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Abstract
RNA-seq is commonly used to identify genetic modules that respond to perturbations. In
single cells, transcriptomes have been used as phenotypes, but this concept has not been
applied to whole-organism RNA-seq. Linear models can quantify expression effects of indi-
vidual mutants and identify epistatic effects in double mutants. To make interpretation of
these high-dimensional measurements intuitive, we developed a single coefficient to quantify
transcriptome-wide epistasis that accurately reflects the underlying interactions. To demon-
strate our approach, we sequenced four single and two double mutants of Caenorhabditis el-
egans. From these mutants, we reconstructed the known hypoxia pathway. In addition, we
uncovered a class of 56 genes that have opposing changes in expression in egl-9(lf) compared
to vhl-1(lf) but the egl-9(lf); vhl-1(lf) mutant has the same phenotype as egl-9(lf). This class
violates the classical model of HIF-1 regulation, but can be explained by postulating a role of
hydroxylated HIF-1 in transcriptional control.

Significance Statement
Transcriptome profiling is a way to quickly and quantitatively measure gene expression level. Because of
their quantitative nature, there is widespread interest in using transcriptomic profiles as a phenotype for
genetic analysis. However, a source of major concern is that whole-animal transcriptomic profiles mix the
expression signatures of multiple cellular states, making it hard to accurately reconstruct genetic interactions.
Additionally, it has been difficult to quantify epistasis, the signature of genetic interaction between two genes,
in these molecular phenotypes. Here, we show that it is possible to accurately reconstruct genetic interactions
between genes using whole-animal RNA sequencing, and we demonstrate a powerful new way to measure
and understand epistasis arising from these measurements. This suggests that whole-organism RNA-seq can
be a powerful tool with which to understand genetic interactions in entire organisms and not only in isolated
cells. With the advent of genome engineering tools, generating mutants has become easier and faster for
many organisms. As mutants become easier to create, phenotyping them has become a major bottleneck
in understanding the biological functions of the genes in question. Our work presents a possible solution to
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this problem, because transcriptome profiling is fast and sensitive to genetic perturbations regardless of the
context they operate in.

Introduction 1

Genetic analysis of molecular pathways has traditionally been performed through epistatic analysis. General- 2

ized epistasis indicates that two genes interact functionally; such interaction can involve the direct interaction 3

of their products or the interaction of any consequence of their function1. If two genes interact, and the 4

mutants of these genes have a quantifiable phenotype, the double mutant of interacting genes will have a phe- 5

notype that is not the sum of the phenotypes of the single mutants. Epistasis analysis remains a cornerstone 6

of genetics today2. 7

Recently, biological studies have shifted in focus from studying single genes to studying all genes in par- 8

allel. In particular, RNA-seq3 enables biologists to identify genes that change expression in response to a 9

perturbation. RNA-seq has been successfully used to identify genetic modules involved in a variety of pro- 10

cesses, such as in the Caenorhabditis elegans linker cell migration4, and planarian stem cell maintenance5,6. 11

For the most part, the role of transcriptional profiling has been restricted to target gene identification, and 12

so far there are only a few examples where transcriptomes have been used to generate quantitative genetic 13

models of any kind. In population genetics, eQTL studies have established the power of transcriptomes for 14

genetic mapping7,8,9,10. Genetic pathway analysis via epistasis has only been performed once in Saccha- 15

romyces cerevisiae 11 and once in Dictyostelium discoideum 12. Recently, Dixit et al described a protocol 16

for epistasis analysis in T-cells using single-cell RNA-seq13. Epistasis analysis of single cells or single-celled 17

organisms is popular because of the concern that whole-organism sequencing will mix information from 18

multiple cell types, preventing the accurate reconstruction of genetic interactions. Using whole-organism 19

transcriptome profiling, we have recently identified a new developmental state of C. elegans caused by loss 20

of a single cell type (sperm cells)14, which suggests that whole-organism transcriptome profiling contains 21

sufficient information for epistatic analysis. To investigate the ability of whole-organism transcriptomes to 22

serve as quantitative phenotypes for epistatic analysis in metazoans, we sequenced the transcriptomes of of 23

four well-characterized loss-of-function mutants in the C. elegans hypoxia pathway15,16,17,18. 24

Metazoans depend on the presence of oxygen in sufficient concentrations to support aerobic metabolism. 25

Hypoxia inducible factors (HIFs) are an important group of oxygen-responsive genes that are highly conserved 26

in metazoans19. A common mechanism for hypoxia-response induction is heterodimerization between a 27

HIFα and a HIFβ subunit; the heterodimer then initiates transcription of target genes20. The number and 28

complexity of HIFs varies throughout metazoans. In the roundworm C. elegans there is a single HIFα gene, 29

hif-1 18, and a single HIFβ gene, ahr-1 21. 30

Levels of HIFα proteins are tightly regulated. Under conditions of normoxia, HIF-1α exists in the 31

cytoplasm and partakes in a futile cycle of protein production and rapid degradation22. In C. elegans, HIF- 32

1α is hydroxylated by a proline hydroxylase (EGL-9)23. HIF-1 hydroxylation increases its binding affinity 33

to Von Hippel-Lindau tumor suppressor 1 (VHL-1), which in turn allows ubiquitination of HIF-1 leading to 34

its subsequent degradation. In C. elegans, EGL-9 activity is inhibited by binding of CYSL-1, a homolog of 35

sulfhydrylases/cysteine synthases; and CYSL-1 activity is in turn inhibited by the putative transmembrane 36

O-acyltransferase RHY-1, possibly by post-translational modifications to CYSL-124 (see Fig. 1). 37

Our reconstruction of the hypoxia pathway in C. elegans using RNA sequencing shows that whole-animal 38

transcriptome profiles can be used as phenotypes for genetic analysis and that the phenomenon of epistasis, 39

a hallmark of genetic interaction observed in double mutants, holds at the molecular systems level. We 40

demonstrate that transcriptomes can aid in ordering genes in a pathway using only single mutants. Finally, 41

we were able to identify genes that appear to be downstream of egl-9 and vhl-1 , but do not appear to be 42

targets of hif-1 . Using a single set of transcriptome-wide measurements, we observed most of the known 43

transcriptional effects of hif-1 as well as novel effects not described before in C. elegans. Taken together, 44

this analysis demonstrates that whole-animal RNA-seq is an extremely fast and powerful method for genetic 45

analyses in an area where phenotypic measurements are now the rate-limiting step. 46
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Figure 1. Genetic and biochemical representation of the hypoxia pathway in C. elegans. Red arrows are
arrows that lead to inhibition of HIF-1, and blue arrows are arrows that increase HIF-1 activity or are the
result of HIF-1 activity. EGL-9 is known to exert VHL-1-dependent and independent repression on HIF-1
as shown in the genetic diagram. The VHL-1-independent repression of HIF-1 by EGL-9 is denoted by
a dashed line and is not dependent on the hydroxylating activity of EGL-9. Technically, RHY-1 inhibits
CYSL-1, which in turn inhibits EGL-9, but this interaction was abbreviated in the genetic diagram for
clarity.

Results 47

The hypoxia pathway controls thousands of genes in C. elegans 48

We selected four null single mutants within the hypoxia pathway for expression profiling: egl-9(sa307), 49

rhy-1(ok1402), vhl-1(ok161), hif-1(ia4). We also sequenced the transcriptomes of two double mutants, 50

egl-9; vhl-1 and egl-9 hif-1 as well as wild-type (N2). Each genotype was sequenced in triplicate at a depth 51

of 15 million reads per sample. We performed whole-animal RNA-seq at a moderate sequencing depth (∼ 7 52

million mapped reads per sample) under normoxic conditions. We identified around 22,000 different isoforms 53

per sample, which allowed us to measure differential expression of 18,344 isoforms across all replicates and 54

genotypes (∼70% of the protein coding isoforms in C. elegans). We included in our analysis a fog-2(q71) 55

mutant we have previously studied14, because fog-2 is not reported to interact with the hypoxia pathway. We 56

analyzed our data using a general linear model on logarithm-transformed counts. Changes in gene expression 57

are reflected in the regression coefficient β, which is specific to each isoform within a genotype (excluding 58

wild-type, which is used as baseline). Statistical significance is achieved when the q-value of a β coefficient 59

(p-values adjusted for multiple testing) are less than 0.1. Genes that are significantly altered between the 60

wild type and a given mutant (differentially expressed genes, DEGs) have β values that are statistically 61

significantly different from 0 (i.e. greater than 0 or less than 0). β coefficients are analogous to the logarithm 62

of the fold-change between the mutant and the wild type. Larger magnitudes of β correspond to larger 63

perturbations (see Fig. 2). When we refer to β coefficients and q-values, it will always be in reference to 64

isoforms. However, we report the sizes of each gene set in by the number of genes they contain, not isoforms. 65

For the case of C. elegans, this difference is negligible since the great majority of protein-coding genes have 66

a single isoform. We have opted for this method of referring to gene sets because it simplifies the language 67

considerably. A complete version of the code used for this analysis with ample documentation, is available 68

at https://wormlabcaltech.github.io/mprsq. 69

Transcriptome profiling of the hypoxia pathway revealed that this pathway controls thousands of genes 70
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Figure 2. Analysis workflow. After sequencing, reads are quantified using Kallisto. Bars show estimated
counts for each isoform. Differential expression is calculated using Sleuth, which outputs one β coefficient per
isoform per genotype. β coefficients are analogous to the natural logarithm of the fold-change relative to a
wild-type control. Downstream analyses are performed with β coefficients that are statistically significantly
different from 0. Q-values less than 0.1 are considered statistically different from 0.

in C. elegans (see Table 1). The egl-9(lf) transcriptome showed differential expression of 2,549 genes. 3,005 71

genes were differentially expressed in rhy-1(lf) mutants. The vhl-1(lf) transcriptome showed considerably 72

fewer DEGs (1,275), possibly because vhl-1 is a weaker inhibitor of hif-1 than egl-9 17. The egl-9(lf);vhl-1(lf) 73

double mutant transcriptome showed 3,654 DEGs. The hif-1(lf) mutant showed a transcriptomic phenotype 74

involving 1,075 genes. The egl-9(lf) hif-1(lf) double mutant showed a similar number of genes with altered 75

expression (744 genes). 76

Genotype Differentially Expressed Genes
egl-9(lf) 2,549
rhy-1(lf) 3,005
vhl-1(lf) 1,275
hif-1(lf) 1,075
egl-9(lf); vhl-1(lf) 3,654
egl-9(lf) hif-1(lf) 744
fog-2(lf) 2,840

Table 1. Number of differentially expressed genes in each mutant strain with respect to wild-type (N2).

Principal Component Analysis visualizes epistatic relationships between geno- 77

types 78

PCA is used to identify relationships between high-dimensional data points25. We performed PCA on our 79

data to examine whether each genotype clustered in a biologically relevant manner. PCA identifies the 80

vector that can explain most of the variation in the data; this is called the first PCA dimension. Using 81

PCA, one can identify the first n dimensions that can explain more than 95% of the variation in the data. 82

Sample clustering in these n dimensions often indicates biological relationships between the data, although 83

interpreting PCA dimensions can be difficult. 84

The first dimension of the PCA analysis was able to discriminate between mutants that have constitutive 85

high levels of HIF-1 and mutants that have no HIF-1, whereas the second dimension was able to discriminate 86

between mutants within the hypoxia pathway and outside the hypoxia pathway (see Fig. 3; fog-2 is not 87

reported to act in the hypoxia pathway and acts as a negative control). Therefore, expression profiling 88

measures enough signal to cluster genes in a meaningful manner in complex metazoans. 89
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Figure 3. Principal component analysis of various C. elegans mutants. Genotypes that have an constitutive
hypoxia response (i.e. egl-9(lf)) cluster far from genotypes that do not have a hypoxic response (i.e. hif-1(lf))
along PCA Dimension 1. PCA Dimension 2 separates genotypes that do not participate hypoxic response
pathway.

Reconstruction of the hypoxia pathway from first genetic principles 90

To reconstruct a genetic pathway, we must first assess whether two genes act on the same phenotype. If 91

they do not act on the same phenotype (two mutations do not cause the same genes to become differentially 92

expressed relative to wild-type), these mutants are independent. Otherwise, we must measure whether these 93

genes act additively or epistatically on the phenotype of interest; if there is epistasis we must measure whether 94

it is positive or negative, in order to assess whether the epistatic relationship is a genetic suppression or a 95

synthetic interaction. To allow coherent comparisons of different mutant transcriptomes (the phenotype we 96

are studying here), we define the shared transcriptomic phenotype between two mutants (STP) as the shared 97

set of genes or isoforms whose expression in both mutants are different from that in wild-type, regardless of 98

the direction of change. 99

Genes in the hypoxia mutant act on the same transcriptional phenotype 100

All the hypoxia mutants had a significant STP: the fraction of differentially expressed genes that was shared 101

between mutants ranged from a minimum of 10% shared between hif-1(lf) and egl-9(lf); vhl-1(lf) to a max- 102

imum of 32% shared genes between egl-9(lf) and egl-9(lf); vhl-1(lf). For comparison, we also analyzed a 103

previously published fog-2(lf) transcriptome14. The fog-2 gene is involved in masculinization of the C. el- 104

egans germline, which enables sperm formation, and is not known to be involved in the hypoxia pathway. 105

The hypoxia pathway mutants and the fog-2(lf) mutant also had STPs (8.8%–14% genes). 106

Next, we performed pairwise correlations between all mutant pairs. We rank-transformed the β coef- 107

ficients of each isoform between the STP of two mutants, and calculated lines of best fit using Bayesian 108

regressions that are robust to outliers (see Fig 4). For mutants associated with the hypoxia pathway, these 109

correlations have values higher than 0.9 with a tight distribution around the line of best fit. The correlations 110

for mutants from the hypoxia pathway with the fog-2(lf) mutant were considerably weaker, with magnitudes 111

between 0.6–0.85 and greater variance around the line of best fit. Although hif-1 is known to be genetically 112

repressed by egl-9 , rhy-1 and vhl-1 15,16, all the correlations between mutants of these genes and hif-1(lf) 113

were positive. 114

Transcriptome-wide epistasis 115

Ideally, any measurement of transcriptome-wide epistasis should conform to certain expectations. First, it 116

should make use of the regression coefficients of as many genes as possible. Second, it should be summarizable 117

in a single, well-defined number. Third, it should have an intuitive behavior, such that special values of the 118

statistic have an unambiguous interpretation. 119

We found an approach that satisfies all of the above conditions and which can be graphed in a plot 120

we call an epistasis plot (see Fig 5) In an epistasis plot, the X-axis represents the expected β coefficient 121

for given gene in a double mutant a−b− if a and b interact log-additively. In other words, each individual 122
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A

B

Figure 4. Strong transcriptional correlations can be identified between genes that share a positive regulatory
connection. A. We obtained identified isoforms that were differentially expressed in both egl-9(lf) and the
rhy-1(lf) mutants, and ranked each isoform according to its β coefficient. We plotted the rank of each
gene in rhy-1(lf) versus the rank of the same gene in the egl-9(lf) transcriptome. B. For comparison, we
followed the same procedure with the fog-2(lf) and rhy-1(lf) transcriptomes. fog-2(lf) is not known to interact
with the primary hypoxia pathway. Green, transparent large points mark inliers to the primary regressions
(blue lines); red squares mark outliers to the primary regressions and orange lines represent the secondary
correlations involving the outliers.
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isoform’s x-coordinate is the sum of the regression coefficients from the single mutants a− and b−. The 123

Y-axis represents the deviations from the log-additive (null) model, and can be calculated as the difference 124

between the predicted and the observed β coefficients. Only genes that are differentially expressed in all 125

three genotypes are plotted. This attempts to ensure that the isoforms to be examined are regulated by 126

both genes. These plots will generate specific patterns that can be described through linear regressions. The 127

slope of these lines, s(a, b), is the transcriptome-wide epistasis coefficient. 128

Transcriptome-wide epistasis coefficients can be understood intuitively for simple cases of genetic inter- 129

actions if true genetic nulls are used. If two genes act additively on the same set of differentially expressed 130

isoforms then all the plotted points will fall along the line y = 0. If two genes act positively in an unbranched 131

pathway, then all the mutants should have the same phenotype. It follows that data from this pathway will 132

form line with slope equal to − 1
2 . On the other hand, in the limit of complete genetic inhibition of b by a in 133

an unbranched pathway (i.e., a is in great excess over b, such that under the conditions measured b has no 134

activity), the plots should show a line of best fit with slope equal to −1. Genes that interact synthetically 135

(i.e., through an OR-gate) will fall along lines with slopes > 0. When there is epistasis of one gene over 136

another, the points will fall along one of two possible slopes that must be determined empirically from the 137

single mutants data. We can use both single mutants data to predict the distribution of slopes that results for 138

the cases stated above. The transcriptome-wide epistasis coefficient emerges as a powerful way to quantify 139

epistasis because it integrates information from many different isoforms into a single number (see Fig. 5). 140

In our experiment, we studied two double mutants, egl-9(lf) hif-1(lf) and egl-9(lf); vhl-1(lf). We wanted to 141

understand how well an epistatic analysis based on transcriptome-wide coefficients agreed with the epistasis 142

results reported in the literature, which were based on qPCR of single genes. Therefore, we performed 143

orthogonal distance regression on the two gene combinations we studied (egl-9 and vhl-1 , and egl-9 and 144

hif-1 ) to determine the epistasis coefficient for each gene pair. We also generated models for the special 145

cases mentioned above using the single mutant data. 146

We measured the epistasis coefficient between egl-9 and vhl-1 : s(egl-9 vhl-1 ) = −0.41. Simulations using 147

just the single mutant data showed that the double mutant exhibited the egl-9(lf) phenotype (see Fig. 5). 148

We used Bayesian model selection to reject a linear pathway (odds ratio (OR) > 1083), which leads us to 149

conclude egl-9 is upstream of vhl-1 acting on a phenotype in a branched manner. We also measured epistasis 150

between egl-9 and hif-1 , s(egl-9 , hif-1 ) = −0.80, and we found that this behavior could be predicted by 151

modeling hif-1 downstream of egl-9 . We also rejected the null hypothesis that these two genes act in a 152

positive linear pathway (OR> 1093). Taken together, this leads us to conclude that egl-9 strongly inhibits 153

hif-1 . 154

Epistasis can be predicted 155

Given our success in measuring epistasis coefficients, we wanted to know whether we could predict the 156

epistasis coefficient between egl-9 and vhl-1 in the absence of the egl-9(lf) genotype. Since RHY-1 indirectly 157

activates EGL-9, the rhy-1(lf) transcriptome should contain more or less equivalent information to the 158

egl-9(lf) transcriptome. Therefore, we generated predictions of the epistasis coefficient between egl-9 and 159

vhl-1 by substituting in the rhy-1(lf) data, predicting s(rhy − 1, vhl − 1) = −0.45. Similarly, we used the 160

egl-9(lf); vhl-1(lf) double mutant to measure the epistasis coefficient while replacing the egl-9(lf) dataset 161

with the rhy-1(lf) dataset. We found that the epistasis coefficient using this substitution was −0.40. This 162

coefficient was different from −0.50 (OR > 1062), reflecting the same qualitative conclusion that vhl-1 163

represents a branch in the hypoxia pathway. In conclusion, we were able to obtain a quantitatively close 164

prediction of the epistasis coefficient for two mutants using the transcriptome of a related, upstream mutant. 165

Finally, in the absence of a single mutant, an upstream locus can be used to estimate epistasis between two 166

genes. 167

Transcriptomic decorrelation can be used to infer functional distance 168

So far, we have shown that RNA-seq can accurately measure genetic interactions. However, genetic inter- 169

actions do not require two gene products to interact biochemically, nor even to be physically close to each 170

other. RNA-seq cannot measure physical interactions between genes, but we wondered whether expression 171

profiling contains sufficient information to order genes along a pathway. 172
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Figure 5. (A) Schematic diagram of an epistasis plot. The X-axis on an epistasis plot is the expected
coefficient for a double mutant under an log-additive model (null model). The Y-axis plots deviations from
this model. Double mutants that deviate in a systematic manner from the null model exhibit transcriptome-
wide epistasis (s). To measure s, we find the line of best fit and determine its slope. Genes that act
log-additively on a phenotype (Ph) will have s = 0 (null hypothesis, orange line); whereas genes that act
along an unbranched pathway will have s = −1/2 (blue line). Strong repression is reflected by s = −1
(red line), whereas s > 0 correspond to synthetic interactions (purple line). (B) Epistasis plot showing that
the egl-9(lf); vhl-1(lf) transcriptome deviates significantly from a null additive. Points are colored qualita-
tively according to density (purple—low, yellow—high) and size is inversely proportional to the standard
error (S.E.) of the y-axis. The green line is the line of best fit from an orthogonal distance regression.
(C) Comparison of simulated epistatic coefficients against the observed coefficient. Green curve shows the
bootstrapped observed transcriptome-wide epistasis coefficient for egl-9 and vhl-1 . Dashed green line shows
the mean value of the data. Simulations use only the single mutant data to idealize what expression of the
double mutant should look like. a > b means that the phenotype of a is observed in a double mutant a−b−.
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Single genes are often regulated by multiple independent sources. The connection between two nodes 173

can in theory be characterized by the strength of the edges connecting them (the thickness of the edge); 174

the sources that regulate both nodes (the fraction of inputs common to both nodes); and the genes that 175

are regulated by both nodes (the fraction of outputs that are common to both nodes). In other words, we 176

expected that expression profiles associated with a pathway would respond quantitatively to quantitative 177

changes in activity of the pathway. Targeting a pathway at multiple points would lead to expression pro- 178

file divergence as we compare nodes that are separated by more degrees of freedom, reflecting the flux in 179

information between them. 180

We investigated this possibility by weighting the robust Bayesian regression between each pair of geno- 181

types by the size of the shared transcriptomic phenotype of each pair divided by the total number of isoforms 182

differentially expressed in either mutant (NIntersection/NUnion). We plotted the weighted correlation of each 183

gene pair, ordered by increasing functional distance (see Fig. 6). In every case, we see that the weighted 184

correlation decreases monotonically due mainly, but not exclusively, to a smaller STP. 185

We believe that this result is not due to random noise or insufficiently deep sequencing. Instead, we 186

propose a framework in which every gene is regulated by multiple different molecular species, which induces 187

progressive decorrelation. This decorrelation in turn has two consequences. First, decorrelation within a 188

pathway implies that two nodes may be almost independent of each other if the functional distance between 189

them is large. Second, it may be possible to use decorrelation dynamics to infer gene order in a branching 190

pathway, as we have done with the hypoxia pathway. 191

0.1 Classical epistasis identifies a core hypoxic response 192

We identified a main hypoxia response induced by HIF-1 (466 genes) by selecting genes that were consis- 193

tently altered in egl-9(lf), rhy-1(lf), vhl-1(lf) and egl-9(lf); vhl-1(lf) mutants but which were suppressed in 194

the egl-9(lf) hif-1(lf) mutant. This response included five transcription factors (W02D7.6 , nhr-57 , ztf-18 , 195

nhr-135 and dmd-9 ; Supplementary Table 1). Even though HIF-1 is an activator, not all of these genes were 196

up-regulated. We reasoned that only genes that are up-regulated in HIF-1-inhibitor mutants are candidates 197

for direct regulation by HIF-1. We found 264 such genes. Phenotype Enrichment Analysis26 showed that this 198

gene list was enriched in genes associated with oxygen response, dauer development and dauer constitutive 199

phenotypes (fold-change > 4 and q < 10−1 for all terms). 200

Feedback can be inferred 201

While some of the rank plots contained a clear positive correlation (see Fig. 4), others showed a discernible 202

cross-pattern (see Figure S2). In particular, this cross-pattern emerged between vhl-1(lf) and rhy-1(lf) or 203

between vhl-1(lf) and egl-9(lf), even though vhl-1 , rhy-1 and egl-9 are all inhibitors of hif-1(lf). Such cross- 204

patterns could be indicative of feedback loops or other complex interaction patterns. If the above is correct, 205

then it should be possible to identify genes that are regulated by rhy-1 in a logically consistent way: Since loss 206

of egl-9 causes rhy-1 mRNA levels to increase, if this increase leads to a significant change in RHY-1 activity, 207

then it follows that the egl-9(lf) and rhy-1(lf) should show anti-correlation in a subset of genes. Since we do 208

not observe many genes that are anti-correlated, we conclude that is unlikely that the change in rhy-1 mRNA 209

expression causes a significant change in RHY-1 activity under normoxic conditions. We also searched for 210

genes with hif-1 -independent, vhl-1 -dependent gene expression and found 71 genes (Supplementary Table 211

2). 212

Identification of non-classical epistatic interactions 213

hif-1(lf) has traditionally been viewed as existing in a genetic OFF state under normoxic conditions. However, 214

our dataset indicates that 1,075 genes show altered expression when hif-1 function is removed in normoxic 215

conditions. Moreover, we observed positive correlations between hif-1(lf) β coefficients and egl-9(lf), vhl-1(lf) 216

and rhy-1(lf) β coefficients in spite of the negative regulatory relationships between these genes and hif-1 . 217

Such positive correlations could indicate a relationship between these genes that has not been reported 218

previously. 219
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Downstream Branched Pathway

EGL-9RHY-1 HIF-1B

Upstream and Downstream
Branched Pathway

EGL-9RHY-1 HIF-1C

EGL-9RHY-1 HIF-1

Unbranched Pathway

A

Transcriptom
e Space

D

Figure 6. Theoretically, transcriptomes can be used to order genes in a pathway under certain assumptions.
Arrows in the diagrams above are intended to show the direction of flow, and do not indicate valence. A.
A linear pathway in which rhy-1 is the only gene controlling egl-9 , which in turn controls hif-1 does not
contain information to infer the order between genes. B. If rhy-1 and egl-9 have transcriptomic effects that
are separable from hif-1 , then the rhy-1 transcriptome should contain contributions from egl-9 , hif-1 and
egl-9 - and hif-1 -independent pathways. This pathway contains enough information to infer order. C. If a
pathway is branched both upstream and downstream, transcriptomes will show even faster decorrelation.
Nodes that are separated by many edges may begin to behave almost independently of each other with
marginal transcriptomic overlap or correlation. D. The hypoxia pathway can be ordered. We hypothesize
the rapid decay in correlation is due to a mixture of upstream and downstream branching that happens
along this pathway. Bars show the standard error of the weighted coefficient from the Monte Carlo Markov
Chain computations.
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We first identified genes that exhibited violations of the canonical genetic model of the hypoxia pathway. 220

We searched for genes that changed in different directions between egl-9(lf) and vhl-1(lf), or, equivalently, 221

between rhy-1(lf) and vhl-1(lf) (we assume that all results from the rhy-1(lf) transcriptome reflect a complete 222

loss of egl-9 activity) without specifying any further conditions. We found 56 that satisfied this condition (see 223

Fig. 7, Supplementary Table 3). When we checked expression of these genes in the double mutant, we found 224

that egl-9 remained epistatic over vhl-1 for this class of genes. This class of genes may in fact be much larger 225

because it overlooks genes that have wild-type expression in an egl-9(lf) background, altered expression in a 226

vhl-1(lf) background, and suppressed (wild-type) expression in an egl-9(lf); vhl-1(lf) background. 227

A

B

Figure 7. A. 56 genes in C. elegans exhibit non-classical epistasis in the hypoxiapathway, characterized
by opposite effects on gene expression, relative to the wild-type, of of the vhl-1(lf) compared to egl-9(lf) (or
rhy-1(lf)) mutants. Shown are a random selection of 15 out of 56 genes for illustrative purposes. B. Genes
that behave non-canonically have a consistent pattern. vhl-1(lf) mutants have an opposite effect to egl-9(lf),
but egl-9 remains epistatic to vhl-1 and loss-of-function mutations in hif-1 suppress the egl-9(lf) phenotype.
Asterisks show β values significantly different from 0 relative to wild-type (q < 10−1).

Although this entire class had similar behavior, for simplicity we focused on two genes, nlp-31 and ftn-1 228

which have expression patterns representative of this class. ftn-1 is described to be responsive to mutations 229

in the hypoxia pathway and has been reported to have aberrant behaviors; specifically, mutation of egl-9 230

and vhl-1 have opposing effects on ftn-1 expression27,28. These studies showed the same patterns of ftn-1 231

expression phenotypes using both RNAi and alleles, which allays concerns of strain-specific interference. We 232

observed that hif-1 was epistatic to egl-9 , and that egl-9 and hif-1 both promoted ftn-1 expression. 233

Analysis of ftn-1 expression reveals that egl-9 is epistatic to hif-1 ; that vhl-1 has opposite effects to 234

egl-9 , and that vhl-1 is epistatic to egl-9 . Analysis of nlp-31 reveals similar relationships. nlp-31 expression 235

is decreased in hif-1(lf), and increased in egl-9(lf). However, egl-9 is epistatic to hif-1 . Like ftn-1 , vhl-1 has 236

the opposite effect to egl-9 , yet is epistatic to egl-9 . We propose in the Discussion a novel model for how 237

HIF-1 might regulate these targets. 238
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Discussion 239

The C. elegans hypoxia pathway can be reconstructed de novo from RNA-seq 240

data 241

In this paper, we have shown that whole-organism transcriptomic phenotypes can be used to reconstruct 242

genetic pathways and to discern previously overlooked or uncharacterized genetic interactions. We success- 243

fully reconstructed the hypoxia pathway, and inferred order of action (rhy-1 activates egl-9 , egl-9 and vhl-1 244

inhibit hif-1 ), and we were able to infer from transcriptome-wide epistasis measurements that egl-9 exerts 245

vhl-1 -dependent and independent inhibition on hif-1 . 246

Interpretation of the non-classical epistasis in the hypoxia pathway 247

The observation of 56 genes that exhibit a specific pattern of non-classical epistasis suggests the existence of 248

previously undescribed aspects of the hypoxia pathway. Some of these non-classical behaviors had been ob- 249

served previously27,28,29, but no satisfactory mechanism has been proposed to explain this biology. Previous 250

studies28,27 suggested that HIF-1 integrates information on iron concentration in the cell to determine its 251

binding affinity to the ftn-1 promoter, but could not definitively establish a mechanism. It is unclear why 252

deletion of hif-1 and deletion of egl-9 both cause induction of ftn-1 expression, but deletion of vhl-1 abol- 253

ishes this induction. Moreover, Luchachack et al29 have previously reported that certain genes important for 254

the C. elegans immune response against pathogens reflect similar non-canonical expression patterns. Their 255

interpretation was that swan-1 , which encodes a binding partner to EGL-930, is important for modulating 256

HIF-1 activity in some manner. The lack of a conclusive double mutant analysis in this work means the 257

role of SWAN-1 in modulation of HIF-1 activity remains to be demonstrated. Other mechanisms, such as 258

tissue-specific differences in the pathway31 could also modulate expression, though it is worth pointing out 259

that ftn-1 expression appears restricted to a single tissue, the intestine32. Another possibility is that egl-9 260

controls hif-1 mRNA stability via other vhl-1 -independent pathways, but we did not see a decreases in hif-1 261

level in egl-9(lf), rhy-1(lf) or vhl-1(lf) mutants. Another possibility, such as control of protein stability via 262

egl-9 independently of vhl-1 33 will not lead to splitting unless it happens in a tissue-specific manner. 263

One parsimonious solution is to consider HIF-1 as a protein with both activating and inhibiting states. 264

In fact, HIF-1 already exists in two states in C. elegans: unmodified HIF-1 and HIF-1-hydroxyl (HIF- 265

1-OH). Under this model, the effects of HIF-1 for certain genes like ftn-1 or nlp-31 are antagonized by 266

HIF-1-hydroxyl, which is present at only a low level in the cell in normoxia because it is degraded in a 267

vhl-1 -dependent fashion. This means that loss of vhl-1 stabilizes HIF-1-hydroxyl. Genes that are sensitive to 268

HIF-1-hydroxyl will be inhibited as a result of the increase in the amount of this HIF-1-hydroxyl, despite loss 269

of vhl-1 function also increasing the level of non-hydroxylated HIF-1. On the other hand, egl-9(lf) abrogates 270

the generation of HIF-1-hydroxyl, stimulating accumulation of non-hydroxylated HIF-1 and promoting gene 271

expression. Whether deletion of hif-1(lf) is overall activating or inhibiting will depend on the relative activity 272

of each protein state under normoxia (see Fig. 8). HIF-1-hydroxyl is challenging to study genetically, and if 273

it does have the activity suggested by our genetic evidence this may have prevented such a role from being 274

detected. No known mimetic mutations are available with which to study the pure hydroxylated HIF-1 275

species, and mutations in the Von Hippel-Lindau gene that stabilize the hydroxyl species also increase the 276

quantity of non-hydroxylated HIF-1 by mass action. 277

Because HIF-1 is detected at low levels in cells under normoxic conditions34, total HIF-1 protein levels are 278

assumed to be so low as to be biologically inactive. However, our data show 1,075 genes change expression 279

in response to loss of hif-1 under normoxic conditions, which establishes that there is sufficient total HIF- 280

1 protein to be biologically active. Our analyses also revealed that hif-1(lf) shares positive correlations 281

with egl-9(lf), rhy-1(lf) and vhl-1(lf), and that each of these genotypes also shows a secondary negative 282

rank-ordered expression correlation with each other. 283

A homeostatic argument can be made in favor of the activity of HIF-1-hydroxyl. The cell must con- 284

tinuously monitor multiple metabolite levels. The hif-1 -dependent hypoxia response integrates information 285

from O2, α-ketoglutarate and iron concentrations in the cell. One way to integrate this information is by 286

encoding it within the effective hydroxylation rate of HIF-1 by EGL-9. Then the dynamics in this system 287

will evolve exclusively as a result of the total amount of HIF-1 in the cell. Such a system can be sensi- 288
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Genotype

egl-9 HIF-1

HIF-1

HIF-1 activates/
HIF-1-OH represses

wild type HIF-1 HIF-1-OH

egl-9; vhl-1 HIF-1 activates/
HIF-1-OH represses

hif-1
Depends on specific activities/
concentrations at S.S.

egl-9; hif-1
Depends on specific activities/
concentrations at S.S.

vhl-1 HIF-1 HIF-1-OH HIF-1-OH represses

Interpretation

ftn-1

ftn-1

ftn-1

ftn-1

ftn-1

ftn-1

degradation

HIF-1

HIF-1-OH

RHY-1 EGL-9

VHL-1

ftn-1

A

B

Figure 8. A hypothetical model showing a mechanism where HIF-1-hydroxyl antagonizes HIF-1. A.
Diagram showing that RHY-1 activates EGL-9. EGL-9 hydroxylates HIF-1 in an oxygen-dependent fashion.
Under normoxia, HIF-1 is rapidly hydroxylated and only slowly does hydroxylated HIF-1 return to its original
state. EGL-9 can also inhibit HIF-1 in an oxygen-independent fashion. HIF-1-OH is rapidly degraded in
a VHL-1-dependent fashion. In our model, HIF-1 and HIF-1-OH have opposing effects on transcription.
The width of the arrows represents the rates under normoxic conditions. B. Table showing the effects of
loss-of-function mutations on HIF-1 and HIF-1-OH activity, showing how this can potentially explain the
ftn-1 expression levels in each case. S.S = Steady-state.

tive to fluctuations in the absolute concentration of HIF-135. Since the absolute levels of HIF-1 are low in 289

normoxic conditions, small fluctuations in protein copy-number can represent a large fold-change in HIF-1 290

levels. These fluctuations would not be problematic for genes that must be turned on only under conditions 291

of severe hypoxia—presumably, these genes would be associated with low affinity sites for HIF-1, so they are 292

only activated when HIF-1 levels are far above random fluctuations, such as in hypoxia. 293

For yet other sets of genes that must change expression in response to the hypoxia pathway, it may not be 294

sufficient to integrate metabolite information exclusively via EGL-9-dependent hydroxylation of HIF-1. In 295

particular, genes that may function to increase survival in mild hypoxia may benefit from regulatory mecha- 296

nisms that can sense minor changes in environmental conditions and which therefore benefit from robustness 297

to transient changes in protein copy number. Likewise, genes that are involved in iron or α-ketoglutarate 298

metabolism (such as ftn-1 ) may benefit from being able to sense, accurately, small and consistent deviations 299

from basal concentrations of these metabolites. For these genes, the information may be better encoded by 300

using HIF-1 and HIF-1-hydroxyl as an activator/repressor pair. Such circuits are known to possess distinct 301

advantages for controlling output in a manner that is robust to transient fluctuations in the levels of their 302

components36,37. 303

Our RNA-seq data suggests that one of these atypical targets of HIF-1 may be RHY-1. Although rhy-1 304

does not exhibit non-classical epistasis, all genotypes containing a hif-1(lf) mutation had increased expression 305

levels of rhy-1 . We speculate that if rhy-1 is controlled by both HIF-1 and HIF-1-hydroxyl, then this might 306

imply that HIF-1 regulates the expression of its pathway (and therefore itself) in a manner that is robust to 307

total HIF-1 levels. 308

Insights into genetic interactions from vectorial phenotypes 309

Here, we have described a set of methods that can be applied to any vectorial phenotype studied with 310

an appropriate experimental design. Transcriptome profiling methods offers a lot of information, but 311

transcriptome-wide interpretation of the results is often extremely challenging. Each method has its own 312

advantages and disadvantages. 313
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Principal component analysis is computationally tractable and clusters can often be visually detected 314

with ease. However, PCA can be misleading, especially when the dimensions represented do not explain a 315

very large fraction of the variance present in the data. In addition, principal dimensions are the product 316

of a linear combination of vectors, and therefore must be interpreted with extreme care. In this case, the 317

first principal dimension separated genotypes that increase HIF-1 protein levels from those that decrease 318

it. Although PCA showed that there is information hidden in these genotypes, it is not enough by itself to 319

provide biological insight. 320

Whereas PCA operates on all genotypes simultaneously, correlation analysis is a pairwise procedure that 321

measures how predictable the gene expression changes are in a mutant given the vector of expression changes 322

in another. Like PCA, correlation analysis is easy and fast. Unlike PCA, the product of a correlation analysis 323

is a single number with a straightforward interpretation. However, correlation analysis is sensitive to outliers. 324

Although outliers can be mitigated via rank-transformations, these transformations cannot remove outliers 325

resulting from systematic variation caused, for example, by feedback loops. Such interactions can lead to 326

vanishing correlations if both are equally strong. Adequately weighted correlations could be informative for 327

ordering genes along pathways. A drawback of correlation analysis is that the number of pairwise comparisons 328

increases combinatorially. 329

Another way to analyze genetic interactions is via general linear models (GLMs) that include interaction 330

terms between two or more genes. GLMs can quantify the genetic interactions on single genes. We and 331

others13,14 have used GLMs to perform epistasis analyses of a pathway using transcriptomic phenotypes. 332

GLMs are powerful, but they generate a different interaction coefficient for each gene measured. The large 333

number of coefficients makes interpretation of the genetic interaction between two mutants extremely difficult. 334

Previous approaches13 have attempted to visualize these coefficients via heatmaps. 335

The epistasis plots we demonstrate here are a novel way to visualize epistasis in vectorial phenotypes. 336

Here, we have shown how an epistasis plot can be used to identify interactions between two genes by 337

examining the transcriptional phenotypes of single mutants and the double mutant. In reality, epistasis plots 338

can be generated for any set of measurements involving a set of N mutants (or conditions) and an N -mutant 339

genotype. Epistasis plots can accumulate an arbitrary number of points within them, possess a rich structure 340

that can be visualized and have straightforward interpretations for special slope values. Epistasis plots and 341

GLMs are not antagonistic toward one another. Indeed, one could use a GLM to quantify interactions at 342

single-gene resolution, then plot the conglomerated results in an epistasis plot instead of as a heatmap (for 343

a non-genetic example, see14). 344

Until relatively recently, the rapid generation and molecular characterization of null mutants was a major 345

bottleneck for genetic analyses. Advances in genomic engineering mean that, for a number of organisms, 346

production of mutants is now rapid and efficient. As mutants become easier to produce, biologists are 347

realizing that phenotyping and characterizing the biological functions of individual genes is challenging. 348

This is particularly true for whole organisms, where subtle phenotypes can go undetected for long periods 349

of time. We have shown that whole-animal RNA-sequencing is a sensitive method that can be seamlessly 350

incorporated with genetic analyses of epistasis. 351

Materials and Methods 352

Strains 353

Strains used were N2 wild-type (Bristol), JT307 egl-9(sa307), CB5602 vhl-1(ok161), ZG31 hif-1(ia4), RB1297 354

rhy-1(ok1402). CB6088 egl-9(sa307) hif-1(ia4) CB6116 egl-9(sa307);vhl-1(ok161), All lines were grown on 355

standard nematode growth media (NGM) Petri plates seeded with OP50 E. coli at 20◦C38. 356

RNA isolation 357

Lines were synchronized by harvesting eggs via sodium hypochlorite treatment and subsequently plating 358

eggs on food. Worms were staged and based on the time after plating, vulva morphology and the absence 359

of eggs. 30–50 non-gravid young adults were picked and placed in 100 µL of TE pH 8.0 (Ambion AM9849) 360

in 0.2 mL PCR tubes on ice. Worms were allowed to settle or spun down by centrifugation and ∼ 80 µL 361

of supernatant removed before flash-freezing in liquid N2. These samples were digested with Proteinase K 362
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(Roche Lot No. 03115 838001 Recombinant Proteinase K PCR Grade) for 15 min at 60◦ in the presence of 363

1% SDS and 1.25 µL RNA Secure (Ambion AM7005). RNA samples were then taken up in 5 Volumes of 364

Trizol (Tri-Reagent Zymo Research) and processed and treated with DNase I using Zymo MicroPrep RNA 365

Kit (Zymo Research Quick-RNA MicroPrep R1050). RNA was eluted in RNase-free water stored at -80◦C. 366

Samples were analyzed using a NanoDrop (Thermo Fisher) for impurities, Qubit for concentration and then 367

analyzed on an Agilent 2100 BioAnalyzer (Agilent Technologies). Replicates were selected that had RNA 368

integrity numbers (RIN) equal or greater than 9.0 and showed no evidence of bacterial ribosomal bands, 369

except for the ZG31 mutant where one of three replicates had a RIN of 8.3. 370

Library preparation and sequencing 371

10 ng of quality checked total RNA from each sample was reverse-transcribed into cDNA using the Clontech 372

SMARTer Ultra Low Input RNA for Sequencing v3 kit (catalog #634848) in the SMARTSeq2 protocol39. 373

RNA was denatured at 70◦C for 3 min in the presence of dNTPs, oligo dT primer and spiked-in quantitation 374

standards (NIST/ERCC from Ambion, catalog #4456740). After chilling to 4◦C, the first-strand reaction 375

was assembled using the LNA TSO primer described in Picelli et al39, and run at 42◦C for 90 minutes, 376

followed by denaturation at 70◦C for 10 min. The entire first strand reaction was then used as template 377

for 13 cycles of PCR using the Clontech v3 kit. Reactions were cleaned up with 1.8x volume of Ampure 378

XP SPRI beads (catalog #A63880) according to the manufacturer’s protocol. After quantification using the 379

Qubit High Sensitivity DNA assay, a 3 ng aliquot of the amplified cDNA was run on the Agilent HS DNA 380

chip to confirm the length distribution of the amplified fragments. The median value for the average cDNA 381

lengths from all length distributions was 1,076 bp. Tagmentation of the full length cDNA for sequencing 382

was performed using the Illumina/Nextera DNA library prep kit (catalog #FC-121–1030). Following Qubit 383

quantitation and Agilent BioAnalyzer profiling, the tagmented libraries were sequenced. Libraries were 384

sequenced on Illumina HiSeq2500 in single read mode with the read length of 50 nt to an average depth 385

of 15 million reads per sample following manufacturer’s instructions. Base calls were performed with RTA 386

1.13.48.0 followed by conversion to FASTQ with bcl2fastq 1.8.4. Spearman correlation of the estimated 387

counts for each genotype showed that every pairwise correlation within genotype was 0.9. 388

Read alignment and differential expression analysis 389

We used Kallisto40 to perform read pseudo-alignment and performed differential analysis using Sleuth41.
We fit a general linear model for a transcript t in sample i:

yt,i = βt,0 + βt,genotype ·Xt,i + βt,batch · Yt,i + εt,i (1)

where yt,i was the logarithm transformed counts; βt,genotype and βt,batch were parameters of the model, and 390

which could be interpreted as biased estimators of the log-fold change; Xt,i, Yt,i were indicator variables 391

describing the conditions of the sample; and εt,i was the noise associated with a particular measurement. 392

Genetic Analysis, Overview 393

The processed data were analyzed using Python 3.5. We used the Pandas, Matplotlib, Scipy, Seaborn, 394

Sklearn, Networkx, PyMC3, and TEA libraries42,43,44,45,46,47,48,49. Our analysis is available in Jupyter 395

Notebooks50. All code and processed data are available at https://github.com/WormLabCaltech/mprsq 396

along with version-control information. Our Jupyter Notebook and interactive graphs for this project can 397

be found at https://wormlabcaltech.github.io/mprsq/. Raw reads were deposited in the Short Read 398

Archive under the study accession number SRP100886. 399

Weighted correlations 400

Pairwise correlations between transcriptomes were calculated by identifying the set of DEGs common to 401

both transcriptomes under analysis. DEGs were rank-ordered according to their regression coefficient, β. 402

Bayesian robust regressions were performed using a Student-T distribution using the PyMC3 library45
403

(pm.glm.families.StudenT in Python). If the correlation had an average value > 1, the average correlation 404
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coefficient was set to 1. Weights were calculated as the proportion of genes that were inliers to a regression 405

divided by the total number of DEGs present in either mutant. 406

Epistatic analysis 407

The epistasis coefficient between two null mutants a and b was calculated as:

s(a, b) = βa,b − βa − βb
βa + βb

(2)

Null models for various epistatic relationships were generated by sampling the single mutants in an 408

appropriate fashion. For example, to generate the distribution for two mutants that obey the epistatic 409

relationship a− = a−b−, we substituted βa,b with βa and bootstrapped the result. 410

To select between theoretical models, we implemented an approximate Bayesian Odds Ratio. We defined
a free-fit model, M1, that found the line of best fit for the data:

P (α |M1, D) ∝
∏

(xi,yi,σi)∈D

exp [ (yi − α · xi)
2

2σ2
i

] · (1 + α2)−3/2
, (3)

where α was the slope to be determined, xi, yi are the of each point, and σi was the standard error associated 411

with the y-value. We used equation 3 to obtain the most likely slope given the data, D, via minimization 412

(scipy.optimize.minimize in Python). Finally, we approximated the odds ratio as: 413

OR = P (D |α∗,M1) · (2π)1/2
σα∗

P (D |Mi)
, (4)

where α∗ was the slope found after minimization, σ∗α was the standard deviation of the parameter at the 414

point α∗ and P (D |Mi) was the probability of the data given the parameter-free model, Mi. 415

Enrichment analysis 416

Tissue, Phenotype and Gene Ontology Enrichment Analysis were carried out using the WormBase Enrich- 417

ment Suite for Python26,48. 418
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