and in forecasts

is necessary in order to avoid over-confident estimates. Our exploration does not in-

clude any cases where process error is completely absent — even our “dispersion-free”

processes incorporate sampling error in the process. However, we find that neglecting

overdispersion can still lead to over-confident and unreliable estimates.

4.3 Reporting

In classic infectious disease models, reducing reporting rate and reducing the total

effective population size have similar effects: reducing the observed size of the epi-

demic. While we want to make as few assumptions as possible about unobservable

aspects of the epidemic, underreporting is of huge practical importance. Additionally,

modeling observation error explicitly is required for reliable estimates of uncertainty

(King et al., 2015). If reporting error is modeled with a ceiling, then underreporting

is a necessary component of reporting error (i.e., reporting is always biased downward

as well as noisy). Allowing overdispersion decouples the variance from the mean of the

reporting process (i.e. the extra overdispersion parameter means that the variance is

not determined by the mean).

Because reporting rate and effective population size play similar roles in epidemic

dynamics, incorporating them both in a model may make their parameter estimates

strongly correlated and hence difficult to identify: we may be very uncertain whether

low observed epidemic incidence is driven by a small effective population size or a low

reporting rate. We have addressed convergence problems arising from this issue by

reparameterizing the model (Section 2.2.2). From a conceptual point of view, joint

unidentifiability is not necessarily a serious problem, as long as the quantities we are

most interested (such asR0) are identifiable. In practice, however, weak identifiability

can cause hard-to-detect convergence problems; known-parameter simulations like

those implemented here are useful for validation in such cases.
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4.4 Extensions and alternative approaches

Our analysis covers classical MC (i.e. conditional updating of parameters via con-

jugate, slice, and Metropolis-Hastings samplers) and HMC approaches. Even within

this scope there is additional room for analysis, both in terms of exploring important

heterogeneities that we have neglected here (such as spatial, age and social structure),

and in improving sampling techniques (e.g. by adjusting the choice of samplers in

JAGS or NIMBLE or by redundant parameterization Gelman et al. (2014)).

More broadly, a plethora of other model-fitting tools is available to researchers,

from deterministic optimization tools based on the Laplace approximation Illian et al.

(2012); Kristensen et al. (2016) to sequential techniques such as iterated filtering and

particle MC Del Moral et al. (2012); He et al. (2009); Yang et al. (2014). Ionides et al.

(2006). These techniques can in principle be combined flexibly with the methods we

explore here, e.g. using HMC to sample top-level parameters while implementing

a sequential MC technique for the latent states. It will be interesting to see how

the single-technique methods here compete with hybrid approaches, and how flexible

toolboxes such as NIMBLE will fare against more focused platforms like Stan.

4.5 Prior distributions

This paper focuses on evaluating Bayesian methods for fitting and forecasting epi-

demics. For the purposes of evaluation we use parameter distributions for simulation

that exactly match our Bayesian priors. We are assuming that researchers have a

reasonable method of choosing appropriate Bayesian priors; in real applications this

will be an important challenge.
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5 Conclusion

We have presented a comparison of simple MCMC approaches to fit epidemic data.

We learned two things about fitting epidemic data. First, modeling different processes

with dispersion (BB and NB) is a naive but effective way to add uncertainty in the

model; models that neglect such uncertainty are likely to be over-confident and less

accurate at forecasting. Second, approximating discrete latent state process with

continuous processes can aid efficiency without losing robustness of fit. This allows

more efficient fitting in the classic framework (e.g., JAGS and NIMBLE), and also

allows us to use the more advanced HMC technique (which we implemented via Stan).
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Supplementary Material

In the main text, we present the bias, RMSE, coverage and efficiency plots for ag-

gregated forecast, R0, MGI, Peff , and Prep. Here, we present plots showing the other

parameters (shape GS and position GP of the transmission kernel and process and

observation overdispersion parameters δP and δobs) and disaggregated forecasts (five

forecast steps) that are excluded in the main text. We also add some representative

plots of the simulated cases and forecast.
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Figure S1: Comparison of bias for GS (transmission shape), GP (transmission posi-
tion), δobs (observation overdispersion), and δP (process overdispersion: more detail
given in Sect. 2.2) across different platforms (described in Sect. 2.3.1). Overdisper-
sion parameter δP is only applicable in models with dispersion in the transmission
process (first and second left column panel) and overdispersion parameter δobs is only
applicable in models with dispersion in the observation process (first and second col-
umn within each column panel).

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/110767doi: bioRxiv preprint 

https://doi.org/10.1101/110767
http://creativecommons.org/licenses/by-nc-nd/4.0/


Transmission:
beta-binomial

Transmission:
neg binomial

Transmission:
binomial

Transmission:
Poisson

Gs

Gp

δobs

δP

bb nb b p bb nb b p bb nb b p bb nb b p

0.0

0.2

0.4

0.6

0.0

0.5

1.0

1.5

0

1

2

3

4

0

1

2

3

Observation process

R
M
S
E

Method

Discrete

Dis. Decorrelation

Continuous

Cont. Decorrelation

Platform

JAGS

NIMBLE

Stan

Figure S2: Comparison of RMSE for GS, GP , δobs, and δP . See Figure 4 in main text
and Figure S1 in appendix for details.
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Figure S3: Comparison of coverage for GS, GP , δobs, and δP . See Figure 5 in main
text and Figure S1 in appendix for details.
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Figure S4: Comparison of coverage for GS, GP , δobs, and δP . See Figure 6 in main
text and Figure S1 in appendix for details.
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Figure S5: Comparison of bias for five forecast steps (described in Sect. 2.2) across
different platforms (described in Sect. 2.3.1).
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Figure S6: Comparison of RMSE for five forecast steps described in Sect. 2.2 across
different platforms described in Sect. 2.3.1. See Figure 4 in the main text for details.
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Figure S7: Comparison of coverage for five forecast steps described in Sect. 2.2 across
different platforms described in Sect. 2.3.1. See Figure 5 in the main text for details.
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Figure S8: Comparison of sampling efficiency for five forecast steps described in Sect.
2.2 across different platforms described in Sect. 2.3.1. See Figure 6 in the main text
for details.
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Figure S9: Comparison of forecast using combinations of transmission process, ob-
servation process, decorrelation, latent state variables, and platforms described in
Sect 2.2 and 2.3.1. Moving from the top to bottom row adds overdispersion in the
transmission process (binomial (b) and Poisson (p) to negative-binomial (nb) and
beta-binomial (bb)). Moving from left to right adds overdispersion in the observa-
tions. Solid line shows the simulated observed cases (15 time steps); dashed line
shows the median of the posterior forecast sample with 50% (dark ribbon) and 90%
(light ribbon) confidence intervals (last 5 time steps).

32

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/110767doi: bioRxiv preprint 

https://doi.org/10.1101/110767
http://creativecommons.org/licenses/by-nc-nd/4.0/


●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

Model: Discrete bb.b Model: Cont. Decorrelation nb.nb

Model: Cont. Decorrelation p.p Model: Discrete b.bb

4 8 12 4 8 12

0

1000

2000

0

1000

2000

Time step

R
ep

or
te

d 
ca

se
s

Type

Median

Observed

Confidence Intervals

50%

90%

Platform

JAGS

NIMBLE

Stan

Figure S10: Comparison of forecast using a different set of parameters. See Figure
S9 for details.
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Figure S11: Comparison of forecast of low observed cases. See Figure S9 for details.
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Tables

Table 1: Simulation model parameters

Parameter Description True Prior

N Total population size Fixed at 100,000 NA
` Maximum length of the generation interval Fixed at 5 time steps NA
R0 Basic reproductive number 3 Gamma(shape=15,rate=5)

Peff Effective susceptible proportion of the population 0.5 Beta( Bsize
1−Peff

, Bsize
Peff

)

Prep Reporting proportion 0.5 Beta( Bsize
1−Prep

, Bsize
Prep

)

Gp Position parameter for generation interval 0.5 Beta( 2Bsize
1−Gp

, 2Bsize
Gp

)

Gs Shape parameter for generation interval 1 Gamma(shape=5,rate=5)
δP Beta Binomial transmission process dispersion 1 Gamma(shape=10,rate=10)
δobs Beta-Binomial Observation process dispersion 1 Gamma(shape=10,rate=10)

Table 2: Fitting model parameters

Parameter Description True Prior

N Total population size Fixed at 100,000 NA
` Maximum length of the generation interval Fixed at 5 time steps NA

Bsize Beta prior size factor Fixed at 1 NA
R0 Basic reproductive number 3 Gamma(shape=15,rate=5)

Peff Effective susceptible proportion of the population 0.5 Beta( Bsize
1−Peff

, Bsize
Peff

)

Prep Reporting proportion 0.5 Beta( Bsize
1−Prep

, Bsize
Prep

)

Peffrep Proportion of effective S to I that are observed Peff × Prep Beta( Bsize
1−Peffrep

, Bsize
Peffrep

)

ρ Scale splitting factor 0.5 Beta(Bsize
1−ρ ,

Bsize
ρ

)

Gp Position parameter for generation interval 0.5 Beta( 2Bsize
1−Gp

, 2Bsize
Gp

)

Gs Shape parameter for generation interval 1 Gamma(shape=5,rate=5)
δP Beta Binomial transmission process dispersion 1 Gamma(shape=10,rate=10)

δP (Neg-Binom) Negative-Binomial Transmission process dispersion NA Uniform(min=0,max=100)
δobs Beta-Binomial Observation process dispersion 1 Gamma(shape=10,rate=10)

δobs (Neg-Binom) Negative-Binomial Transmission process dispersion NA Uniform(min=0,max=100)
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